用户名: 密码: 验证码:
三峡引水工程秦巴段深埋长隧洞开挖地质灾害研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文结合实际工程,在收集、分析前人研究结果的基础上,通过野外地质调查,室内试验测试分析和模型计算,运用工程地质学、岩体力学等多学科理论和方法,开展三峡引水工程秦巴段深埋长隧洞开挖地质灾害方面的研究工作,在项目组各位老师和同学的协助下,重点研究:(1)三峡引水工程秦巴段区域稳定性和活动断裂;(2)区构造应力场和秦岭特长隧道段隧道围岩应力场分布特征及其三维有限元的仿真模拟;(3)三峡引水工程秦巴段线路工程地质条件和问题;(4)三峡引水工程秦巴段隧洞岩爆、突水、大变形研究;经过2年多的研究取得了以下初步进展和认识:
     1、运用工程地质力学的基本理论,以具体工程为例,初步提出了较为系统、全面的、适用于条件差、地质复杂、资料少等可行性研究阶段的深埋长大隧道主要地质灾害预测研究的思路和方法;提出隧道地质灾害预报具有明显的阶段性及其预测研究的基本思路。
     2、区域现今应力场分析表明:①现今区域应力场方向以NNE向挤压为主,与SN向输水隧道成小角度相交,有利于隧洞的稳定性。②现今最大主压应力量值一般都随深度增加而增加。在离地表100m范围以内,最大主压应力值在16MPa以下;在距地表100—500m范围内,地应力值不超过30MPa。
     3、三峡引水工程秦巴段线路工程地质条件比较复杂,横向断裂多、岩体变形较破碎、局部软弱夹层多。隧洞开挖存在的主要地质灾害是岩爆、大变形和突水。特别是①秦岭特长隧洞埋深600—1700m,开挖过程中的岩爆灾害将比较突出;②大巴山南部的断裂带和岩溶突水问题比较严重。
     4、在系统总结分析影响岩爆发生8大因素的基础上,提出以岩石单轴抗压强度R_c与最大主应力σ_1的比值作为判别三峡引水工程秦岭特长隧洞岩爆发生的指标,着重预测了秦岭特长输水隧洞岩爆灾害发生的地段与烈度等级,并对引水工程秦巴段全线可能发生岩爆的区段作出预测。结果表明:①汉江以南的大巴山地区,发生强岩爆的地段少,只有局部厚层白云岩有可能发生小规模岩爆。②汉江北部的凤凰山隧道一带局部可能发生强岩爆,强岩爆可能集中在深埋隧道3—5km的范同内。②秦岭主峰附近深埋隧道发生强岩爆的可能性很大,发生强岩爆的分布范围长达50km左右,其中,秦岭主峰的20km左右范围尤其需要注意。其它大部分地段发生强岩爆的可能性很小。
     5、三峡引水工程秦巴段隧洞可能发生突水地段预测评价结果表明:秦巴段沿线隧道施工可能发生突水的地段比较多,其中,可能发生大规模突水的地段主要集中在大巴山的断层带与岩溶复合控制地段,特别是大巴山南麓的两河口—岔溪口之间的前河隧道、大巴山北部毛坝—汉江的洪家山隧道需要重视大规模岩溶突水灾害;秦岭深埋隧道主要是断裂带和节理密集带突水,以中等规模为主,局部断裂交叉部位可能存在大规模突水过程。
     6、秦巴地区从南向北的主要软弱岩土体类型包括:四川盆地的侏罗纪泥岩、大巴山地区的志留系泥质岩,秦岭造山带中的元古界片岩(云母片岩、绿泥石片岩、滑石片岩)和劈理化板岩,古生界的千枚岩、板岩、炭质页岩,月河盆地的白垩纪泥岩、胶结程度不高的断层破碎带及第四纪粘土等都是容易发生大变形及其相关灾害的软弱夹层
On the basis of field geological research, indoor examination analysis and simulativecalculation, using multidisciplinary theory like engineering geology, rock body mechanics and soon, this dissertation, combining with practical project, studies the geological hazards in tunnelingof deep-long tunnels at QingLing-DaBaShan mountain of the water diversion project from thethree gorges reservoir to the yellow river on the base of collecting and analyzing predecessor'sstudying. In the assistance with the teachers and schoolfellows of the project team, it givesemphasis to four points as follows: (1) area stability and active rift at QingLing-DaBaShanmountain of the water diversion project from the three gorges reservoir to the yellow river;(2)Three-dimensional finite element analog simulation of area tectonic stress field and QingLingextra long tunnels wall rock stree field's distributional characteristics; (3) Geological conditionand problems at QingLing-DaBaShan mountain of the water diversion project from the threegorges reservoir to the yellow river; (4) Rock blasting, water bursting and large deformation studyon the tunnels at QingLing-DaBaShan mountain of the water diversion project from the threegorges reservoir to the yellow river. By more than two years' study, we have obtained someprogress and conclusion as follows:
     1. Using engineering geomechanics' basal theory and concrete project as example, comparativelysystemic and all-round method of deep-long tunnels' main geological hazards prediction studieshave been put forward preliminarily, which is suit to the feasible study phase like bad condition,complicated geology and few data and so on. Geological hazards prediction with obvious phasecharacter and its prediction studies' basal method has also been put forward.
     2. Area present stree field analysis shows:①present area stree field is mainly in the NNEdirection extrusion, and intersects at small angle with water inlet tunnel of SN direction. which ispropitious to the tunnels' stability.②the present maximal compressive principal stress valueincreases along with the deepness increasing. In the range of 100 meter of the earth's surface, thevalue is under 16MPa; in the range of 100-500 meter, the value is not more than 30MPa, which isclose to the measured data.
     3. It is complex of the geological conditions at QingLing-DaBaShan mountain of the waterdiversion project from the three gorges reservoir to the yellow river such as more transversefailure, body distortion being broken and more local weak interbed. The main geological hazardsexiting in the tunnel excavation are rock blasting, large deformation and water bursting. Especiallyin①the rock blasting hazards in the course of excavation being extrusive in the buried depth600-1700 meter of extra deep tunnels at QingLing-DaBaShan mountain;②the problem offracture belt and carst's water bursting being comparatively serious in south of DaBaShan atQingLing-DaBaShan mountain of the water diversion project.
     4. On the basis of systemically analyzing eight influencing factors of rock burst occurrence, Theratio of rock uniaxial compressive strengh Rc to maximal principal stressσ_1, as the targetdistinguishing rockburst occurrence at Qinling extra long tunnel of the water diversion projectfrom the three gorges reservoir to the yellow river, is put forward. The plat of rockburstoccurrence and intensity class at Qinling extra long tunnel are predicted emphatically.Meanwhile, the threatening rockburst segment at Qinling-Bashan full line of the diversion workare predicted. The result shows:①Strong rockburst occurs at few of plats in DaBashan regionfrom southern Han river. None but small scale rockburst is likely to occur at parts of thick layerdolostone.②Strong rockburst occurs around phenix mountain tunnel from northern Han river andconcentrates on 3-5 km inside scope of deep-buried tunnel.③The potentiality that strong rockburst occurs at deep-buried tunnel round Qinling mountain dominant peak is quite high, and thelength of strong rockburst occurrence distributes about 50km along Qinling extra long tunnel.among the rest,it need especial attention to the 20km distribution range of extra long tunnel belowthe qinling mountain dominant peak. The potentianlity that strong rockburst occurs at the majorityof the rest plat is very low.
     5. The plats where water gushing occurs in Qinling-DaBashan segment of the water diversionproject from the three gorges reservoir to the yellow river are predicted and evaluated. The resultshows: Along the line, water gushing occurs in quite a few segment with tunnels on construction.Among the rest, the segment where industrial scale water gushing occurs mostly concentrates onthe fault zones and karst multiple-unit control plats.Especially to the Qianhe tunnel betweenLianghekou and Chaxikou from southern Bashan mountain and Hongjiashan tunnel betweenMaoba and Han river from northern Bashan mountainThey need to set much value on industrialscale karst water gushing hazard. Water gushing occurring in Qinling deep-buried tunnel mainlyconcentrates on fracture zones and joint congest zones. The scale of water gushing is mostlymoderate, but industrial scale water gushing process is likely to occur in local crippling fractureintersection situs.
     6. The principle types of weak rock in Qinling-DaBashan region from the south to northinclude:Jurassic mudstone in Sichuan basin; Silurian mudstone in DaBashan mountain region;Proterozoic schist in Qinling orogenic belt (mica schist, chlorite schist, talc schist) and cleavageslate, phyllite,slate and black batt of Palacozoic group; Cretaceous mudstone in Yuehe basin;Low-rise cement degree fault fracture zones and quarternary clay etc. They are all weakintermediate rocks which can easily became large deformation and geological hazards.Argillaceous rock in research region and its engineering geological acttributes were investigated inemphasis.
引文
1.长江技术经济学会三峡引水工程研究组.三峡水库引水入渭济黄济北工程规划纲要[R].武汉.长江技术经济学会,2002.
    2.陈成宗.隧道地质预测术.世界隧道,1995(6):74~79.
    3.陈宗基,闻萱梅.膨胀岩与隧洞稳定.岩石力学与工程学报,1983(1).
    4.陈海军等.岩爆预测的人工神经网络模型.岩土工程学报,2002(3):229~232.
    5.丁恩保.隧道工程地质预报方法探讨.工程地质学报,1995(1):28~34.
    6.傅冰骏.国际隧道及地下工程发展动向.探矿工程,2002(5):54~57.
    7.方永安.陕西地震活动规律与活动断裂的关系.陕西地质,1997(1):72~83.
    8.江中贵.小江至渭河段方案研究[R].铁道部第一勘察设计院,2002.
    9.谷明成等.秦岭隧道岩爆研究.岩石力学与工程学报,2002(9):1324~1329.
    10.谷德振.岩体工程地质力学基础.北京:科学出版社.1979.
    11.关宝树等.隧道发生岩爆的基本条件研究.铁道工程学报.1998(增):558~577.
    12.何发亮,苍松.隧道施工期地质超前预报技术的发展.现代隧道技术,2001(3):12~14.
    13.何发亮,李苍松,陈成宗.岩溶地区长大隧道涌水灾害预测预报技术.水文地质工程地质,2001(5):21~23.
    14.何锋,吴树仁.黄土坡滑坡变形的灰色预测模型.地质力学学报,2004(1):51~56.
    15.何锋,吴树仁等.圆弧形公路边坡稳定性分析的神经网络法.地球学报,2004(1):95~98.
    16.黄润秋,王贤能等.深埋长隧道工程开挖的主要地质灾害问题研究.地质灾害与环境保护,1997,8(1):50~65.
    17.黄润秋,王贤能.岩石结构特征对岩爆的影响研究.地质灾害与环境保护,1997(2):15~20.
    18.黄润秋.论中国西南地区水电开发工程地质问题及其研究对策.地质灾害与环境保护,2002(1):1~5.
    19.黄润秋,王士天,张倬元等.中国西南地壳浅表层动力学过程与工程环境效应研究.成都:四川大学出版社.2001.
    20.黄润秋,苟定才,曲科等.圆梁山隧道特长隧道施工地质灾害问题预测.成都理工学院院报,2001(2):111~115.
    21.黄伯明等.三峡水库引江入渭济华北工程—南水北调新方案.长江科学院学报,2002(6):47~52.
    22.黄志全等.南水北调西线一期工程的主要工程地质问题.中国地质灾害与防治学报,2002(3):1~8.
    23.何满潮等.软岩工程地质力学研究进展.工程地质学报,2000(1):46~62.
    24.何满潮等,煤矿软岩变形力学机制与支护对策.水文地质工程地质,1997(2).
    25.胡政才.家竹箐隧道简况.世界隧道,1996(5).
    26.姜云,王兰生.深埋长大公路隧道高地应力岩爆和岩溶突水问题及对策.岩石力学与工程学报,2002(9):1319~1323.
    27.贾愚如等.水工洞室中岩爆机制与判据.《第二次全国岩石力学与工程学术会议论文集》,1989,254~260.
    28.李春杰等.秦岭隧道岩爆特征与施工处理.世界隧道,1999(1):36~41.
    29.李典璜等.西康线秦岭特长TBM施工情况及问题探讨.世界隧道,1999(1):31~35.
    30.刘正雄.秦岭隧道平导高温高地应力区段的爆破技术.铁道工程学 报,1998(增):171~176.
    27.刘丹.铁路隧道涌水研究的发展趋势.铁道工程学报,1998(增刊):599~603.
    28.刘高等.深埋长大隧道涌(突)水条件及影响因素分析.天津城市建设学院学报,2002(3):160~168.
    29.李素清,李春杰.秦岭隧道突涌水对施工的影响及处理.石家庄铁道学院学报.1998(增11):34~38.
    30.刘传正.中国的地质灾害与防治对策.岩土工程界,2003(8):21~23.
    31.刘国林,张永双.三峡水库丰都段泥质岩工程特性与水稳定性分析.中国地质灾害与防治学报,2003(2):67~71.
    32.廖世文.安康膨胀土若干特性研究.全国首届工程地质学术会议论文选集.北京:科学出版社.1983.
    33.马建秦,陈万春.秦岭隧道岩爆作用的区域动力学背景。《全国岩土与工程学术大会论文集》(下册),2003:1257~1263.
    34.马佳宏等.秦岭山区的环境工程地质问题.中国铝业.1998(增22):3~6.
    35.毛建安,石中平,毕焕军.秦岭隧道涌水量的综合勘察与预测计算法的综合运用.铁道工程学报.1998(总57):91~98.
    36.蒙彦,雷明堂岩溶区隧道涌水研究现状及建议.中国岩溶,2003(4):287-292.
    37.牛万军.对小江引水方案的初步认识.水利水电工程设计,2002(3):18~20.
    38.彭建兵,张骏等.渭河盆地活动断裂与地质灾害.西安:西北大学出版社.1998.
    39.乔春生,张兴文.秦岭隧道岩爆预报的计算机辅助方法.铁道工程学报,1998(增刊):347.
    40.曲永新,张永双等.中国膨胀性岩、土一体化工程地质分类的理论与实践.中国工程地质五十年.地震出版社,2004:132~139.
    41.曲永新.泥质岩的胶结作用与活化作用.岩体工程地质力学问题(八).北京:科学出版社.1988.
    42.屈科,许模.圆梁山隧道毛坝向斜段典型岩溶现象及发育分布特征.地质灾害与环境保护2001(1):43~47.
    43.Reilly John et al(钱七虎译).TBM及其在中国的应用.现代隧道技术.2002(L~4):1~5、1~7、1~6、1~5.
    44.单治钢.锦屏二级水电站长隧洞的岩爆分析与防治.成都理工学院学报,2001(增28):446~450.
    45.陕西省地质矿产局.陕西省区域地质志.北京:地质出版社.1989.
    46.四川省地质矿产局.四川省区域地质志.北京:地质出版社.1989.
    47.陕西省地质矿产局.陕西省西安幅地质矿产报告(1:20万),1971.
    48.石新栋.圆梁山隧道主要地质问题及对策.西部探矿工程,2002(78):101~103.
    49.石文慧.当代铁路隧道发展趋势及地质灾害防治.地下工程建设中地质灾害的预测预报及防治学术讨论会论文集.1991,1~6.
    50.盛东劲,霍加庆.四川某水电站引水隧洞混凝土腐蚀原因分析及防治建议.地质灾害与环境保护,2003(1)76~78.
    51.宋丙林.秦岭隧道钻孔实测应力分析与探讨.铁道工程学报,1996(总52):49~54.
    52.宋建平.隧道修建中的几个工程地质问题及对策.西部探矿工程,2002(总78):90~92.
    53.孙广忠.工程地质与地质工程.北京:地震出版社,1993.
    54.孙广忠.岩体结构力学.北京:科学出版社.1998.
    55.谭以安.岩爆类型及其防治.现代地质,1991(4):450~456.
    56.谭以安.岩爆形成机理研究.水文地质工程地质,1989(1):34~38.
    57.谭以安.岩爆烈度分级问题.地质论评,1992(5).
    58.谭以安.模糊数学综合评价在地下硐室岩爆预测中的应用.《第二次全国岩石力学与工程学术会议论文集》,1989,247~253.
    59.谭以安.岩爆特征及岩体结构效应.中国科学,1991(9):985~9913.
    60.滕志宏,王晓红.秦岭造山带新生代构造隆升与区域环境效应研究.陕西地质,1996(2):33~41.
    61.陶振宇.试论高地应力力区的岩体特性.地下工程,1993(3).
    62.吴云生等.秦岭隧道施工对设计地质成果的验证分析.铁道工程学报,1998(3):69~80.
    63.王文等.深埋长大隧道围岩工程地质分类综述.成都理工学院学报(增刊),1996(23):141~147.
    64.王梦恕.21世纪山岭隧道修建的趋势.铁道工程学报,1998(增):4~7.
    65.王学潮,马国彦.南水北调西线工程及其主要工程地质问题.工程地质学报,2002(1):38~45.
    66.王延福等.岩溶煤矿矿井煤层底板突水非线性预测方法研究.中国岩溶,1998,No.4.
    67.王兰生,李天斌,赵其华著.浅生时效构造与人类工程.北京:地质出版社.1994.
    68.王兰生等.高地应力区公路隧道施工围岩稳定性监测预报系统.四川公路,1999(1).
    69.王贤能,黄润秋.岩石卸荷破坏特征与岩爆效应.山地研究,1998(4):281~285.
    70.王思敬.地球内外动力耦合作用与重大地质灾害的成因初探.工程地质学报,2002(2):115~117.
    71.王勐,许兆义等.铁路深埋隧道区岩溶发育特征研究.工程地质学报,2004(3):253~258.
    72.王科,黄润秋等.圆梁山隧道桐麻岭背斜段岩溶与岩溶水特征研究.地质灾害与环境保护,2002(1):51~53.
    73.汪泽斌.岩爆实例、岩爆术语及分类的建议.工程地质,1988(3).
    74.吴玉山,林卓英.论岩石应力—应变全过程.中国青年学者岩石工程力学及其应用讨论会论文集(武汉),1994(12):41~49.
    75.吴成山,王梦恕.软岩隧道的修建方法.世界隧道,1997(3).
    76.伍法权.中国21世纪若干重大工程地质与环境问题.工程地质学报,2001(2):115~121.
    77.肖树芳,杨淑碧.岩体力学.北京:地质出版社,1986.
    78.肖荣久.陕南膨胀土及其灾害地质研究.西安:陕西科学技术出版社.1995.
    79.肖荣久,邓媛华.汉中盆地膨胀土研究.水文地质工程地质,1987(1).
    80.肖荣久,赵强,邓媛华.陕西三趾马红土工程地质特性初步研究.第四届全国工程地质大会论文集(二).北京:海洋出版社.1992.
    81.徐则民,黄润秋,陈颖辉等.河谷应力集中及岩体响应.工程勘察,2003(1):.4~7.
    82.薛玺成等.岩体高地应力及其分析.水利学报,1987(3).
    83.徐林生,王兰生等.二郎山公路隧道岩体应力测试研究.华东公路,2002(134):63~65.
    84.许模.大型水电工程中的主要水文工程地质问题的系统研究.成都:成都理工学院博士学位论文.1998.
    85.徐林生,王兰生,孙宗远等.二郎山公路隧道地应力测试研究.岩石力学与工程学报,2003(4):611~614.
    86.徐则民,黄润秋,王士天.隧道的埋深划分.中国地质灾害与防治学报,2000(4):5~10.
    87.许强,黄润秋.非线性科学理论在地质灾害评价预测中的应用—地质灾害系统分析原理.山地学报,2000(3):272~277.
    88.杨新安,黄宏伟.隧道病害与防治.上海:同济大学出版社.2003.
    89.杨志华,郭俊锋,苏生瑞等.秦岭造山带基础地质研究新进展.中国地质,2002(3):246~256.
    90.姚宝魁,张承娟.高地应力坝区硐室围岩岩爆及其断裂破坏机制.水文地质与工程地质.1985(6).
    91.袁登维等.长江三峡工程坝区及外围地壳稳定性研究.中国地质大学出版社,1996,83~97.
    92.叶圣教.辛普伦铁路隧道的施工和回顾.铁路工程建设科技动态报告文集.铁路隧道及地下工程.成都:西南交通大学出版社.1995:120~134.
    93.殷跃平.中国地质灾害减灾战略初步研究.中国地质灾害与防治学报,2004(2):1~7.
    94.张祉道.隧道工程设计中的若干岩石力学问题.世界隧道,1995(4):2~11.
    95.张祉道,白继承.家竹箐隧道高瓦斯、大变形、大涌水的整治与对策.世界隧道,1998(1).
    96.张祉道.关于挤压性围岩隧道大变形的探讨和研究.现代隧道技术,2003(2):5~12.
    97.张祉道.家竹箐隧道施工中支护大变形的整治.世界隧道,1997(1).
    98.张永双,何锋(译).岩土工程勘察和测试一岩石鉴定和分类(第一部分:鉴定和描述).2003国际标准ISO/FDIS14689-1,2003(E).
    99.张永双,曲永新,吴树仁,谭成轩.秦岭北缘仙游寺粘土(膨胀土)的发现及初步研究.现代地质,2004(2).
    100.张二朋等.秦巴及邻区地质一构造特征概论.北京:地质出版社.1993。
    101.张国伟等.秦岭造山带与大陆动力学.北京:科学出版社,2001.
    102.张津生,陆家佑,贾愚如.天生桥二级水电站引水隧洞岩爆研究.水利发电,1992(3).
    103.张倬元,刘汉超,黄润秋.中国地质环境的基本特征及其对人类工程活动的制约.地质灾害与环境保护,1997(1):1~18.
    104.张乃娴等.粘土矿物研究方法.北京:科学出版社,1990.
    105.任磊夫.粘土矿物与粘土岩.北京:地质出版社,1992.
    106.张倬元,宋建波,李攀峰.地下硐室群岩爆趋势综合预测方法.地球科学进展,2004(3).
    107.赵自强,王学潮,随裕红.南水北调西线工程深埋隧洞岩爆与地应力研究.华北水利水电学院学报,2002,23(1):48~50.
    108.钟桂彤主编.铁路隧道.北京:中国铁道出版社.1996.
    109.周厚云等.东秦岭铁炉子断裂的新活动特征.地震地质,2001(3):390~398.
    110.周德陪,洪开荣.太平驿隧洞岩爆特征及防治措施.岩石力学与工程学报,1995(2)171~178.
    111.周兴志.南水北调新线路—三峡水库引水济黄济华北段工程地质条件.工程地质学报,2003(2):208~212.
    112.邹成杰.地下工程中岩爆灾害发生规律与岩爆预测问题的研究[J].中国地质灾害与防治学报,1992,3(4).
    113.左文智,张齐桂等.地应力与地质灾害关系探讨.第五界全国工程地质大会文集.北京:地质出版社,1996:31~36.
    114.《铁道部铁路隧道设计规范》.(TBT3-96)[S].1996.
    115.中华人民共和国交通部.公路隧道设计规范.1990.
    116.中国地质学会工程地质专业委员会.中国工程地质世纪成就.地质出版社,2004:59~81,109~128,157~169,343~354.
    117.中华人民共和国国家标准.中国地震动参数区划图(GB 18306—2001).中国标准出版社出版,2001.
    118.国家地震局《中国岩石圈动力学地图集》编委会.中国岩石圈动力学地图集.中国地图 出版社出版,1989.
    119.铁道第一勘察设计院.铁路工程地质实例西北及邻区分册.北京:中国铁道工业出版社.2002.
    120.成都理工学院.地质灾害过程模拟和过程控制研究[R].成都理工学院,2000.
    121.Anagnostou G.A Model for Swelling Rock in Tunneling.Rock Mech.Rock Engng.1993(4):307~331.
    122. Barton N. et al. Strength, deformation and conductivity coupling of rock joints. Int. 5. Rock Mech. Min. SCI. and Geomech. Abstr, 1985(3): 121~140.
    123. Cook, N. G. W., Heok, E. et al. Rock Mechanics Appied to the Study of Rockbursts, J. S. Afr. Inst. Min. Metall. 1996(66): 435~528.
    124. D. Cesano, A. C. Bagtzoglou, B. Olofsson. Quantifying fractured rock hydraulic heterogeneity and groundwater inflow prediction in underground excavations: the heterogeneity index. Tunneling and Underground Space Technology. 2003(1): 19~34.
    125. Detournay E. The effect of gravity on the stablility of a deep tunnel, lnternational Journal of Rock Mechanics and Mining Sciences & Oeomechanics Abstracts. 1984, 21(6): 349-351.
    126. Dwayne D Tannant, Peter K Kaiser. Rockburst Support Reseach in Canada. International Society for Rock Mechanics News Journal. 1996(1): 15~18.
    127. Einstien, Herbert H, et al. Design of Tunnels in Swelling Rocks, Proc. Design Methods in Rock Mechanics. 16th Symp. Minneapolis. USA.
    128. E. Hoek, P. Marinos, M. Benissi. Applicability of the geological strength index (GSI) classification for very weak and sheared rock masses. The case of the Athens Schist Formation. Bulletin of Engineering Geology and the Environment. 1998(2): 151~160
    129. Elliott G. M. haboratory measurement of the thermal-hydro-mechanical properties of rock. Quarterly Journal of Engineering Oeohogy. 1988(21): 299~314.
    130. F. Schlunegger, J. Melzer, G. Tucker. Climate, exposed source-rock lithologies, crustal uplift and surface erosion: a theoretical analysis calibrated with data from the Alps/North Alpine Foreland Basin system. International Journal of Earth Sciences. 2001(3): 484~499.
    131. G S Saini, et al. Uderground Excavations in Expansive Strata. Proceedings 6th International Conference on Expansive Soils, indio, 1988, 477~481.
    132. Haimson, B. C. Hydraulic fracturing in porouos and nonporons rock and its potential for deterring in-situ stresses at great depth. Missouri River Div. u.s. Corps of Engrs.,Omaha, rech. Rept., 1968, No. 4-68.
    133. J. A. Piotrowski. Tunnel-valley fomation in Northwest Germany: geology, mechanisms of formationand subglacial bed conditions for the Bornhoeved tunnel valley. Sedimentary Geology. 1994(1-2): 107~141.
    134. Jethwa J. L. &Singh B. Instrumentation for Evaluation of Rock Loads in the Intra Trust Zone at Klawar for HRT of Yamuna Hydel Project ,Symposium on Rock Mechanics and Tunneling Problems, Kurukshetra, Haryana, 1973.
    135. Kaiser P. K, D, R, McCreath, DD Tannant. Canadian Rockburst Support handbook. Mining Reaseach Directorate, Sudbury. 1995.
    136. Kelsall P. C. Evaauation of excavation induced changes in rock permeability. Int. J. Rock Mech.Min. Sci. and Geomech. Abstr. 1984(3)123—135.
    
    137. Kidybinski A. Bursting liability indices of coal. Int. J. Rock Meth. Min. Sci. and Geomech. Abstr., 1981(4): 295—304.
    
    138. Kimura F, Okabayashi N,Kawamoto T. Tunneling Through Squeezing Rock in Two Large Fault Zone of Enasan Tunnel II. Rock Mech. and Rock Engng.1987(20): 151 — 166.
    
    139. Kitagawa T. et al. Application of Convergence confinement Analysis to the study of Preceding Dispacement of a Squeezing Rock tunnel. Rock Mech. Rock engng, 1991(24) :31-51.
    
    140. M. Sapigni.G. La Barbera, M. Ghirotti. Engineering geological characterization and comparison of predicted and measured deformations of a cavern in the Italian Alps. Engineering Geology, 2003(1): 47—62.
    
    141. Mueller W. Numerical simulation of rock bursts. Mining Science&Technology. 1991(1) :27-42.
    
    142. Muirwood, A m. Tunnels for roads and motorways. Quarterly Journal of Engineering Geology. 1972(5): 119-120.
    
    143. Niu Hongjian, Wangsijing, Chai Yucheng, et al. 1996. Thrust and nappe tectonics in Qinling-Dabie orogenic belt, Central China. Beijing: Seismological Press.
    
    144. O Aydan, T Akagi.T Kavamoto. The squeezing Potential of Rocks Around Tunnels:Theory and Predicton. Rock Mechanics Rock Engineering. 1993(2): 137 — 163.
    
    145. Oda, M. An equivalent continuum mdel for coupled stress and fluid flow analysis in fractured rock masses. Int. J. Rock Mech. Min. Sci. and Geomech. Abstr. 1982(19): 185-193.
    
    146. P. Egger. Design and construction aspects of deep tunnels (with particular emphasis on strain softening rocks). Tunneling and Underground Space Technology. 2000(4): 403-408.
    
    147. R. K. Goel, J. L. Jethwa, A. G. Paithankar. Tunnelling through the young Himalayas: a case history of the Maneri-Uttarkashi power tunnel. Engineering Geology. 1995 (1) : 31-44.
    
    148. R. Bhasin, N. Barton, E. Grimstad, P. Chryssanthakis. Engineering Geological Characterization of Low strength Anisotropic Rocks in the Himalayan Region for Assessment of Tunnel Support .Engineering Geology, 1995(40):169—193.
    
    149. Roberts M KC, R K Brummer. Support requirements in Rockburst conditions. Journal of South African Institue of Minning and Mefallury. 1988(3):97-104.
    
    150. Russnes B F.Analyses of Rockburst in Tunnels in Valley sides(In Norwegian). Msc. Theis,Norweigian Inst. of Technology, Trondheim, 1994.
    
    151. Summers R. et al. Permeability changes during the flow of water through westerly Granite at temperature of 100℃ —400℃. Journal of Gephysical Research . Vol. 83, No. 1,1978.
    
    152. Saini G. S. Dube A. K. &Swarup A. Uderground Excavations in Expansive Strata. Proceeding 6th International Conference on Expanxive Soil, indio. 1988:477—481.
    153. Tan Chengxuan, et al. Numerical modeling estimation of the tectonic stress plane (TSP) beneath topography with quasi-U-shaped valleys. Intenatinal Journal of Rock Mechanics and Mining Sciences. 2003(6) :252—258.
    
    154. Tannant DD. DR McCreath, P K Kaiser. Impact tests on shotcrete and implications for dynamic loads. Proc.2nd North Amecican Rock Mechanics Symp,Montreal Balkream. 1996.
    
    155. T. Kohl, S. Signorelli, L. Rybach. Three-dimensional (3-D) thermal investigation below high Alpine topography. Physics of the Earth and Planetary Interiors, 2001(3): 195-210.
    
    156. Unger A. J. A. et al. Numercal study of the hydromechanical behavior of two rough fracture strfaces in contact. Water Resources Research . 1993(7):2101—2114.
    
    157. Wang Sijing, Li Guohe, Zhang Qiang. Engineering geological study of the active tectonic region for hydropower development on the Jinsha River, upstream of the Yangtze River. Acta Geologica Sinica, 2000(2):353—361.
    
    158. Williams A. A. B. and Donaldson G, Building on expansive soils in South Africa. Proc 4th Int. Conf. Expansive Soils Denver . 1980(2): 834-838.
    
    159. William M. B. Crack growth and the thermoelastic Behavior of rocks. Journal of Geophysical Reseach .1979(84).
    
    160. W. Mueller. Nummerical simulation of rock bursts. Mining Science and Technology. 1991(1): 27-42.
    
    161. Yian Tan, Guangzong Sun. Rockbursting characteristics and structural of rock mas. DG Price. Proceedings, 6th International Congress, International Association of Engineering Geology. Amsterdam, Netherlands, 1990:2573—2578.
    
    162. Yongshuang Zhang, Yongxin Qu, Guolin Liu, Shuren Wu. Engineering geological properties of Miocene hard clays along the middle line of the North-South Environment. 2003(62):213-219.
    
    163. Zubelewicz A et al. Numerical Simulation of Rock Burst Process Treated as Problems of Dynamic Instability. Rock Mech. Rock Engng. 1983(16)253—274.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700