用户名: 密码: 验证码:
恶劣飞行环境中光纤光栅传感方法和技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航空飞行器作为国家综合实力和军事实力的体现,在现代战争中的地位越来越重要,它在预警、侦查、反坦克、防空、电子作战、空中指挥等系统中发挥着越来越大作用,飞行器己成为取得战争主动权的最重要的武器,对战争的进程和结局将产生重要乃至决定性的影响。但是由于飞行器的结构十分精密而复杂;经常工作在各种恶劣的环境中;以及高超声速的飞行等,导致其出现故障的机率增加。因此飞行器的结构安全监测问题成为一项非常必要和迫切的任务。
     目前现役飞行器上的压力检测采用直读式压力表或通过压力传感器/信号器进行远距离测量和控制,温度检测和控制采用温包、热电偶、热电阻、双金属片等,这些传感器一般基于电阻或电感测量原理,它们感受温度和压力后通过电缆将电信号传递给对应的指示仪表或其他系统。这一类机电传感检测方法极易受到恶劣飞行环境的影响,导致温度和压力的检测精度低、测量误差大、可靠性差、易受电磁干扰等。
     光纤光栅传感器具有传统机电传感器不可比拟的优点如重量轻、体积小、精度高、传感信号为数字、抗电磁干扰、防爆且易于引入综合处理器对信号进行集中处理等等,非常适合航空飞行器的结构安全监测。
     本论文在国家自然科学基金(60537050)以及国防科工委预研项目的支持下,从基础理论、基本实验研究了光纤光栅传感技术及其在恶劣航空飞行环境中的应用。目的是研制出光纤光栅温度和压力等传感器及其所构成的健康监测系统,并实现其在航空飞行器中的应用。
     本论文重点研究了裸光纤光栅、镍管镀金光纤光栅和细不锈钢管封装的三种不同形式的光纤光栅温度传感器的低温特性,前两种光纤光栅的波长在整个温度变化区间具有良好的线性,镍管镀金光纤光栅解决了航空飞行器在低温恶劣飞行环境中应用问题。同时对细不锈钢管封装的光纤光栅的中心波长突变温度点与其它温度点的反射光谱进行了研究,并详细阐述了突变的原因。航空发动机燃气温度可达到1400℃,现有的各种高温传感器自身存在许多缺点和不足,对光纤光栅高温特性提出了需求。本文对由通讯光纤、高掺硼和高掺锗光纤制备的三类光纤光栅镀金后的高温特性进行了研究,为光纤光栅在高温环境中的应用提供理论依据。实验发现升高到一定的温度时,光纤光栅被破坏即被擦除,并且不同类型的光纤刻写的光纤光栅其失效温度各不相同,同时对光纤光栅高温失效机理作了理论上的解释和分析。
     本文还分析了各种结构的光纤光栅压力传感器受力状况和位移形变,通过优化设计确定了传感探头的几何形状和规格。提出了采用膜片制作光纤光栅压力传感器并对基于膜片的不同结构光纤光栅压力传感器进行了高低压性能试验,同时分析了它们各自的优缺点。讨论了强电磁场和剧烈振动等恶劣飞行环境下,光纤光栅敏感压力探头的设计以及关键问题的解决方法和途径。针对航空飞行器恶劣的飞行环境以及其自身结构特点,提出了采用适当的结构和材料以及与软件相结合的方法进行温度补偿,从而真正达到消除温度影响的目的。并研究了光纤光栅压力传感器的线性度、灵敏度、重复稳定性以及疲劳性能。
     由于航空飞行器经常处于强振动、高冲击、高过载等十分恶劣工作环境,要求航空机载设备具有很高的可靠性、灵敏度以及卓越的性能。本文还探讨了采用基于DSP的解调方法解决了航空飞行器现有的电类振动传感器易受电磁干扰、无法测量高频信号等问题,提高解调系统可靠性、稳定性以及精度。特别是遇到紧急情况时飞行器能迅速作出反应,避免各种事故的发生。
Aero aircraft is an embodiment of the nation integration and military strength.Its roles become more and more important in the modern war, and function isgreater and more in the systems of the Early Warning, military surveillance,anti-tank, Air Defense System, communication command and so on. Aerocraft hasbeen the most important weapon to win the war initiative and caused the importantand even crucial influence to the course and sequel of the war. Aerocraft usuallygoes wrong because its structure is very precise and complicated; the workingenvironment is extremely harsh; hypersonic flying speed and so on. It is a greatlydispensable and exigent task for safety monitoring of aero aircraft structure.
     The pressure in the active Aerocraft has been examined through the pressuremeter or pressure sensor/announciator to carry out distance measuring andcontrolling presently, the temperature has been examined and controlled by thetemperature wrap, the thermocouple, the thermoelectricity, the double sheet metaletc. The sensing theory of the sensors usually is based on the resistance orinductance. They pass the electricity signal to corresponding appearance and othersystem after they take the temperature and the pressure. The examining method ofthe machine-electron is influenced by the harsh flying environment to result in thetemperature and pressure to have low detection precision and reliability, measureerror, suffer from the electro-magnetic interference and so on.
     It is very fit for the safety monitoring of aero aircraft structure because FiberBragg grating(FBG) sensors posses a series of merits such as light weigh, smallsize, high precision, the number sensing signal, anti-exploding and being easy toimport integrated processor to process signal which the conventional electrical-basedsensors could not match.
     The basic theories and fundamental experiments of techniques of FBG and itsapplication in the harsh aviation environment financially supported by the NationalNatural Science Fund (60537050) and basic Pre-research Project of Committee ofDefense Science and Industry in this thesis,. The purpose is to develop the FBGtemperature and pressure sensors and their health monitoring system, and to usethem in aero aircraft construction.
     The low temperature properties of three structures of FBG temperature sensors, which are the bare FBG, FBGs with thin stainless steel tube encapsulationand nickel tube after the fiber with plating gold package, have been researched.There is good linearity of the former two FBGs. FBG temperature sensor withplating full metal package has solved the application problem of the Aerocraft inthe harsh environment. The reflecting spectrogram of FBG with thin stainless steeltube package at the breaking temperature point and other temperature point hasbeen studied. Simultaneously the cause of the center wavelength breaking has beenexpounded in details. The temperature of the Aeroengine is up to 1400℃, there arelots of disadvantages and deficiency of all kinds of the high temperature sensor,and so there is demand for the high temperature properties of the FBG. The hightemperature properties of three types of FBGs which are made of thecommunication, high Boron and Germanium co-doped fiber have been studied inthe thesis, and it provides the theoretical basis for the use of FBG in the hightemperature environment. When the temperature has been heated to the criticaltemperature, FBG will be destroyed, and there are different destroyingtemperatures when FBGs are fabricated with different types fibers. The thermaldegradation of FBGs is carefully experimental explained and analyzed.
     The force distributing and the displacement shift of all different structure FBGpressure sensors have been establishedin the thesis, and the geometry figure andspecification of the sensing probes have been confirmed by optimizing design andcontrasting. FBG pressure sensors with different structure based on the diaphragmhave been put forward and carried out an experiment in the high and low pressure,and the merits and demerits of theirs are analyzed. The design of the sensitivepressure probes of FBG pressure sensors and the solving methods and approachofthe key problem have been discussed in the harsh flying environment of the aeroaircraft such as strong electromagnetic fields and acutely vibration. The properstructures, materials and method related to the software have been brought forwardto compensate temperature in allusion to the harsh flying environment of the aeroaircraft and its structure characteristic. Consequently the temperature influence iseliminated really. The linearity, sensitivity, repletion, stability and fatigueperformance of FBG pressure sensors have been investigated.
     There must be high reliability and sensitivity, eximious performance for theaircraft airborne equipment. Because the aero aircraft usually suffers from the terribly harsh environment such as the intensively virbration, high impulsion, andhigh over loading and so on, the demodulating methods based on DSP have solvedthe problems of being liable to electro-magnetic interference and unable tomeasuring high frequency signals of the electric vibration sensor in the aeroaircraft.The reliability, stability and precision of the demodulating system havebeen improved. Especially it could respond in the urgent instance so all kinds ofaccidents is avoided to happen.
引文
1.范晋伟,阎绍泽,刘又午.提高飞行器结构件加工精度的通用误差补偿技术[J].导弹与航天运载技术,1999,3:42~48
    2.李文钊.飞行器健康监控技术实验室方案及验证模型.西北工业大学硕士论文[D],2004,3
    3.穆志韬.舰载直升机安全飞行的使用特点分析[J].航空维修,2000,4:28~29
    4.段泽民,石家华,张钦良.飞行器雷电防护的适航要求于试验[J].国际航空,1996,6:28~29
    5.朱志华,王丽红,赵岩峰.测控系统中压力传感器抗电磁干扰措施探讨[J].飞航导弹,2004,8:54~55
    6.胡朝江,全崇楼,陈士橹.战斗机空战敏捷性管理系统研究[J].飞行力学,2001,19(3):15~19
    7.随予行.光传操纵系统综述[J].光电子技术与信息,2002,15(6):35~38
    8. P. D. Foote. Optical Fibre Bragg Grating Sensors for Aerospace Smart Structures [C]. IEE Colloquium on Optical Fibre Grating and Their Applications, 1995, 1411~1146
    9. Turtzel, D. Betz, M. Holz et al. Investigation of Fiber optic Bragg Grating Sensor for applications in the Aviation industry [J]. Proc. OFS-13, 1999, 624~627
    10. Michael N. Turtzel, Karsten Wauer, Daniel Betz, et al. Smart sensing of Aviation Structure with Fiber optic Bragg Grating Sensors [C]. SPIE, 2000,3986:134~143
    11. Wolfgang Ecke, Stephan Grimm et al. Optical Fiber Grating Sensor Network Basing on High-Reliable Fibers and Components for Spacecraft Health Monitoring [C]. SPIE, 2001, 4328:160~167
    12. Daniel Betz, Lothar Staudigel et al. Test of a Fiber Bragg Grating Sensor Network for Commercial Aircraft Structures [J]. Proc. OFS-16, 2002, 55~58
    13. Toshimichi Ogisu, Masakazu Shimanuki et al. Development of Damage monitoring System for Aircraft Structure Using a PZT Actuator/FBG Sensor Hybrid System [C]. SPIE, 2004, 5388:425~436
    14. Shinji Komatsuzaki, Seiji Kojima, Akihito Hongo et al. Development of high-speed optical wavelength interrogation system for damage detection in composite materials [C]. SPIE, 2005, 5758:51~61
    15.秦大甲.光纤技术在制导和航空航天领域的应用[J].光纤与电缆及其应用技术,1998,3:32~37
    16.朱剑英.航空技术的发展趋势与航空关键技术[J].南京航空航天大学学报,1995,27(1):7~14
    17.龚华军,杨一栋,黄子安.光传操纵系统综述[J].光纤与电缆及其应用技术,1997, 4:43~48
    18.钱坤,董新民.电传到光传的发展趋势[J].电光与控制,2001,3:60~64
    19.吴思汉,宋金声.光无源器件在军事中的应用[J].光纤与电缆及其应用技术,2003,4:34~38
    20.李昆,王少萍.光传操纵系统的发展趋势[J].北京航空航天大学学报,2003,29(12):1068~1072
    21.姜德生,RichardO.Claus(美).智能材料 器件 结构与应用[M].武汉:武汉工业大学出版社,2000
    22.廖延彪.光纤光学[M].北京:清华大学出版社,2001
    23. K. O. Hill, Y. Fujii, D. C. Johnson et al. Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication [J]. Appl. Phvs. Lett., 1978, 32 (10): 647~649
    24. Y. J. Rao. Recent progress in applications of in-fibre Bragg grating sensors [J]. Optics and Lasers in Engineering, 1999, 31:297~324
    25. Byoungho Lee. Review of the present of optical fiber sensors [J]. Optical Fiber Technology, 2003, 9:57~79
    26. Vasiliev. S. A. Photoinduced Fiber Gratings [C]. SPIE, 2001, 4375:1~12
    27. Bhatia V. Properties and Applications of Fiber Gratings [C]. SPIE, 2001, 4417: 154-160.
    28. T. L. Vigo. Intelligent fibrous materials [J]. Journal of the Textile Institute, 1999, 90(3): 1~13
    29. J. Leng, A. Asundi. Structural health monitoring of smart composite materials by using EFPI and FBG sensors [J]. Sensors and Actuators A-Physical, 2003, 103(3): 330~340
    30. S. C. Tjin, Y. Wang, X. Sun et al. Application of quasi-distributed fibre Bragg grating sensors in reinforced concrete structures [J]. Measurement Science & Technology, 2002, 13(4): 583~589
    31. Y. Okabe, R. Tsuji, N. Takeda. Application of chirped fiber Bragg grating sensors for identification of crack locations in composites [J]. Composites Part A-Applied Science and Manufacturing, 2004, 35(1): 59~65
    32. A. Wang , G. R. Pickrell. Optical Sensor Research at Virginia Tech Center for Photonics Technology [J]. 2001, Proceedings of SPIE Vol. 4578: 1~7
    33. K. O. Hill, F. Bilodeau, B. Malo et al. Chirped in-fiber gratings for compensation of optical-fiber dispersion [J]. Opt. Lett., 1994, 19(17): 1314~1316
    34. P. Burger, P. L. Swart, S. J. Spammer et al. Fiber laser with in-fiber Bragg reflector: Design formulae with experimental verification [C]. Proc. SPIE., 1995, Vol. 2507: 53-64
    35. W. W. Morey, G, A. Ball, and H. Singly. Applications of fiber grating sensors [C]. Proc. SPIE., 1996, Vol. 2839:2~7
    36. G. Meltz. Overview of fiber grating-based sensors [C]. Proc. SPIE., 1996, Vol. 2838: 2~22
    37. A. D. Kersey. A review of recent developments in fiber optic sensor technology [J]. Optic. Fiber Technol., 1996, vol. 2:291~317
    38. P. M. Nellen, Ro Bronnimann, U. Sennhayser. Applications of distributed fiber Bragg grating sensors in civil engineering [C]. Proc. SPIE., 1995, Vol. 2507:14~24
    39. M. G. Xu, H. Geiger and J. P. Dakin. Multiplexed point and stepwise continuous fiber grating based sensors: Practical sensor for structural monitoring [C]. Proc. SPIE., 1994, Vol. 2294:69~80
    40. Ferdinand. P, Magne. S. Applications of Bragg Grating Sensors in Europe [C]. 2005, Proceedings of the 12th International Conference on Optical Fibre Sensors: 14~19
    41. Valery N. Filippov, Andrey N. Starodumov et al. Fiber Optic Sensor for Simultaneous Measurement of Voltage and Temperature [C]. Proceedings of SPIE, 2002, Vol.12: 1543~1545
    42. Jennifer Elsterl, Dr.Angela Trego, Charles Catteralls. Flight Demonstration of Fiber Optic Sensors [C]. 2003, Editors, Proceedings of SPIE Vol. 5050: 34~43
    43. Jennifer L., Elster. Corrosion Monitoring in Aging Aircraft Using Optical Fiber-Based Chemical Sensors. 2000, 2~9
    44. C.K.Y. Leung, N. Elvin, N. Olson, A novel distributed optical crack sensor for concrete structures [J]. Engrg.Fract.Mech., 2000, 65: 133~148
    45. F. O. Ferdinand P, Lechien. J. L, Lescop. B. Mine operating accurate stability control with optical fibre sensing and Bragg grating technology [J]. Lightwave Technol, 1995, 13(1): 303-313
    46. K. Murphy, M. Gunther, A. Vengsarkar. Fabry-Perot Fiber Optic Sensors in Full Scale Fatigue Testing on an F-15 Aircraft [J]. Applied optics,1992, 31:431~433
    47. J. Borinski, S. A. Meller, W. Pulliam. Optical Fiber Sensors for In-Hight Health Monitoring [C]. 2000, SPIE Proceedings, vol. 3986: 143~152
    48. Jennifer L.Elster, Mark E.Jones, Mark E.Jones. Optical Fiber Extrinsic Fabry-Perot Interferometric (EFPI)-Based Biosensors [C]. Proc. SPIE Vol. 3911: 105-112
    49. Hjelme D. R, Bjerkan L, Neegard S. Application of Bragg grating sensors in the characterization of scaled marine vehicle modes [J]. Appl Opt, 1997, 36: 328~344
    50. Jason S. Kiddy, Chris. S. Certification of a submarine design using fiber Bragg grating sensors [C]. 2005, Proceedings of SPIE Vol. 5388: 387~399
    51. A. M. Anisfeld, H. R. Kast-Woelbern, H. Lee et al. Activation of the nuclear receptor FXR induces fibrinogen expression: a new role for bile acid signaling [J]. Journal of Lipid Research, 2005, 46(3): 458~468
    52. Schroeder. High Pressure and Temperature Sensing for the Oil Industry Using Fiber Bragg Gratings Written onto Side Hole Single Mode Fiber [C]. 2005, Gratings", Proceedings of SPIE, Vol. 3042 : 1~4
    53. Wavering Thomas, Elster. J., Luoo S. F. Fiber optic affinity ligand sensors for quantification of petroleum and bioremediation [C]. Proc. SPIE 2001, vol. 4205:163~169
    54. Prohaska. J. D, Snitzer. E. Fibre optic Bragg grating strain sensor in large scale concrete structures [C]. 1997, Proc SPIE 1798: 286~294
    55. A. D. Kersey, M. A. Davis, H. J. Partrick et al. Fiber grating sensors [J]. Lightwave Technol. 1997,15(8): 1442~463
    56. Y. J. Rao. Recent progress in in-fiber Bragg grating sensors: applications [C]. Proc. SPIE.,1992,Vol.3555: 429~441
    57. K. O. Hill, G. Meltz. Fiber Bragg grating technology fundamentals and overview [J]. Lightwave Technol. 1997, 15(8): 1263~1276
    58. P. Zhang, H. H. Cerecedo, B. Qi et al. Optical time domain reflectometry interrogation of multiplexing low-reflectance Bragg grating based sensor system [J]. Opt. Eng. 2003, 42(6): 1597~1603
    59.姜德生,何伟.光纤光栅传感器的应用概况[J].光电子·激光,2002,13(4):420~430
    60. Foote. P. D. Fiber Bragg grating strain sensors for aerospace smart structure [C]. Proc. SPIE.1994, 2361:162-166
    61. Ecke. W. et al. Optical Fibre Grating Strain Sensor Network for X-38 Spacecraft Health Monitoring [C]. Proc. of the SPIE. 2000, 4185:888-891
    62. Internet reference: ic. are. Nasa. gov/ic/projects/photonics/OS/HealthSensors/health. html.
    63. Zhang L, et al. Spatial and wavelength multiplexing architectures for extreme strain monitoring system using identical-chirped-grating-interrogation technique [C]. Proc.of the Optical Fiber Sensors Conf. (OFS-12).1997, 425-455
    64.秦大甲.光纤技术及其军事应用[J].光纤与电缆及其应用技术,1999,5:7~15
    65. Ferdinand P, et al. Applications of Bragg grating sensors in Europe [A]. Proc. Of the Optical Fiber Sensors Conf. (OFS-12) [C]. Williamsburg, VA, USA, 1997, 14~19
    66.王庆亚,张健.紫外写入光纤光栅的进展[J].吉林大学学报,1996,1(1):69~72
    67.陈根祥,葛璜.光纤的光敏性及光纤光栅紫外写入技术[J].电子学报,1997,25(8):73~77
    68.刘云启,郭转运.光纤光栅传感测量中的交叉敏感机制及其解决方案[J].电子·激光,1999,10(2):179~182
    69.关柏鸥,董孝义.用一根光纤光栅实现温度与应变的同时测量[J].光学学报,2000, 20(6):821~826
    70.谢芳,李相培.光纤光栅传感器的波长检测系统及其理论分析[J].光学学报,2002,22(6):726~730
    71.郭团,乔学光,贾振安等.基于带宽展宽的光纤光栅压力传感研究[J].光子学报,2004,33(3):288~290
    72.姜德生,郭会勇,黄俊等.一种准分布式光纤光栅漏油传感器[J].光学与光电技术,2004.2(1):15~19
    73.姜德生,左军,信思金等.光纤Bragg光栅传感器在水布垭工程锚杆上的应用[J].传感器技术,2005.24(1):72~74
    74.姜德生,梁磊,周雪芳等.光纤Bragg光栅传感器在冷饭盒大桥的应用[J].交通科技,2003.48
    75.姜德生,陈大雄,梁磊.光纤光栅传感器在建筑结构加固检测中的应用研究[J].土木工程学报,2004.37(5):50~53
    76. P. niay. Behavior of special transmissions of Bragg gratings written in germania-doped fibers: writing and erasing experiments using pulsed or CW UV exposure [J]. Opt. Comm., 1994,113(1): 176~192
    77. L. Dong, W. F. Liu. Thermal decay of fiber Bragg gratings of positive and negative index changes formed at 193nm in a boron-codoped germanosillicate fiber [J]. Appl. Opt., 1997,36(16): 8222~8226
    78. J. L. Archambault. 100% reflectivity Bragg reflectors produced in optical fibers by single excimer laser pulse [J]. Electron. Lett., 1993,29(5): 453~455
    79. H. Kogelnik, W. Shank. Coupled wave theory of distributed feedback lasers [J]. Appl. Phy. 1972, 43(16): 2327~2335
    80. A. Yariv. Coupled-mode theory for guide-wave optics [J].Quantum Electron, 1973, QE-9:919~933
    81. T. Erdogan. Fiber grating spectra [J]. Lightwave Technol., 1997, 15(8): 1277~1294
    82. G. P. Agrawal, A. H. Bobeck. Modeling of distributed feedback semiconductor lasers with axially-varying parameters [J]. Quantum Electron., 1988, 24:2407~2414
    83. D. P. Hand, P. Russell. Photoinduced refractive index changes in germanosilicate optical fibers [J]. Opt. Lett.,1990,15(2): 102~104
    84. T. E. Tsai, E. J. Friebele, D. L. Griscom. Thermal stability of photoinduced gratings and paramagnetic centers in Ge- and Ge/P-doped silica optical fibers [J]. Opt. Lett.,I993,18(12): 935~937
    85. D. L. Williams, S. T. Davey, R. Kashyap et al. Direct observation of UV induced bleaching of 240nm absorption band in photosensitive germanosilicate glass fibers [J]. Electron. Lett.,1992, 28(4): 369~370
    86. D. Wong, S. B. Poole, M. G. Sceats, Stress-birefringence reduction in elliptical-core fibers under ultraviolet irradiation [J]. Opt. Lett., 1992, 17(22): 1773~1775
    87. P. Y. Fonjallaz. Tension increase correlated to refractive-index change in fibers containing UV-written Bragg gratings [J]. Opt. Lett., 1995, 20(17): 1346~1348
    88. R. M. Atkins, V Mizrahi. Observations of changes in UV absorption bands of single mode germanosilicate core optical fibers on writing and thermally erasing refractive index gratings [J]. Electron. Lett., 1992, 28(20): 1743~1744
    89. C. Fiori, R. A. B. Devine. Evidence for a wide coinuum of polymorphs in a-SiO_2 [J]. Physical Review B., 1986, 33(17): 2972~2974
    90. C. Fiori, R. A. B. Devine. Ultraviolet irradiation induced compaction and photoetching in amorphous thermal SiO2 [J]. Materials research society symposium Proceedings, 1986, 61:187~195
    91. M. Douay. Densification involved in the UV-based photosensitivity of silica glasses and optical fibers [J]. J. lightwave Technol., 1997, 15(7): 1329~1342
    92. B. Poumellec, P. Niay. The UV-induced refractive index grating in Ge:SiO2 performs: additional CW. Experiments and the microscoptic origin of the change in index [J]. J.Appl. Phys., 1996, 29(8): 1842~1856
    93. E. M. Dianov. UV-irradiation induced structural transformation of germanosilicate glass fiber [J]. Opt. Letter., 1997, 22(20): 1754~1756
    94. P. J. Hemaire. High-pressure HZ loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fiber [J]. Electron. Lett., 1993, 29(20): 3529~3531
    95. V. Grubsky, D. S. Starodubov. Photochemical reaction of hydrogen with germanosilicate glass initiated by 3.4-3.4-eV ultraviolet light [J]. Opt. Letter., 1999, 24(8): 729~731
    96. F. Bilodeau. Photosensitization of optical fiber and silica-on-silicon/silica waveguides [J]. Opt. Letter., 1993, 18(9): 953~955
    97. D. L. Williams. Enhanced UV photosensitivity in boron codoped germanosillicate fibers [J]. Elcectron. Lett., 1993, 29(1): 45~47
    98. Dianov. E. M, Golant. K.M. Grating formation in a germanium free silicon oxynitride fiber [J]. Opt. Lett., 1997, 33(3): 236~339
    99. J. Canning, P. F. Hu. Low-temperature hypersensitization of phosphosillicate waveguides in hydrogen [J]. Opt. Lett., 2001, 26(13): 1230~1232
    100. L. Dong, J. L. Cruz. Strong photosensitive gratings in tin-doped phosphosillicate optical fibers [J]. Opt. Lett., 1995, 20(18):1982~1984
    101. E. Salic, D. S. Starodubov, J. Feinberg. Increase of photosensitivity in Ge-doped fibers under strain [J]. Opt. Lett., 2000, 25(16): 1147~1149
    102. D. S. Starodubov, V. Grubsky. Bragg grating fabrication in germanosilicate fibers by use of near-UV light: a new pathway for refractive index changes [J]. Opt. Lett., 1997, 22(18): 1086~1088
    103. T. Erdogen, V. Mizrahi, D. Monoroe. Decay of ultraviolet-induced fiber Bragg gratings [J]. J.Appl. Phys., 1994, 76(1): 73~80
    104. S. L. Zhang, S. B. Lee, F. Xie. In-fiber grating sensors [J]. Opt. Laso Eng, 1999, 32: 405~418
    105. R. J. Schroeder, T. Yarnate, E. Udd. High temperature and pressure sensing for the oil industry using fiber Bragg gratings written onto side hole single mode fiber [C]. Proc. SPIE, 1999, vol. 3745:42~48
    106. Y. W. Lee, B. Lee. High resolution cryogenic optical fiber sensor system using erbium-doped fiber [J]. Sensors and Actuators, 2002, A96:25~27
    107. E. Udd, W. L. Schulz, J. Seim, et a., Fiber optic distributed sensing systems for harsh aerospace environments [C]. Proc. SPIE, 1999, 3674:136~147
    108. M. Forkine. High temperature resistant Bragg gratings fabricated in silica optical fibers [C]. Australian Conference on Optical Fiber Technology, Queensland, Australia, 1996, December 1~4
    109. M. Forkine. Formation of thermally stable chemical composition gratings in optical fiber [J]. J. Opt. Soc. Am. B., 2002, 19(8): 1759~1765
    110. D. S. Starodubov, V. Grubsky, J. Feinberg. Bragg grating fabrication in germanosilicate fibers by use of near-UV light: a new for refractive-index changes [J]. Opt. Lett., 1997, 22(14): 1086~1088
    111. H. Y. Liu. Observation of type Ⅰ and type Ⅱ gratings behavior in polymer optical fiber [J]. Opt. Comm., 2003, 220:337~343
    112. R. J. Schroeder, R. T. Romas, T. Yamate. Fiber optic sensors for oilfield services [C]. Pro SPIE, 1999, 3860:12~22
    113.吴永红.光纤光栅水工渗压传感器封装的结构分析与试验[D].四川大学博士学位论文,2003,5
    114. Gang-Chih Lin, Likarm Wang, C. C. Yang, et al. Thermal performance of metal-clad fiber Bragg grating sensor [J]. IEEE Photonics Technology Letters, 10(3): 406~408
    115. Inoue A, Shigehara M, Ito M, et al. Fabrication and application of fiber Bragg grating-a review [J]. Optoelectron. Dev. Technol, 1995, 10:30~119
    116. Gupta S, Mizunami T, Yamao T, et al. Fiber Bragg grating gryogenic temperature sensors [J]. Appl Opt, 1996, 35(25): 5202~5205
    117. Toru Mizunami, Hiroaki Tatehata, Hideo Kawashimao High-sensitivity Cryogenic Fiber-Bragg-grating Temperature Sensors using Teflon Substrates [J]. Meas. Sci. Technol, 2001,12:914~917
    118.陈少武,陈尧生.光纤Bragg光栅热敏力敏效应研究及应用探讨[J].光子学报,1997,26(8):690~697
    119.刘志国,刘云启,关柏鸥等.高灵敏度光纤光栅温度传感及其测试研究[J].南开大学学报(自然科学),1999,32(4):5~8
    120.张伟刚,周广,梁龙彬等.混合聚合物光纤光栅封装元件的温敏实验[J].光子学报,2001,30(8):1003~1005
    121.万里冰,张博明,王殿富.一种封装的光纤Bragg光栅应变传感器[J].激光技术,2006,26(5):385~387
    122.旷戈,张济宇,钟赟辉.光纤表面金属化工艺的研究[J].电镀与环保,2004,24(2):32~34
    123.李小甫,姜德生,余海湖等.石英光纤表面化学镀镍磷合金工艺[J].化工学报,2005,56(1):126~129
    124.肖蔚鸿.非金属材料表面金属化的方法[J].矿产保护与利用,2004,6:28~31
    125. Rao Y J. Recent progress in applications for in fiber Bragg grating sensors [J]. Optics and Lasers in Engineering, 1999, 31:297~324
    126. Tennyson. R. C, Coroy. T, Duck. G et al. Fiber optic sensors in civil engineering structures [J]. J Civic Eng, 2000, 27:880~889
    127. Noritomo. H, Yasukazu. S. Fiber Bragg grating temperature sensor for practical use [J]. ISA Transactions, 2000, 39:169~173
    128. Murukesh. An. V. M, Chan. P. Y, Ong. L. S et al. Cure monitoring of smart composites using fiber Bragg grating based [J]. Sensors and Actuators 2000, 79:153~161
    129.贾振安,乔学光,傅海威.光纤光栅温度灵敏度系数研究[J].光电子.激光,2003,14(5):482~486
    130.郭明金,姜德生,王玉华.裸光纤光栅及其封装后的低温特性[J].武汉理工大学学报,2006,28(8):113~116
    131.姜德生,郭明金,袁宏才等.光纤Bragg光栅低温特性研究[J].光电子·激光,2004,15(6):660~662
    132.倪震楚,袁宏水.疏学明.现代温度测量技术综述[J].消防科学与技术,2003,22(4):270~272
    133.孙晓刚,李成伟,戴景民等.多光潜辐则测温理论综述IJ].计量学报,2002,23(4):248~250
    134.叶林华,沈永行.蓝宝石光纤高温传感技术研究[J].浙江大学学报(自然科学版),1997,5(31):700~705
    135. Zhang Z. Y, Grattan K. T. V, Palmer A. W. Fiber-optic high temperature sensor based on the fluorescence lifetime of alexandrite [J]. Review of Scientific Instruments, 1992, 63(8):3869~3873
    136.刘大响.航空发动机:飞行器的心脏[M].北京:航空出版社,2003
    137.姜彩虹.航空发动机燃气温度控制系统的设计研究及应用[J].航空动力学报,2003,18(4):519~523
    138.程新荣,张宝诚.航空发动机燃烧室出口温度场稳定性的研究[J].沈阳航空工业学院学报,2003,20(4):1~4
    139. Zhi-Yi Zhang, K. T. V. Grattan, A. W. Palmer et al. Thulium-doped intrinsic fiber optic sensor for high temperature measurements (>1100℃) [J]. Rev. Sci. Instrum., 1998, 69(9): 3510~3514
    140.王文华.掺锗光纤光栅温度特性的实验研究[硕士论文].大连:大连理工大学,2005
    141. M. B. Reid and M. Ozcan. Temperature dependence of fiber Bragg gratings at low temperatures [J]. Opt. Eng. 1998, 37(1): 237~240
    142.张晓晶,武湛君,张博明等.光纤光栅温度灵敏性的实验研究[J].光学技术,2005.31(4):497~499
    143.乔学光,贾振安,傅海威等.光纤光栅温度传感理论与实验[J].物理学报,2004.53(2):494~497
    144.陈美玲,陈玉.高铝锌基合金热膨胀性能的研究[J].特殊铸造及有色合,1999年增刊第1期,5~6
    145. Measures. R. M. Structure monitoring with fiber optic technology [D]. Academic press, USA, 2001
    146. Grattan. K. T. V, Meggitte. B. T. Optical fiber sensor technology: advanced applications-Bragg gratings and distributed sensor [D]. Kluwer Academic press, 2001
    147.吴永红.光纤光栅水工渗压传感器封装壳的结构分析与试验[D].成都:四川大学,2003
    148.樊大钧.金属膜片的设计[M].北京:机械工业出版社,1987
    149.李科杰.新编传感器技术手册[M].北京:国防工业出版社,2002
    150.刘广玉,陈明,吴志鹤等.新型传感器技术及应用[M].北京:北京航空航天大学出版社,1995
    151.江洪.SolidWorks二次开发实例解析[M].北京:机械工业出版社,2004
    152.黄载生.弹性力学与应用[M].杭州:浙江大学出版社,1989
    153.郭明金,姜德生,袁宏才等.两种不同膜片的光纤光栅压力传感器的研究[J].激光技术,2005,29(6):611~613
    154.郭明金,姜德生,袁宏才.基于进口膜片的光纤光栅压力传感器的研究[J].压电与声光,2006,28(4):390~392
    155.郭明金,姜德生,袁宏才等.不同粘贴方式的光纤光栅压力传感器的研究[J].激光与红外,2005,35(6):417~419
    156. VikramBhatia, DavidCampbell, RichardClausO. Simultaneous strain and temperature measurement with long-period gratings [J]. Opt. Lett.,1997, 22(9): 648~650
    157. PatrickHJ, WilliamsGM, KerseyAD, etal. Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination [J]. IEEE Photonics Technology Lett., 1996, 8(9): 1223~1225
    158. Bai-OuGuan, Hwa-YawTam, Xiao-MingTao. Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating [J]. IEEE Photonics Technology Lett., 2000, 12(6):675~677
    159. JamesSW, DockneyML, TatamRP. Simutaneous independent temperature and strain measurement using in-fibre Bragg grating sensors [J]. Electron. Lett., 1996, 32(12): 1133~1134
    160.丁勇飞.机载航电总线系统发展评述[J].航空电子技术,2003,34(2):1~8
    161.熊华钢,周贵荣,李峭.机载总线网络及其发展[J].航空学报,2006,27(6):1135~1144
    162.靳伟,廖延凯,张志鹏.导波光学传感器:原理与技术[M].北京:科学出版社,1998
    163. Ferreira. L. A, Santos. J. L, Farahi. F. Pseudoheterodyne demodulation technique for fiber Bragg grating sensors using two matched gratings [J]. IEEE Photonics Technology. Letters, 1997, 9(4): 487~489
    164. Rao. Y. J. In-fiber Bragg grating sensors [J]. Meas. Sci. Technol., 1997, 8:355
    165. Jackson. D. A, Ribeiro. A. B L, Reekie. L, et al.. Simple Multiplexing Scheme for Fiber-optic Grating Sensor Network [J]. Opt. Lett., 1993, 18(14): 1192~1194
    166. Kersey. A. D. Multiplexed Fiber Bragg Gratings Strain-sensor System with a Fiber Fabry-Perot Wave length Filter [J]. Optics Letters, 1993, 18 (16): 1370
    167.刘益成.TMS320C54X DSP应用程序设计与开发[M].北京:北京航空航天大学出版社,2002
    168. TMS320C54X DSP Reference Set: Volume 4: Applications Guide(literature number SPRU173), Texas Instruments Inc. 1996
    169.戴明桢.TMS320C54X数字信号处理器结构、原理及应用[M].南京:南京航空航天大学,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700