用户名: 密码: 验证码:
实现太阳能烟囱经济综合利用海水的系统性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对太阳能烟囱系统的特点和不足,考虑目前太阳能海水淡化系统的技术发展趋势,本论文提出了太阳能烟囱海水综合利用系统。温室技术和烟囱技术被用于强化太阳能海水蒸发过程,通过冷凝途径获取饱和热空气中的蒸发水分,冷凝余热或冷凝淡水用于风力或水力发电。
    论文首先对综合系统的技术和经济可行性进行了理论估算。其次,利用新型集热棚模拟考察了综合系统的集热性能,结合理论分析为系统设计提供上下限数据。随后加入空气主体流动和水分蒸发,建立太阳能烟囱强化蒸发系统,考察烟囱基部空气的温升和饱和度;对比建立不同储热材料和不同规模的系统考察提高空气温度的途径,对比多孔材料的加入、种类、方式和多少考察提高空气饱和度的途径。针对不同实验系统首先进行了简单的建模分析,其次为寻求系统放大的根本理论依据,采用计算流体力学对系统内部微观的流体流动、传热和传质过程进行模拟研究。在获取高温饱和空气后,建立直接和间壁冷凝实验系统冷凝收集水分,并进行了理论分析。
    系统性能分析结果表明间壁冷凝风电综合系统同时具有技术和经济可行性。实验研究和理论分析结果给出,新型集热棚内外温差可达到40oC,夜晚仍可保持10 oC温差,加入空气主体流动和水分蒸发后,系统温升逐步下降;不同的储热材料、蒸发条件和系统规模使得系统温升性能有所不同;多孔材料的加入是获取饱和空气的有效途径,但也存在材料、多少、放置方式等方面的优化。随着瞬态气候条件的逐步引入,计算流体力学的数值模拟结果与实验数据间的吻合程度也逐步提高。饱和湿热空气中含有大量的不凝性气体,这部分气体成为水蒸气冷凝过程中的主要传质和传热阻力。相信本论文的研究将为太阳能烟囱海水综合利用系统的具体实施提供实验和理论基础,为经济规模化的太阳能技术利用找到一条有效的路径。
Aiming at eliminating the shortages of solar chimney, solar desalination andenvironmental requirement being considered, combined systems utilizing seawater bysolar chimney technology were put forward. Solar greenhouse technology andchimney technology were used for enhancing water evaporation. Evaporated waterwas condensed through heat transferring and was collected as freshwater. Remainingcondensation heat or condensed water was respectively applied for wind power orhydraulic power generation.
    Preliminary theoretical analyses were firstly introduced to evaluate thefeasibilities of technology and economy. A large scale greenhouse of new materialswas set up and theoretically predicted to provide basic design data for combinedsystem without evaporation. Bulk air flow and evaporation being added, enhancedevaporation system using solar chimney technology was put up to investigate the airtemperature and saturation status. Compared systems of different heat storage style,different scale were established for finding the way to higher air temperature. Porousmaterials were added and optimized on its kinds, placed ways and amounts to higherair saturation status. Simple models were firstly established to analyze experimentaldata, while for the basic magnification rule, CFD method was used to detect themicroscopic mechanism of fluid flow, mass and heat transfer in different system.Condensation systems through indirect or direct heat exchanging ways were put uppartially for verifying related evaluated performance of combined system and partiallyfor detect heat transferring mechanism for system magnification.
    Performance evaluation results indicate that this combination way producefeasibilities of technology and economy simultaneously. High temperature differenceand heat storage performance in the large scale sealed greenhouse guarantee thereasonability of previous evaluation. It is revealed that with bulk air flow andevaporation added, air temperature decreases step by step. Also, experimental dataand analysis results show that different style or scale systems have differentheat-collector performance. It is also indicated that addition of porous materials canmake air saturated, but there is optimization on its material, amount and placementstyle. With transient data introduced, predicted results from CFD agree better withexperimental data. Large amount of non-condensable gases in saturated air is the main
    resistance to heat or mass transfer during condensation. Simple models weredeveloped to analyze the specific mechanism through two different aspects.Attenuation factor or diffusion speed of vapor molecule was introduced tocharacterize the influence of non-condensable gases. It is believed that experimental,theoretical or simulated results in this paper will provide basic data or act as referencefor future large scale combined system. The application of this style combined systemwill blaze a way in realizing economical utilization of solar energy.
引文
[1] Yoshihiro Hamakawa. Solar PV energy conversion and the 21th century's civilization, Solar Energy Materials &Solar Cell, 2002, 74:13~24
    [2] 史斗,郑军卫,我国能源发展战略研究,地球科学进展,2000,15(4):406~414
    [3] 朱训,关于中国能源战略的辩证思考,中国能源,2003,25(9):4~12
    [4] Energy Information Administration, International Energy Outlook 2004, www.eia.doe.gov/oiaf/ieo/index.html, 2004
    [5] 李俊峰,中国光伏发电商业化发展报告,北京:中国环境科学出版社,2001,1~3
    [6] 赵玉文,21 世纪我国太阳能利用发展趋势,中国电力,2000,33(9):73~77
    [7] Werner Weiss. New emerging markets and applications for solar thermal systems, Invited Lecture in The 5th ISES Europe Solar Conference, 20-23 June 2004, Freiburg, Germany
    [8] 陆维德,罗振涛,我国太阳能热利用进展,太阳能,2002,1:3~4
    [9] Kosuke Kurokawa. Realistic values of various parameters for PV system design, Renewable Energy, 1998, 15:157~164
    [10] C. J. Winter, R.L. Sizmann, L.L. Vant-Hull. Solar power plants, fundamentals, technology, systems, economics, New York: Springer Verlag, 1991, 23-38
    [11] Keith Lovegrove, Andreas Luzzi. Solar thermal power systems, Encyclopedia of Physical Science and Technology, 3rd Edition, Vol 15
    [12] H. Price, E.lupfert, D. Kearney, E. Zarza. Advances in parabolic solar power technology, Journal of Solar Energy Engineering, 2002, 124:109~125
    [13] J.Schlaich. The solar chimney, Stuttgart: Axel Menges, 1995, 234~267
    [14] Robert Richards. Spanish solar chimney nears completion, MPS Review, 1981 (6):21~23
    [15] Robert Richards. Solar prototype developments in Spain show great promise, MPS Review, 1982(2):21~23
    [16] Haaf W., Friedrich K, Mayr G, Schlaich J. Solar chimneys, part Ⅰ: principle and construction of the pilot plant in Manzanares, Int.J.Solar energy, 1983, 2:3~20
    [17] Haaf W. Solar chimneys, part Ⅱ: preliminary test results from the manzanares pilot plant, Int. J. Energy, 1984, 2:141~161
    [18] M A dos S, Bernardes, A Voβ, G.Weinrebe. Thermal and technical analyses of solar chimneys, Solar, 2000, 75:511~524
    [19] J. Schlaich. Design of commercial solar updraft tower systems-utilization of solar induced convective flows for power generation, JSEE, 2003, June
    [20] S. Beerbaum, G. Weinrebe. Solar thermal power generation in India-a thechno-economic analysis, Renewable Energy, 2000, 21(2):153~174
    [21] M. A. K. Lodhi. Application of helio-aero-gravity concept in producing energy and surpressing pollution, Energy Conservation & Management, 1999(3):407~421
    [22] L. M. Michaud. Vortex process for capturing mechanical energy during upward heat-convection in the atmosphere, Applied energy, 1999, 62:241~251
    [23] J. A.Gannon. Pressure drop in solar power plant chimneys, Journal of Solar Energy Engineering, 2003, 125:165~169
    [24] J. A. Gannon. Compressible flow through solar power plant chimneys, Journal of Solar Energy Engineering, 2003, 125:138~145
    [25] T. W. Von Backstrom, J. A. Gannon. Solar chimney turbine characteristics, Solar Energy, 2004, 76:235~241
    [26] 潘垣,辜承林等,太阳能热气流发电及其对我国能源与环境的深远影响,世界科技研究与发展,2003:8~13
    [27] 代彦军,黄海宾,王如竹,太阳能热风发电技术应用与宁夏地区的研究,太阳能学报,2003,24 (3):165~172
    [28] 杨家宽,李劲,肖波等,太阳能烟囱发电技术现状及展望,可再生能源,2003,1:13~19
    [29] 杨家宽,张建锋,李进军等,太阳能烟囱发电装置建造和试验研究,严陆光,崔容强,21 世纪太阳能新技术,上海:上海交通大学出版社,2003,471~474
    [30] 龙新峰,太阳能烟囱式热力发电技术进展,广东电力,2004,17(1):34~38
    [31] 杨家宽,李劲等,太阳能烟囱发电新技术,太阳能学报,2003,24(4):189~195
    [32] 陈尚发,太阳能风力发电塔整体方案的设想,上海大中型电机,2003(3):78~86
    [33] R. J. K. Krisst. Energy transfer system, Alternative Sources of Energy, 1983, 63: 8~1
    [34] N. Pasurmarthi, S. A. Sherif. Performance of a demonstration solar chimney model for power genneration, proceeding of the 1997 35th Heat Transfer and Fluid, Sacrmento, CA, USA, 203~240
    [35] N. Pasumarthi, S. A. Sherif, et al. Experimental and theoretical performance of a demonstration solar chimney model -Part Ⅰ: mathematical model development, International Journal of Energy Research, 1998, 22:277~288
    [36] N. Pasumarthi, S. A. Sherif, et al. Experimental and theoretical performance of a demonstration solar chimney model -Part Ⅱ: experimental and theoretical results and economic analysis, International Journal of Energy Research, 1998, 22:443~461
    [37] Y. J. Dai, H. B. Huang, R. Z. Wang. Case study of solar chimney power plants in Northwestern regions of China, Renewable Energy, 2003, 28:1295~1304
    [38] 张建锋,太阳能烟囱温度场流动场数值模拟研究,硕士学位论文,华中科技大学,2003
    [39] 杨家宽,李进军,张建锋等,太阳能烟囱发电装置温度场和流场的数值模拟研究,严陆光,崔容强,21 世纪太阳能新技术,上海:上海交通大学出版社,2003,475~479
    [40] D. G. Kroger, J. D. Buys. Performance evaluation of a solar chimney power plant, ISES2001 Solar World Congress, p1~12
    [41] J. P. Pretorius, D. G. Kroger, J. D. Buys, T. W. Von Backstrom. Solar tower power plant performance characteristics, Eurosun2004, p870~879
    [42] I. F. Lombaard, D. G. Kroger. Heat transfer between a horizontal surface and the natural environment, ISES 2001 Solar World Congress, p1~6
    [43] M. M. Padki, S. A.Sherif. On a simple analytical model for solar chimney, International Journal of Solar Energy Research, 1999, 23:345~349
    [44] H. Pastohr, O. Kornadt, et al. Numerical and analytical of the temperature and flow field in the upwind power plant, International Journal of Solar Energy Research, 2004, 28:495~510
    [45] 葛新石,叶宏,太阳烟囱发电系统及其固有的热力学不完善性分析,太阳能学报,2004,25(2):263~268
    [46] A. J. Gannon, T. W. Von Backstrom. Solar chimney cycle analysis with system loss and solar collector performance, Journal of Solar Energy Engineering, 2000, 122:133~137
    [47] Sky tube: Desalination using solar energy. English patent application No. 0316939.8, http://www.cheshire-innovation.com/Sky%20Tube.htm
    [48] K. S. Ong. A mathematical model of a solar chimney, Renewable Energy, 2003, 28:1047~1060
    [49] G. H. Gan. A parametric study of Trombe walls for passive cooling of buildings, Energy and Buildings, 1998, 27:37~43
    [50] G. S. Barozzi, M. S. E. Imbabi, E. Nobile, A. C. M. Sousa. Physical and numerical modelling of a solar chimney-based ventilation system for buildings, Build. Environ., 1992, 27:433~442
    [51] N. K. Bansal, R. Mathur, M. S. Bhandari. Study of solar chimney assisted wind tower system for natural ventilation in buildings, Build. Environ., 1994, 29:495~512
    [52] A. Bouchair. Solar chimney for promoting cooling ventilation in southern Algeria, Building Services Eng. Res. Technol., 1994, 15:81~90
    [53] 中国太阳能学会,太阳能热利用的理论基础培训教材,北京:北京出版社,1981
    [54] 木村建一,空气调节的科学基础,北京:中国建筑出版社,1981
    [55] 刘森元,整体式太阳能干燥器的设计与研究,太阳能学报,1988,9(4):4~6
    [56] 张建国,太阳能干燥器发展综述,新能源,1999,21(7):30~34
    [57] 李畿洪,我国太阳能干燥器应用,太阳能,1999,40:23~24
    [58] 刘森元,李立敦,太阳能干燥利用研究及其在工农业生产中的应用,新能源,2000,22(1):9~15
    [59] 刘森元,太阳能干燥器透光盖层最佳倾角的研究,太阳能学报,1991,12(3):267~273
    [60] 芩幻霞,李元哲,双面坡型太阳能干燥器设计及研究,太阳能学报,1996,17(4):321~325
    [61] 肖国铭,董永辉,附加绝热反射盖板式温室型太阳能干燥器的研究,太阳能学报,1995,16(1):87~92
    [62] Scha,W. W.木子,被动式温室型太阳能干燥器及其进展,新能源,1990,12(10):5~10
    [63] 孙晓仁,黑色覆盖材料在直接吸收式太阳能干燥器中作用的研究,太阳能学报,1991,12(1):106~108
    [64] Cen Huanxia, Zhang Chongqing. Experimental research of solar drier simulation and comparison, Proceedings of the International Conference on New and Renewable Energy, China, 1990, 438~442
    [65] Cen Huanxia, Zhong Chongqing. Two slope greenhouse type of solar preserved fruit dryer adding two side reflecting plate. In: Proceedings of ISES solar Congress World Congress, 1989.
    [66] F Munoz, R Almanza. A survey of solar pond developments, Energy, 1992, 17(9):27~38
    [67] Y. A. Gengel, M. N. Ozisik. Solar radiation absorption in solar ponds, Solar Energy, 1994, 33(6):581~591
    [68] F. Zangrando. On the hydrodynamics of salt-gradient solar ponds, Solar Energy, 1991, 46(6):323~341
    [69] 张军,盐田卤水蒸发过程的研究进程,盐湖研究,2000,8(1):63~71
    [70] 张军,卤水比蒸发系数的数学模型-石盐和光卤石饱和阶段,盐湖研究,1993,1(2):23~27
    [71] 张军,卤水比蒸发系数的数学模型-氯化镁饱和阶段,盐湖研究,1993,1(4):45~51
    [72] 张士宾,邵兵,海盐卤水比蒸发的测定与研究,海湖盐与化工,1981,4:26~31
    [73] 王金福,卤水平均比蒸发的模型探讨及诸方法比较,海湖盐与化工,1989,18(3):24~29
    [74] 闵謇,鄱阳湖水面蒸发量的确定,人民长江,1998,29(5):29~32
    [75] 张建雄,永兴岛蒸发量分析与计算,海洋预报,2003,20(2):61~66
    [76] M. C. Pereira. Advance solar dryer for salt recovery from brine effluent of desalination MED plant, ISES Solar World Congress, June 14-19, 2003, American Solar Energy Society
    [77] M. C. Pereira, Joao Farinha Mendes, Pedro Horta. Advance solar dryer for salt recovery from brine effluent of desalination MED plant, Eurosun 2004, June 14-19, 2004, p161~170
    [78] G. Mink. Air-blown solar still with heat recycling, Solar Energy, 1998, 62 (4): 309~318
    [79] 代彦军,李赠耀,张鹤飞,俞金娣,常压开式循环太阳能海水淡化装置研究,太阳能学报,2000,21(4):380-384
    [80] 张小艳,郑宏飞,王强等,横管降膜蒸发闭式循环太阳能海水淡化装置的实验,西安交通大学大学学报,2002,36(2):194~199
    [81] 王义春,王瑞君,郑宏飞,样英俊,横管降膜蒸发闭循环式太阳能海水淡化装置的研制及性能测试,水处理技术,2003,29(5):289~293
    [82] Zheng hongfei. Experimental study on an enhanced falling film evaporation-air flow absorption and closed circulation solar still, Energy, 2001, 26:401~402
    [83] Soteris Kalogirou. Survey of solar desalination systems and system selection, Energy, 1977:22(1):69~81
    [84] M. A. S. Malic, G. N.Tiwari, A. Kumar, et al. Solar distillation, Oxford:Pergamon Press, 1982, p8~17
    [85] W. Nusselt. Die Oberflachenkondensation des Waserdampfes, Z. VDI, 1916, 60: 312~321
    [86] A. P. Colburn, O.A. Hougen. Design of cooler condensers for mixtures of vapors with noncondensable gases, Industrial and Engineering Chemistry, 1934, 26:1178 ~1182
    [87] C. K. Niohianandan, C. D. Morgan, N. H. Shah. RELAP5/MOD2 model for surface condensation in the presence of noncondensable gases, Proc. of the 8th Int. Heat Transfer Conf., 1986, 4:1627~1633
    [88] E. R. Gilliland, T. K. Sherwood. Diffusion of vapors into air streams, Industrial and Engineering Chemistry, 1934, 26:516~523
    [89] W. H. McAdams. Heat transmission, New York: McGraw-Hill Inc., 1942, 167
    [90] Oriolo. Evolution of containment vessel, European Commission, Nuclear Science and Technology, Reactor Safety Programme, 1995:1988~1991
    [91] P. F. Peterson, V. E. Schrock, T. Kageyama.Diffusion layer theory for turbulent vapor condensation with noncondensable gases, Nat. Heat Transfer Conf., San Diego, 1992
    [92] W. J. Minkowycz, E. M.Sparrow. Condensation heat transfer in the presence of noncondensable, Interfacial Resistance, Superheating, Variable Properties, and Diffusion, 1966, 9:1125~1144
    [93] G. C. Collier. Convective boiling and condensation, New York: McGraw-Hill, 1981
    [94] D.F. Othmer. The condensation of steam, Industrial and Engineering Chemistry, 1929, 21:577~583
    [95] W. Chaoyang, T. Chuanjing. The effect of noncondensable gas on forced convection along a horizontal plate in a porous medium, Int. J. Heat and Mass Transfer, 1989, 32(1):1847~1852
    [96] K. M. Vierow, V. E. Schrock.Condensation in a natural circulation loop with noncondensable gases, Part1-Heat Transfer, Proc. Intl. Conf. on Multiphase Flows'91 Tsukuba, Tsukuba, Japan, 1991, p183~186
    [97] K. M. Vierow. Behavior of Steam-Air Systems Condensing in Cocurrent Vertical Downflow, MS thesis, University of California, Berkeley, 1990
    [98] Y. A. Hassan, A. Raja.Analysis of experiments for steam condensation in the presence of noncondensable gases using RELAP5/MOD3 code, Nuclear Technology, 1993, 104:47~59
    [99] M. Siddique, M. W. Golay, M. S. Kazimi.The effect of noncondensable gases on steam condensation under forced convection condition, Dept. of Nuclear Eng., MIT, MIT-ANP-TR-0101, 1992
    [100] S. Z. Kuhn. Final report on U.C. Berkeley single tube condensation studies, Dept. of Nuclear Engineering, UCB-NE-4201, 1994
    [101] Y. Orhan, T. Ali. Condensation of steam in the presence of noncondensable gases, Dept. of Nuclear Eng., Middle East Technical University, IAEA Research Contact No:8905/RI, 1998
    [102] H. Liu, N. E. Todreas, M. J. Driscoll. An experimental investigation of a passive cooling unit for nuclear plant containment, Nuclear Engineering and Design, 2000, 199(3):243~255
    [103] C. N. Hee, S. P. Hyun. Non-iterative condensation modeling for steam condensation with non-condensable gas in a vertical tube, International Journal of Heat and Transfer, 2002, 45(4):845~854
    [104] http://www.fichtner.de/englisch/index.html(费希特纳网站,全球知名的工程技术和咨询服务公司)
    [105] 陕西省建筑设计院,建筑材料手册,北京:中国建筑工业出版社,1991,p359
    [106] K. S. Ong, A finite-difference method to evaluate the thermal performance of a solar water heater, Solar Energy, 1974,16:137~147
    [107] 郦伟,董仁杰,汤楚宙等,日光温室的热环境理论模型,农业工程学报,1997,13(2):160~163
    [108] Tiwari, G.N., Solar energy: fundamentals, design, modelling and applications, Pangbourne: Alpha Science International Ltd., 2002
    [109] Tetsu Fujii, Hideaki Imura, Natural-convection heat transfer form a plate with arbitrary inclination, International Journal of Heat Mass Transfer, 15:755~767
    [110] Warren M. Rohsenow, James P. Hartnett, Handbook of heat transfer fundamentals, New York: McGraw-Hill, 1985
    [111] 刘永辉,温室型太阳热水系统实验与理论研究,硕士学位论文,天津大学,2005
    [112] 项立成,赵玉文,罗运俊,太阳能的热利用,北京:宇航出版社,1990
    [113] P. I. Cooper, R. J. Fuller. A transient model of the interaction between crop, environment and greenhouse structure for predicting crop yield and energy consumption, J. Agric. Engng Res., 1983, 28:401~417
    [114] Amita Gupta, G. N. Tiwari. Computer model and its validation for prediction of storage effect of water mass in a greenhouse: a transient analysis, Energy Conversion & Management, 2002, 43:2625~2640
    [115] 张圻之,制盐工业手册,北京:中国轻工业出版社,1994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700