用户名: 密码: 验证码:
声场与重力场耦合作用下热声热机实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热声热机是一种可实现热能与声能转换的新型动力装置,具有结构简单、运行可靠、环保无污染等优点。热声发动机的起振温度较低,可在工厂余热回收及太阳能利用等方面发挥重要作用。太阳能驱动的热声热机以接收太阳的热辐射作为热源,在跟踪太阳旋转的过程中,其安装倾角不断发生变化。旋转工作的热声热机受到声场与重力场的耦合作用,热声核内进行着复杂的交变流动与换热过程。基于此本论文开展了多角度下热声发动机及扬声器驱动的热声热机可视化实验研究,探讨了多场耦合作用下热声热机内部的流动与传热特性。
     本文首先搭建了驻波型热声发动机实验装置,研究了其起消振温度、工作频率和压力振幅等基本工作特性,并用频谱分析的方法再现了热声发动机的自激振荡过程。基于红外热像仪观察了起消振过程中板叠处的温度变化,实验发现发动机起振后热能不仅被转换为声能消耗,同时振荡气流不断将热端的热量带到冷端,使板叠处温度升高。起振后系统内产生的声振荡必然带来高温端的热量损失。
     实验中利用外加声扰动的方法有效地降低了热声发动机的起振温度,为其在低品位热源中的应用做出贡献。通过对比不同扰动信号对热声强制振荡的影响,为实际应用中合适扰动信号的选择提供了实验依据。实验发现热声强制振荡对扰动信号的频率具有选择性,最优的扰动频率为发动机的基频。强制振荡的起振温度随扰动功率的增加而逐渐降低,但当起振温度达到发动机的最低起振温度时,强制振荡的起振温度几乎不再随扰动功率的增加而变化。起振温度是影响热声压力振幅的重要因素,强制振荡的起振温度越低,振荡稳定后系统的压力振幅也越低。
     为研究安装角度对发动机工作特性的影响,实验对比了45°、90°、0°、-45°和-90°五个角度下发动机的起消振温度及工作过程中板叠处的温度变化,分析了不同角度下重力作用下的热对流对起振过程的影响。实验发现驻波型热声发动机在水平安装时具有最低的起振和消振温度。随着角度的旋转,发动机的起消振温度出现不同程度的上升。当加热器位于冷却器上方时(45°和90°),在重力场影响下热端热气流不断向上流动,不利于板叠处气体与固体介质间的换热,发动机起振温度升高。起振后系统内的声振荡强制将热气流带向冷端,板叠处温度升高。当加热器位于冷却器下方时(-45°和-90°),受重力影响,板叠处存在着由下向上的强烈热对流,造成大量的热损失,系统起振温度大幅度上升。发动机高温起振后,系统内强烈的声振荡抑制了板叠处的上升热气流,板叠处温度下降。
     为进一步分析多场耦合作用下热声热机内部的交变流动与换热规律,实验中利用扬声器模拟热声起振,基于粒子成像测速仪(PIV)和红外热像仪观察了45°、90°、0°、-45°和-90°五个角度下扬声器驱动的热声热机热声核内的速度和温度场分布。实验发现热声核处的流动与传热特性受热对流与声振荡的共同影响,当热声热机水平安装时,热声核处存在环形的热对流,温度呈阶梯状分布。声场引入后热声核处换热模式由自然对流变为强制对流,在声振荡作用下温度分布变为抛物状。当热声核两端的温差增强时,受强烈热对流影响,热声核处径向速度呈现出由上到下逐渐变小的趋势。当热端位于冷端上方时(45°和90°),热声核处的热对流非常微弱,周期速度在声振荡的影响下遵循正弦规律变化。当热端在冷端下方时(-45°和-90°),受重力场作用,加热器与冷却器间存在着强烈的热对流,热声核处温度很高。在热对流的影响下热声核处的正弦速度分布呈现出整体的向上正位移。正是在声振荡与热对流的共同作用下,热声热机在不同的倾角下表现出不同的工作特性。
Thermoacoustic engine is a new type of device which can convert thermal energy intosound energy. It has many advantages, such as simple construction, high reliability andnon-polution. Since thermoacoustic prime mover can work at a low temperature, it has broadapplication prospect on waste heat recovery and solar energy utilization. Solar poweredthermoacoustic engine takes the solar radiation as heat source. Its tilt angle is constantlychanging when it rotates with the sun. During the raotating process, thermoacoustic engineworks under the coupling effect of sound and gravity fields. And the flow and heat transferprocess in thermoacoustic core is complex. In this context, experimental study aboutthermoacoustic prime mover and thermoacoustic engine driven by loudspeaker were carriedout in this paper under multi-tilt angles, the flow and heat transfer characteristic inthermoacoustic engine under the coupling effect of sound and gravity fields was discussed.
     Firstly, a standing-wave thermoacoustic prime mover was built. Its basic operatecharacteristics such as onset and damping temperatures, frequency and pressure amplitudewere experimentally studied, and the onset process of thermoacoustic self-excited oscillationwas shown by frequency analysis. The temperature distribution within stacks during the onsetand damping processes were observed by thermal infrared imager. The experiment resultsshowed that thermal energy is not only converted into sound energy after onset, but also betaken to the cold end by oscillatory flow. Theroforce, the heat loss in thermoacoustic engineinduced by sound oscillation after onset is inevitable.
     Secondly, it was found that sound disturbance can effectively decrease the onsettemperature of thermoacoustic prime mover, which is benefical for low grade heat utilization.To provide experiment basis for the selection of adaptable disturbance signal in practice, theeffect of different disturbance signals on thermoacoustic forced oscillation was discussed.The experiment results showed that thermoacoustic forced oscillation has selectivity for thedisturbance frequency, the optimal disturbance frequency is the fundamental frequency ofthermoacoustic prime mover. Onset temperature of thermoacoustic forced oscillationdecreases with the increase of disturbance power. However it does not decrease any morewhen the lowest onset temperature reached. Onset temperature is the key factor to influence the pressure amplitude of thermoacoustic forced oscillation. The lower the onset temperatureis, the smaller the pressure amplitude is.
     Thirdly, to study the effect of tilt angle on the performance of thermoacoustic primemover, the onset temperature, damping temperature and temperature disturbation withinstacks under five tilt angles (45°,90°,0°,-45°and-90°) were compared. The influence ofthermal convection induced by gravity on onset process was analyzed. It was found thatstanding-wave thermoacoustic prime mover has the lowest onset and damping temperatureswhen it is installed horizontally. During the process of rotation, its onset temperature rises tosome extent. When the heater is above the cooler(45°and90°), thermals induced by gravityflows upward which is not benefical for the heat transfer between gas and solid in stacks, sothe onset temperature increases. After onset, thermoacoustic oscillation forceses thermals toflow to the cold end and makes the temperature of stacks increase. When the heater is underthe cooler(45°and90°), thermals from hot end to cold end is serious which induce lots ofheat loss and the onset temperature of primes mover increase obviously. After onset, strongthermoacoustic oscillation suppresses the thermal convection in stacks and makes thetemperature of stacks decrease.
     Fourthly, to better study the alternating flow and heat transfer rule in thermoacousticengine under the coupling effect of sound and gravity fields, loudspeaker was used tosimulate the thermoacoustic oscillation. And the temperature and velocity distributions withinthermoacoustic core under five tilt angles (45°,90°,0°,-45°and-90°) were observed bythermal infrared imager and particle image velocimetry (PIV). The experimental resultsshowed that the flow and heat transfer characteristic of thermoacoustic engine is affected bothby thermal convection and thermoacoustic oscillation. When thermoacoustic engine isinstalled horizontally, natural convection in thermoacoustic core shows as cycle flow and thetemperature distributes as ladder pattern. After the addition of sound oscillation, the heattransfer mode in thermoacoustic core changes into forced convection and the temperaturefield redistributes as parabolic shape. When the temperature difference between heater andcooler increases, the cycle thermal convection becomes stronger which makes the averageradial speed in thermoacoustic core gradually decrease from top to bottom. When the hot endis above the cold end (45°and90°), thermal convection in thermoacoustic core is very weak and the velocity changes following the normal sine rule. When the hot end is under the coldend (-45°and-90°), the upward thermals in thermoacoustic core is strong, which makesthermoacoustic core have high temperature. Also, the periodic velocity in thermoacousticcore has an obviously upward shift due to the effect of thermals. It is just becaust of thecombined effect of thermoacoustic coscillation and thermal convection that thermoacousticengine shows different operating characteristics under different tilt angles.
引文
[1]国家发展和改革委员会.可再生能源中长期发展规划[EB/OL].http://www.sdpc.gov.cn/zcfb/zcfbtz/2007tongzhi/t20070904_157352.htm,2007.8.31
    [2]国家能源局.国家能源科技“十二五”规划[EB/OL].http://www.gov.cn/gzdt/2012-02/10/content_2063324.htm,2011.12.5.
    [3]沈超.太阳能热声发动机理论与实验研究[D].西安:西安交通大学,2009.
    [4]白少卿,刘继平,严俊杰.热声制冷装置及其在天然气液化中的应用[J].化工进展,2006,25(增):443-447.
    [5]周远,罗二仓.热声热机技术的研究进展[J].机械工程学报,2009,45(3):14-26.
    [6] Feldman K.T. Review of the literature on Sondhauss thermoacoustic phenomena[J].Journal of Sound and Vibration,1968,7(1):71-82.
    [7] Feldman K.T. Review of the literature on Rijke thermoacoustic phenomena[J]. Journalof Sound and Vibration,1968,7(1):83-89.
    [8] Rayleigh L. The theory of sound[M]. UK: Dover Publications,1896.
    [9] Rott N. Recent research on thermoacoustic oscillations[J]. The Journal of the AcousticalSociety of America,1979,65(2):541-541.
    [10]杨梅.行波型热声发动机的热力分析和实验研究[D].杭州:浙江大学,2003.
    [11] Merkli P, Thomann H. Thermoacoustic effects in a resonance tube[J]. J Fluid Mech,1975,70, part1:161-177.
    [12] Gifford W.E., Longsworth R.G. Pulse tube refrigerator[J]. Journal of ManufacturingScience and Engineering,1964,86(3):264-268.
    [13]肖家华.热声制冷的基本原理和应用前景[J].应用声学,1993,12(3):1-7.
    [14] Feldman K.T, Carter R.L. A study of heat driven pressure oscillations in a gas[J].Transactions of the ASME Series C, Journal of Heat Transfer,1970,92(3):536-541.
    [15] Wheatley J, Cox A. Natural engines[J]. Physics Today,1985,38(8):50.
    [16] Swift G.W., Martin R.A., Radebaugh R, et al. First measurements with athermoacoustic driver for an orifice-pulse-tube refrigerator[J]. The Journal of theAcoustical Society of America,1990,88(S1): S95-S96.
    [17] Swift G.W. Analysis and performance of a large thermoacoustic engine[J]. Journal ofthe Acoustical Society of America,1992,92(3):1551-1563.
    [18] Olson J.R., Swift G.W. A loaded thermoacoustic engine[J]. J Acoust Soc Am,1995,98(5):2690-2693.
    [19] Wollan J.J., Swift G.W. Development of a thermoacoustic natural gas liquefier[C].Proceedings of American Gas Association Operations Conference: Denver,2000:1-10.
    [20] Mehta S.M., Desai K.P., Naik H.B., et al. Design of Standing Wave TypeThermoacoustic Prime Mover for300Hz Operating Frequency[C]. Atlanta, Georgia:Georgia Institute of Technology ICC Press2008:343-352.
    [21] Hao X.H., Ju Y.L., Behera U, et al. Influence of working fluid on the performance of astanding-wave thermoacoustic prime mover[J]. Cryogenics,2011,51(9):559-561.
    [22] Hariharan N.M., Sivashanmugam P, Kasthurirengan S. Influence of stack geometryand resonator length on the performance of thermoacoustic engine[J]. Applied Acoustics,2012,73(10):1052-1058.
    [23] Hariharan N.M., Sivashanmugam P, Kasthurirengan S. Effect of resonator length andworking fluid on the performance of twin thermoacoustic heat engine–Experimental andsimulation studies[J]. Computers&Fluids,2013,75:51-55.
    [24] Millet C, Deng X.H., Francois M.X., et al. Acoustic work flux measurement of athermoacoustic prime mover[J]. Cryogenics and Refrigeration-Proceedings of Iccr98,1998:518-521.
    [25] Guo F.Z., Chou Y.M., Lee S.Z., et al. Flow characteristics of a cyclic flowregenerator[J]. Cryogenics,1987,27(3):152-155.
    [26]伍继浩,李青,郭方中.网络理论及其在驻波、行波热机中的应用[J].低温与超导,2002,30(1):30-34.
    [27]陈熙,李青,李正宇,等.热声热机网络模型演化与机理初探[J].低温工程,2004,1:27-31.
    [28]张晓青,郭方中,董凯军,等.热声热机的网络模型与仿真研究[J].低温工程,2000,5:25-30.
    [29]张晓青.热声热机系统的仿真与优化研究—仿真软件的研制与实验验证[D].武汉:华中科技大学,2001.
    [30]涂虬.热声器件的寻优及其与热声热机系统的匹配[D].武汉:华中科技大学,2004.
    [31] Tu Q, Li Q, Wu F, et al. Network model approach for calculating oscillating frequencyof thermoacoustic prime mover[J]. Cryogenics,2003,43(6):351-357.
    [32] Tu Q, Li Q, Guo F.Z., et al. Temperature difference generated in thermo-driventhermoacoustic refrigerator[J]. Cryogenics,2003,43(9):515-522.
    [33] Tu Q, Wu C, Li Q, et al. Influence of temperature gradient on acoustic characteristicparameters of stack in TAE[J]. International Journal of Engineering Science,2003,41(12):1337-1349.
    [34]金滔.热声驱动器及其驱动的脉管制冷研究[D].杭州:浙江大学,2001.
    [35] Chen G.B., Jiang J.P., Shi J.L., et al. Influence of buffer on resonance frequency ofthermoacoustic engine[J]. Cryogenics,2002,42(3-4):223-227.
    [36]汤珂,陈国邦,黄永华,等.热声驱动器谐振频率影响因素分析[J].低温与超导,2003,31(1):23-26
    [37] Tang K, Chen G.B., Jin T, et al. Influence of resonance tube length on performance ofthermoacoustically driven pulse tube refrigerator[J]. Cryogenics,2005,45(3):185-191.
    [38] Chen G.B., Jin T. Experimental investigation on the onset and damping behavior of theoscillation in a thermoacoustic prime mover[J]. Cryogenics,1999,39(10):843-846.
    [39]邱利民,蒋宁,陈国邦.丝网热声板叠的最佳填充率[J].太阳能学报,2001,22(3):322-326.
    [40] Liu Y.C., Xin T.L., Huang Q, et al. Coincident effect characteristic in a thermoacousticregenerator[J]. Energy Conversion and Management,2011,52(1):664-667.
    [41]黄谦,刘益才,张明研,等.热声回热器结构频率的数值研究[J].低温与超导,2008,36(11):1-5.
    [42]张明研.热驱动热声热机特性实验研究[D].长沙:中南大学,2010.
    [43]辛天龙.热声热机回热器特性研究[D].长沙:中南大学,2011.
    [44]张明研,刘益才,黄谦,等.热声热机核心部件--回热器[J].真空与低温,2009,15(1):52-55.
    [45]戴巍,罗二仓,胡剑英,等.改进型驻波热声发动机的实验研究[J].工程热物理学报,2005,26(3):376-378.
    [46] Dai W, Yu G.Y., Zhu S.L., et al.300Hz thermoacoustically driven pulse tube cooler fortemperature below100K[J]. Applied Physics Letters,2007,90(2):0241041-0241043.
    [47]刘迎文.脉管制冷机及热声热机的理论与实验研究[D].西安:西安交通大学,2005.
    [48]黄竞.热声热机的数值模拟与试验研究[D].西安:西安交通大学,2007.
    [49]汪双凤,西尾茂文,曾朝霞.热声发动机在低温余热利用方面的研究[J].化工进展,2007,26(3):448-451.
    [50]王小伟.驻波型热声发动机的研究[D].广州:华南理工大学,2008.
    [51] Pan N Shen C, Wang S.F. Experimental study on forced thermoacoustic oscillationdriven by loudspeaker[J]. Energy Conversion and Management,2013,65:84-91.
    [52] Ceperley P.H. A pistonless Stirling engine---The traveling wave heat engine[J]. TheJournal of the Acoustical Society of America,1979,66(5):1508-1513.
    [53] Ceperley P.H. Gain and efficiency of a short traveling wave heat engine[J]. TheJournal of the Acoustical Society of America,1985,77(3):1239-1244.
    [54] Yazaki T, Iwata A, Maekawa T, et al. Traveling wave thermoacoustic engine in alooped tube[J]. Physical Review Letters,1998,81(15):3128-3131.
    [55] Backhaus S, Swift G.W. A thermoacoustic Stirling heat engine[J]. Nature,1999,399(6734):335-338.
    [56] Backhaus S, Tward E, Petach M. Traveling-wave thermoacoustic electric generator[J].Applied Physics Letters,2004,85(6):1085-1087.
    [57] Blok K.D. Multi-stage Traveling Wave Thermoacoustics in Practice[C].19thInternational Congress on Sound and Vibration: Vilnius, Lithuania,2012.
    [58]刘海东.行波型热声发动机的热力分析和实验研究[D].北京:中国科学院低温技术实验中心,2001.
    [59]杨梅,罗二仓,李晓明,等.同轴型行波热声热机的实验研究[J].低温与超导,2002,30(4):5-8.
    [60]余国瑶.热声发动机自激振荡过程及热声转换特性研究[D].北京:中国科学院,2008.
    [61] Yu G.Y., Luo E.C., Dai W, et al. Study of nonlinear processes of a large experimentalthermoacoustic-Stirling heat engine by using computational fluid dynamics[J]. Journal ofApplied Physics,2007,102(7):0749011-0749017.
    [62] Luo E.C., Ling H, Dai W, et al. A high pressure-ratio, energy-focused thermoacousticheat engine with a tapered resonator[J]. Chinese Science Bulletin,2005,50(3):284-286.
    [63] Dai W, Luo E.C., Hu J.Y., et al. A Heat-driven thermoacoustic cooler capable ofreaching liquid nitrogen temperature[J]. Applied Physics Letters,2005,86(22):2241031-2241033.
    [64] Yu G.Y., Luo E.C., Dai W, et al. An energy-focused thermoacoustic-Stirling heatengine reaching a high pressure ratio above1.40[J]. Cryogenics,2007,47(2):132-134.
    [65] Dai W, Luo E.C., Hu J.Y., et al. A novel coupling configuration forthermoacoustically-driven pulse tube coolers: acoustic amplifier[J]. Chinese ScienceBulletin,2005,50(18):2112-2114.
    [66] Hu J.Y., Luo E.C., Dai W, et al. A heat-driven thermoacoustic cryocooler capable ofreaching below liquid hydrogen temperature[J]. Chinese Science Bulletin,2007,52(4):574-576.
    [67] Luo E.C., Dai W, Zhang Y, et al. Thermoacoustically driven refrigerator with doublethermoacoustic-Stirling cycles[J]. Applied Physics Letters,2006,88(7):0741021-0741023
    [68] Yu B, Luo E.C., Li S.F., et al. Experimental study of a thermoacoustically-driventraveling wave thermoacoustic refrigerator[J]. Cryogenics,2011,51(1):49-54.
    [69]张爽,陈燕燕,罗二仓.热声驱动的气-液双作用行波热声制冷机[J].低温工程,2012,6:5-9.
    [70]邱利民,孙大明,张武,等.大型多功能热声发动机的研制及初步实验第一部分热声发动机的研制[J].低温工程,2003,2:1-7.
    [71]邱利民,张武,孙大明,等.大型多功能热声发动机的研制及初步实验-第二部分:热声发动机的初步实验[J].低温工程,2003,3:1-6.
    [72]孙大明,邱利民,陈国邦,等.以氦气为工质的行波热声发动机研究[J].太阳能学报,2004,25(6):845-849
    [73]孙大明,邱利民,王波,等.行波热声发动机中Gedeon直流定量研究[J].浙江大学学报(工学版),2007,41(6):985-989.
    [74] Qiu L.M., Sun D.M., Tan Y, et al. Effect of pressure disturbance on onset processes inthermoacoustic engine[J]. Energy Conversion and Management,2006,47(11-12):1383-1390.
    [75]孙大明,邱利民,陈国邦,等.外加扰动对热声发动机起振特性的影响[J].太阳能学报,2004,25(06):832-837.
    [76]孙大明.行波热声发动机及其驱动的脉管制冷机研究[D].杭州:浙江大学,2005.
    [77] Sun D.M., Wang K, Zhang X.J., et al. A traveling-wave thermoacoustic electricgenerator with a variable electric R-C load[J]. Applied Energy,2013,106:377-382.
    [78] Yu Z.B., Li Q, Chen X, et al. Investigation on the oscillation modes in athermoacoustic Stirling prime mover: mode stability and mode transition[J]. Cryogenics,2003,43(12):687-691.
    [79] Hu Z.J., Li Q, Xie X, et al. Design and experiment on a mini cascade thermoacousticengine[J]. Ultrasonics,2006,44(Supplement1): e1515-e1517.
    [80]胡忠军.高频级联型热声系统研究[D].北京:中国科学院,2007.
    [81]王红丽.行波热声发动机的实验研究[D].广州:华南理工大学,2009.
    [82]王红丽,汪双凤.纯环路型和混合型热声发动机的对比实验[J].热能动力工程,2010,25(3):273-277.
    [83] Jensen K.D. Flow measurements[J]. Journal of the Brazilian Society of MechanicalSciences and Engineering,2004,26:400-419.
    [84]李广年.基于LDV技术的螺旋桨尾涡测试[J].实验流体力学,2010,24(4):75-79.
    [85] Taylor K.J. Absolute measurement of acoustic particle velocity [J]. JAcoust Soc Am,1976,59(3):691-694.
    [86] Taylor K.J. Absolute calibration of microphones by a laser-Dopplertechnique [J]. J Acoust Soc Am,1981,70(4):939-945.
    [87] Vignola J.F., Berthelot Y.H., Jarzynsk J. Laser detection of sound [J]. J AcoustSoc Am,1991,90(3):1275-1286.
    [88] Thompson M.W., Atchley A.A. Simultaneous measurement of acoustic and streamingvelocities in a standing wave using laser Doppler anemometry[J]. J Acoust Soc Am,2005,117(4):1828-1838.
    [89] Baillieta H, Lotton P, Bruneau M, et al. Acoustic power flow measurement in athermoacoustic resonator by means of laser Doppler anemometry (L.D.A.) andmicrophonic measurement[J]. Applied Acoustics,2000,60:1-11.
    [90] Biwa T, Ueda Y, Yazaki T, et al. Work flow measurements in a thermoacousticengine[J]. Cryogenics,2001,41:305-310.
    [91] Ueda Y, Biwa T, Mizutani U. Acoustic field in a thermoacoustic Stirling engine havinga looped tube and resonator[J]. Applied Physics Letters,2002,81(27):5252-5254.
    [92] Ueda Y, Biwa T, Mizutani U, et al. Experimental studies of a thermoacoustic Stirlingprime mover and its application to a cooler[J]. J Acoust Soc Am,2004,115(3):1134-1141.
    [93] Biwa T, Tashiro Y, Mizutani U, et al. Experimental demonstration of thermoacousticenergy conversion in a resonator[J]. Physical Review E,2004,69:0663041-0663046.
    [94] Biwa T, Ueda Y, Nomura H, et al. Measurement of the Q value of an acousticresonator[J]. Physical Review E,2005,72:0266011-0266016.
    [95]张春萍,吴峰,丁国忠,等.热声谐振管品质因数的实验研究[J].低温技术,2007,35(5):380-382.
    [96] Moreau S, Bailliet H, Valière J.C. Effect of a stack on Rayleigh streaming cellsinvestigated by laser Doppler velocimetry for application to thermoacoustic devices[J]. JAcoust Soc Am,2009,125(6):3514-3517.
    [97]许联锋,陈刚,李建中,等.气液两相流动粒子成像测速技术(PIV)研究进展[J].水力发电学报,2004,23(6):104-108.
    [98]范洁川.近代流动显示技术[M].北京:国防工业出版社,2002.
    [99]盛森芝,徐月亭,袁辉靖.近十年来流动测量技术的新发展[J].力学与实践,2002,24:1-13.
    [100]许宏庆,何文奇.应用PIV技术对气固两相流粒子浓度场的瞬时测量[J].实验流体力学,2003,17(3):54-56.
    [101] Hann D.B., Greated C.A. Particle image velocimetry for the measurement of meanand acoustic particle velocities[J]. Meas Sci Technol,1997,8:656-660.
    [102] Nabavi M, Siddiqui K, Dargahi J. Simultaneous measurement of acoustic andstreaming velocities using synchronized PIV technique[J]. Meas Sci Technol,2007,18:1811-1817.
    [103] Campbell M, Cosgrove J.A., Greated C.A., et al. Review of LDA and PIV applied tothe measurement of sound and acoustic streaming[J]. Optics&Laser Technology,2000,32:629-639.
    [104] Tonddast-Navaei A, Sharp D.B. PIV study of standing waves in a resonant aircolumn[C]. Proceeding of the institute of Acoustics: Salford,2000:241-245.
    [105] Nabavi M, Siddiqui K, Dargahi J. Measurement of the acoustic velocity field ofnonlinear standing waves using the synchronized PIV technique[J]. Experimental Thermaland Fluid Science,2008,33:123-131.
    [106]王勇.格子Boltzmann方法在热声领域的应用及热声谐振管可视化实验研究[D].西安:西安交通大学,2009.
    [107] Wang Y, He Y.L., Li Q, et al. Numerical simulations of gas resonant oscillations in aclosed tube using lattice Boltzmann method[J]. International Journal of Heat and MassTransfer,2008,51(11–12):3082-3090.
    [108] Wang Y, He Y.L., Tang G.H., et al. Simulation of two-dimensional oscillating flowusing the lattica boltzmann method[J]. International Journal of Modern Physics C,2006,17(5):615-630.
    [109]潘娜,沈超,汪双凤.热声热机热声核内传热与流动特性研究[J].工程热物理学报,2012,33(4):651-654.
    [110] Pan N, Shen C, Wang S.F. Experimental study on the flow and heat transfercharacteristics of thermoacoustic core[J]. Experimental Thermal and Fluid Science,2013,44:219-226.
    [111] Pan N, Wang S.F., Shen C. Visualization investigation of the flow and heat transfer inthermoacoustic engine driven by loudspeaker[J]. International Journal of Heat and MassTransfer,2012,55:7737-7746.
    [112] Blanc-Benon P, Besnoin E, Knio O. Experimental and computational visualization ofthe flow field in a thermoacoustic stack[J]. Comptes Rendus Mecanique,2003,33(1):17-24.
    [113] Berson A, Michard M, Blanc-Benon P. Measurement of acoustic velocity in the stackof a thermoacoustic refrigerator using particle image velocimetry[J]. Heat and MassTransfer,2008,44:1015-1023.
    [114] Aben P.C.H., Bloemen P.R., Zeegers JCH.2-D PIV measurements of oscillatory flowaround parallel plates[J]. Exp Fluids,2009,46:631-641.
    [115] David M, Mao X.A., Jaworski A.J. Acoustic coupling between the loudspeaker andthe resonator in a standing-wave thermoacoustic device[J]. Applied Acoustics,2006,67(5):402-419.
    [116] Mao X.A., Marx D, Jaworski A.J. PIV measurement of coherent structures andturbulence created by an oscillating flow at the end of a thermoacoustic stack[J]. SpringerProceedings in Physics,2007,109(Part II):99-102.
    [117] Mao X.A., Yu Z.B., Jaworski A.J., et al. PIV studies of coherent structures generatedat the end of a stack of parallel plates in a standing wave acoustic field[J]. Exp Fluids,2008,45:833-846.
    [118] Jaworski A.J., Mao X.A., Mao X.R., et al. Entrance effects in the channels of theparallel plate stack in oscillatory flow conditions[J]. Experimental Thermal and FluidScience,2009,33:495-502.
    [119] Mao X.A., Jaworski A.J. Application of particle image velocimetry measurementtechniques to study turbulence characteristics of oscillatory flows around parallel-platestructures in thermoacoustic devices[J]. Meas Sci Technol,2010,21:0354031-03540316.
    [120] Shi L, Yu Z.B., Jaworski A.J. Vortex shedding flow patterns and their transitions inoscillatory flows past parallel-plate thermoacoustic stacks[J]. Experimental Thermal andFluid Science,2010,34(7):954-965.
    [121] Shi L, Yu Z.B., Jaworski A.J. Investigation into the Strouhal numbers associated withvortex shedding from parallel-plate thermoacoustic stacks in oscillatory flow conditions[J].European Journal of Mechanics B/Fluids,2011,30:206-217.
    [122] Zhang D.W., He Y.L., Yang W.W., et al. Particle image velocimetry measurement onthe oscillatoryflow at the end of the thermoacoustic parallel stacks[J]. Applied ThermalEngineering,2013,51:325-333.
    [123] Zhang D.W., He Y.L., Yang W.W., et al. Experimental visualization and heat transferanalysis of the oscillatory flow in thermoacoustic stacks[J]. Experimental Thermal andFluid Science,2013,46:221-231.
    [124] Shi L, Yu Z.B., Jaworski A.J. Application of laser-based instrumentation formeasurement of time-resolved temperature and velocityfields in the thermoacousticsystem[J]. International Journal of Thermal Sciences,2010,49:1688-1701.
    [125] Jaworski A.J., Piccolo A. Heat transfer processes in parallel-plate heat exchangers ofthermoacoustic devicesenumerical and experimental approaches[J]. Applied ThermalEngineering,2012,42:145-153.
    [126] Wang B, Qiu L.M., Sun D.M., et al. Visualization observation of onset and dampingbehaviors in a traveling-wave thermoacoustic engine by infrared imaging[J]. InternationalJournal of Heat and Mass Transfer,2011,54:5070-5076.
    [127]赖碧翚,邱利民,李艳锋,等.驻波热声发动机板叠温度分布的红外观察[J].低温工程,2011,(2):1-7.
    [128]潘娜,沈超,汪双凤.基于FLIR技术的热声转换温度特性研究[C].2012中国工程热物理学会传热传质分会:东莞,2012.
    [129] Chen R.L. Design, construction, and measurement of a large solar poweredthermoacoustic cooler[D]. Pennsylvania: The Pennsylvania State University,2001.
    [130] Adeff J.A., Hofler T.J. Design and construction of a solar-powdered,thermoacoustically driven, thermoacoustic refrigerator[J]. The Journal of the AcousticalSociety of America,2000,107(6): L37-L42.
    [131] Shen C, He Y.L., Liu Y.W., et al. Modelling and simulation of solar radiation dataprocessing with Simulink[J]. Simulation Modelling Practice and Theory,2008,16(7):721-735.
    [132] Shen C, He Y.L., Li Y.G., et al. Performance of solar powered thermoacoustic engineat different tilted angles[J]. Applied Thermal Engineering,2009,29(13):2745-2756.
    [133] Wu Z, Dai W, Man M, et al. A solar-powered traveling-wave thermoacousticelectricity generator[J]. Solar Energy,2012,86(9):2376-2382.
    [134] Tang R, Gao W, Yu Y, et al. Optimal tilt-angles of all-glass evacuated tube solarcollectors[J]. Energy,2009,34(9):1387-1395.
    [135] Tang R, Yang Y, Gao W. Comparative studies on thermal performance ofwater-in-glass evacuated tube solar water heaters with different collector tilt-angles[J].Solar Energy,2011,85(7):1381-1389.
    [136] Tang R, Wu T. Optimal tilt-angles for solar collectors used in China[J]. AppliedEnergy,2004,79(3):239-248.
    [137] Tiris M, Tiris C. Optimum collector slope and model evaluation: Case study forGebze, Turkey[J]. Energy Conversion and Management,1998,39(3–4):167-172.
    [138] Yakup M, Malik A.Q. Optimum tilt angle and orientation for solar collector in BruneiDarussalam[J]. Renewable Energy,2001,24(2):223-234.
    [139] Chen G.B., Jin T, Bai X, et al. Experimental study on a thermoacoustic engine withbrass screen stack matrix[J]. Advances in Cryogenic Engineering, Vol43Pts a and B,1998,43:713-718.
    [140] Swift G.W., Keolian R.M. THERMOACOUSTICS IN PIN-ARRAY STACKS[J].Journal of the Acoustical Society of America,1993,94(2):941-943.
    [141]杜功焕,朱哲民,龚秀芬.声学基础[M].南京:南京大学出版社,2001.
    [142]金滔,陈国邦,应哲强,等.热声系统起振消振行为的实验研究[J].低温工程,2000,1:27-31
    [143] Tu Q, Gusev V, Bruneau M, et al. Experimental and theoretical investigation onfrequency characteristic of loudspeaker-driven thermoacoustic refrigerator[J]. Cryogenics,2005,45(12):739-746.
    [144]刘靖,邱利民,赖碧翚,等.热声起振过程的实验研究[J].低温工程,2008,1:19-23.
    [145] Sakamoto S, Watanabe Y. The experimental studies of thermoacoustic cooler[J].Ultrasonics,2004,42(1–9):53-56.
    [146]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,2006.
    [147] Wang B, Qiu L.M., Wang K, et al. Infrared imaging as a means of visuallycharacterizing the thermoacoustic onset process influenced by a Helmholtz resonator[J].Applied Acoustics,2012,73(5):508-513.
    [148] Qiu L.M., Wang B, Sun D.M., et al. A thermoacoustic engine capable of utilizingmulti-temperature heat sources[J]. Energy Conversion and Management,2009,50(12):3187-3192.
    [149] Wang B, Qiu L.M., Sun D.M., et al. Study on energy flows in thermoacoustic enginesutilizing two-temperature heat sources[J]. Energy Conversion and Management,2011,52(2):1066-1072.
    [150]刘浩,罗二仓,凌虹.热自然对流对热声起振行为的研究[J].低温与超导,2002,30(1):41-45.
    [151]沈超,何雅玲,卢杰,等.安装倾角对热声发动机性能影响的试验研究[J].热能动力工程,2008,23(4):421-424.
    [152]冯旺聪,郑士琴.粒子图像测速(PIV)技术的发展[J].仪器仪表用户,2003,10(6):1-3.
    [153] Adrian R.J. Dynamic ranges of velocity and spatial resolution of particle imagevelocimetry[J]. Measurement Science and Technology,1997,8(12):1393.
    [154] Hugh W. Coleman WGS. Engineering Application of Experimental UncertaintyAnalysis[J]. Aiaa Journal,1995,33(10):1888-1896.
    [155]高凡.脉管制冷机的整机数值模拟及热声制冷机的试验研究[D].西安:西安交通大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700