用户名: 密码: 验证码:
太阳能碟式聚光发电供热综合利用系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文基于太阳能光伏光热综合利用技术,从经济性、实用性和产业发展角度出发,解决现有碟式聚光PV/T (photovoltaic/thermal)系统中存在的问题,取得了整套系统独立研发技术,提出了新型的高倍聚光GaAs发电供热系统。采用液体冷媒强化冷却高能流密度下GaAs电池的同时,收集热能加以利用。
     针对目前碟式聚光技术存在聚光器造价高,制作工艺复杂,光强分布不均匀的问题,在碟式系统中采用“化整为零”的思想,尝试利用平面玻璃分段式逼近抛物面的聚光方式来替代连续曲面的聚光方式,具有加工制作难度小、聚光光强分布均匀性好等优点,可极大地提高电池组件的光伏输出效率和运行安全性。针对400倍以上太阳聚光的高能流密度(>40W/cm2),本文研制新型复合式接收器,通过特殊设计的微通道强化传热、喷射流动等方式来增强冷媒对光伏电池的冷却效果,冷却光伏电池的同时将热能加以收集利用,提高系统的太阳能综合利用率。
     结合高倍碟式聚光GaAs发电集热系统的结构特点及运行机理,采用理论模拟和实验研究相结合的方法,对高倍聚光条件下的多碟共焦和多平面镜线性组合两种聚光构件的反射、聚焦以及光强分布的均匀性等光学特性分别进行研究。对多碟共焦聚光构件,研究了圆形、矩形、六边形和八边形四种形状子碟的几何聚光特性,给出了各形状子碟的面积效率因子,研究结果表明矩形开口面较适合做为子碟聚光构件。运用TracePro分析了9个矩形子碟构成的聚光器的聚光特性,并试制出样机。对多平面镜组合聚光器构件,从镜阵中镜面数量、焦距、平面镜尺寸等相互耦合的方面研究了其聚光特性,结合余弦效率概念,分析了焦平面处的能流分布情况,给出了多平面镜线性组合的最优设计参数,并成功试制出样机。
     对高倍聚光后处于高热流密度条件下的复合接收器的传热机理及流场特性进行理论模拟和实验研究。运用Fluent软件对喷射/微通道复合式接收器建立仿真模型,并与实验进行对比,模拟计算了接收器换热性能,最后通过在样机上实验测试确定其工作性能。建立直流微通道式换热器热阻模型,通过理论计算优化了接收器设计参数,并根据理论计算得出的参数制作了该种冷却接收器,在聚光器样机上测试其性能。
     搭建了碟式聚光PV/T系统试验测试平台,对高倍聚光后PV/T系统热、电性能进行了初步实验研究,初步实验获取的系统平均瞬时热效率为35.9%,最高瞬时效率为47.8%;系统电池瞬时发电最大效率为16.99%,平均效率15.67%;最大输出功率为50.48W,平均输出功率46.67W,填充因子最大为71.17%。
     建立了PV/T系统的理论计算模型,对聚光后系统的热性能以及处于高光强条件下的GaAs电池输出特性进行研究。研究了影响系统热效率的几个关键因素,为进一步优化系统热性能提供了参考。利用Matlab/Simulink软件平台建立电池阵列模型,对不同光照强度和不同工作温度下的聚光GaAs电池阵列输出特性进行研究,预测了系统在正常情况下发电功率能达到1.5kW。
Based on the photovoltaic/thermal technology, from the economical, practical and industrial development point of view, the thesis proposes a novel photovoltaic/thermal(PV/T) system, and discusses aspects of the system that has been designed to produce both electricity with GaAs solar cells and hot water.
     In this thesis, the solar dish concentrators are made of several sub-mirrors, employing the concept of breaking up the whole into parts. The novel concentrator can be manufactured easily and cheaply, Because of the advantage of uniform light intensity distribution, the efficiency of solar cells that work on the concentrator can be raised greatly. Two new hybrid cooling scheme are proposed for cooling photovoltaic cells under a paraboloidal dish concentrator. The scheme integrates the cooling effects of a microchannel flow and jet impingement, which can cool the solar cells and collect heat energy at the same time.
     Considering the structure features and operation mechanism of paraboloidal dish concentrators, the concentrating characteristics of two types of concentrators have been investigated with the method of combining theoretical simulation and experimental study. The two types of concentrators are Multi-dish con-focal concentrator and Multi-plane linear combination concentrator respectively. For the Multi-dish con-focal concentrator, the concentrating characteristics of sub-dish with different apertures but the same focal length or the same rim angle are investigated respectively. In order to make a quantitative evaluation for the concentrating performance of concentrators, the concept of area efficiency factor is applied. The geometric models for simulation are established, and the average flux distribution on the receivers is simulated and drawn with the software of TracePro.The result of simulation shows that rectangle aperture is more suited for the paraboloidal dish concentraror, and the prototype has been developed with the parameters from simulation results. For Multi-plane linear combination concentrator, the concentrating characteristics and distribution of flux is investigated considering several factors, including quantity of mirrors, focal length, dimensions of plane mirror and cosine efficiency. The prototype of this kind of concentrator has been developed and detected as well.
     In this thesis, a numerical model for the jet impingement/channel receiver has been developed with the Fluent software and experiment is conducted to verify the computational approach. The simulation results are found to be in good agreement with the experimental results, and further numerical predictions are then performed. It is shown that the new cooling scheme has the desirable working performance and is of good application potential for the cooling of photovoltaic cells exposed to a high heat flux. Another numerical model for the microchannel receiver has been developed too. The key parameters have been optimized over a range of coolant flow rates, and these include height, thickness of fins and width of the channels. The receiver is developed and tested under Multi-plane linear combination concentrator.
     Experimental measurement of the thermal and electrical performance of the paraboloidal dish concentrating PV/T system is carried out. The average and maximum instantaneous thermal efficiency are35.9%and47.8%respectively. The average and maximum instantaneous electrical efficiency are16.99%and15.67%respectively; the maximum and average power are50.48W and46.67W, respectively. The fill factor of maximum is71.7%, through the experiment measurement over Multi-plane linear combination concentrator.
     A detailed analytical model simulating the the paraboloidal dish concentrating PV/T system is developed. Several key parameters that affect the thermal efficiency are discussed. Besides, the output characteristics of GaAs solar cells are simulated through a numerical model developed with Simulink software. The simulation about output characteristic of GaAs under different temperature and radiation flux profile are carried out through Simulink software, and the electrical power of system would be1.5kW in normal operation by predicting.
引文
中华人民共和国国务院.2006.国家中长期科学和技术发展规划纲要(2006-2020年)http://www.most.gov.cn/kjgh/kjghzcq/.
    孔凡建.2010.太阳电池组件I-V特性曲线异常[J].电源技术(02).
    王六玲,徐永锋,李明,等.2010.聚光太阳能热电系统的实验研究[J].太阳能学报,31(9).
    王瑞金,张凯,王刚.2007.Fluent技术基础与应用实例[M].北京:清华大学出版社.
    田玮,王一平,韩立君,等.2005.聚光光伏系统的技术进展[J].太阳能学报,04.
    刘坚,姚伯元,冯伟,等.2011.11.23.多平面镜抛物面反射聚焦装置:中国,CN202049282[P].
    涂洁磊,张玮.2011.三结砷化镓叠层太阳能电池中的宽带隙隧穿结研究[J].云南师范大学学报.
    常百阳.2006AMONIX公司集成高效率聚光硅太阳电池发电系统简介[J].阳光能源,02.
    郭苏.2006.塔式太阳能热发电站镜场和CPC及屋顶CPV设计研究[D]:[硕士].南京:河海大学.
    翟载腾.2008.任意条件下光伏阵列的输出性能预测[D]:[博士].合肥:中国科学技术大学.
    翟载腾,程晓舫,杨臧健,等.2009.太阳电池一般电流模型参数的解析解[J].太阳能学报30(8):5.
    魏秀东,卢振武,林梓,等.2010.塔式太阳能热发电站镜场的优化设计[J].光学学报30(9):2652-2656.
    罗运俊,何梓年,王长贵.2005.太阳能利用技术[M].北京,化学工业出版社.
    陈祎.2007.西昌建全国最大聚光光伏太阳能电站投资 5800万http://www.techweb.com.cn/news/2007-07-03/217685.shtml.
    徐诵舜.2011.02.23.张力结构太阳能聚光镜:中国,201010277439.0[P]
    韩延民,代彦军,王如竹.2009.太阳能高倍聚光的方案优化及装置构建[J].上海交通大学学报,43(2):261-265.
    韩丽君,王一平.2003.聚光条件下太阳能电热联用途径初探[J].2003中国太阳能学会学术会议论文集:487-489.
    韩占忠,王敬,兰小平编.2010.Fluent-流体工程仿真计算实例与应用[M].第2版.北京:北京理工大学出版社,20-27.Http://www.solarsystems.com.au/projects.html.
    2004. PVT demonstration project:the RES complex. http://www.ecn.nl.
    BP世界能源统计年鉴.2012,6. http://bp.com/statisticalreview.
    Alferov Zh.I.,Andreev V.M.,Aripov Kh.K. et al.1981. Solar photovoltaic installation with output power of 200Wbased on AlGaAs hererophotocells and mirror concentrators[J]. Geliotekhnika.6:3.
    Andreev, V.M., Grilikhes, V.A. and Rumyantsev, V.D. Photovoltaic conversion of concentrated sunlight[M].Chichester,wiley.
    Andreev, V. M., Grilikhes, V. A., Khvostikov, V. P., et al.2004. Concentrator PV modules and solar cells for TPV systems[J]. Solar Energy Materials and Solar Cells,84(1-4):3-17.
    Bergene, T. and Lovvik, O. M.1995. Model calculations on a flat-plate solar heat collector with integrated solar cells[J]. Solar Energy,55(6):453-462.
    Bett, A. W., Burger, B., Dimroth, F., et al.2006. High-concentration PV using III-V solar cells[J]. Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, Vols 1 and 2:615-620.
    Brogren, M. and Karlsson, B.2002. Low-concentrating water-cooled PV-thermal hybrid systems for high latitudes[J].29th IEEE Photovoltaic Specialists Conference, May 19,2002-May 24,2002, New Orleans, LA, United states, Institute of Electrical and Electronics Engineers Inc.
    Chow, T. T., Pei, G., Fong, K. F., et al.2009. Energy and exergy analysis of photovoltaic-thermal collector with and without glass cover[J]. Applied Energy,86(3):310-316.
    Coventry, J. S.2005. Performance of a concentrating photovoltaic/thermal solar collector[J]. Solar Energy,78(2):211-222.
    Fedorov, A. G. and Viskanta, R.2000. Three-dimensional conjugate heat transfer in the microchannel heat sink for electronic packaging[J]. International Journal of Heat and Mass Transfer,43(3):399-415.
    Geisz, J. F., Levander, A. X., Norman, A. G., et al.2008. In situ stress measurement for MOVPE growth of high efficiency lattice-mismatched solar cells[J]. Journal of Crystal Growth, 310(7-9):2339-2344.
    Gnielinski V.1976. New equations for heat and mass transfer in turbulent pipe and channel flow[J]. International Chemical Engineering,16:359-368.
    Green, M. A.1981. Solar Cells:Operating Principles, Technology, and System Applications[M]. New Jersey, Prentice Hall.
    Guter, W., Schone, J., Philipps, S. P., et al.2009. Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight[J]. Applied Physics Letters,94(22).
    Hein, M. D., F.; Siefer, G.; Bett, A.W.2003. Characterisation of a 300 x photovoltaic concentrator system with one-axis tracking[J]. Solar Energy Materials and Solar Cells, 75(1-2):277-283.
    Ibrahim, A., Othman, M. Y., Ruslan, M. H., et al.2011. Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors[J]. Renewable & Sustainable Energy Reviews, 15(1):352-365.
    Incropera, F. P., Dewitt, D.P., Bergman, et al.2006. Fundamentals of heat and mass transfer[M]. New York, John Wily and Sons Inc.
    James, L.W., Moon, R.L.1975.GaAs concentrator solar cells[J]. Appl Phys Lett,26:467-470.
    Jaramillo, O. A., Perez-Rabago, C. A., Arancibia-Bulnes, C. A., et al.2008. A flat-plate calorimeter for concentrated solar flux evaluation, Renew. Energy,33(10):2322-2328.
    Ji, J., Han, J., Chow, T. T., et al.2006. Effect of flow channel dimensions on the performance of a box-frame photovoltaic/thermal collector[J]. Proceedings of the institution of Mechanical Engineers, Part A:Journal of Power and Energy,220:681-688.
    John, A. duffie, W. A. b.1980. Solar engineering of thermal processes[M]. New York, John Wiley & Sons,Inc.
    Johnston, G., Lovegrove, K. and Luzzi, A.2003. Optical performance of spherical reflecting elements for use with paraboloidal dish concentrators [J]. Solar Energy,74(2):133-140.
    Kern, Jr., E. C. and Russell, M. C.1978. Combined photovoltaic and thermal hybrid collector system[J]. Conference Record of the IEEE Photovoltaic Specialists Conference, Washington DC, USA.
    King, R. R., Law, D. C, Edmondson, K. M., et al.2007.40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells[J]. Applied Physics Letters,90(18).
    Kinsey, G. S., Stone, K., Brown, J., et al.2011. Energy prediction of amonix CPV solar power plants[J]. Progress in Photovoltaics,19(7):794-796.
    Knight, R. W, Gooding J. S. and Hall D. J.1991. Optimal thermal design of forced convection heat sinks analytical [J]. Journal of Electronic Packaging,113(3):313-321.
    Kribus, A., Kaftori, D., Mittelman, G., et al.2006. A miniature concentrating photovoltaic and thermal system[J]. Energy Conversion and Management,47(20):3582-3590.
    Lasich, J.B.2006. Cooling circuit for receiver of solar radiation:United States. US7076965 [P]
    Lee, D., Vafai, K.1999. Comparative analysis of jet impingement and microchannel cooling for high heat flux applications. International Joural of Heat and Mass Transfer,42(9), 1555-1568.
    Lerchenmuller, H.2005. Cost and Market for FLATCON Systems[J]. International Conference on Solar Concentrators for the Generation of Electricity or Hydrogen, Arizona.
    Lopez C.W., S. K. W.1992. Design and performance of the southern california Edison stirling dish[J]. Solar Engineering,7.
    Lovegrove, K., Burgess, G. and Pye, J.2011. A new 500 m2 paraboloidal dish solar concentrator[J]. Solar Energy,85(4):620-626.
    Luque, A., Sala, G., Arboiro, J. C., et al.1997. Some results of the EUCLIDES photovoltaic concentrator prototype [J]. Progress in Photovoltaics,5(3):195-212.
    Luther, J., Luque, A. and Butt, A. W.2005. Concentration photovoltaics for highest effeiciencies and cost reduction[J].25th European photovoltaic solar energy conference, Barcelona.
    Marion, B.2002. A method for modeling the current-voltage curve of a PV module for outdoor conditions[J]. Progress in Photovoltaics,10(3):205-214.
    Marti, A. and Luque, A.2002. Next generation photovoltaic high efficiency through Full spectrum utilization.[M]. Bristol and Philadelphia, Institute of Physics Publishing.
    McAdam, W. H.1954. Heat Transmission[M]. New York, McGraw-Hill.
    Mcconnell, R. and Symko, D. M.2005. DOE High Performance Concentraror PV Project[J]. International Conference on Solar Concentrators for the Generation of Electricity or Hydrogen, Arizona.
    Messinger, R. A. and Ventre, J.2010. Photovoltaic Systems Engineering [M]. Boca Raton,FL, CRC Press Inc.
    Naewngerndee, R., Hattha, E., Chumpolrat, K., et al.2011. Finite element method for computational fluid dynamics to design photovoltaic thermal (PV/T) system configuration[J]. Solar Energy Materials and Solar Cells,95(1):390-393.
    Perers, B. and Karlsson, B.1993. External Reflectors for Large Solar Collector Arrays, Simulation-Model and Experimental Results[J]. Solar Energy,51(5):327-337.
    Phillips, R. J.1990.Microchannel heat sinks. Advance in thermal modeling of electronic components and systems. ASME, New York,109-184.
    Protogeropoulos, C., Brinkworth, B.J., Marshall,R.H., et al.1991. Evaluation of two theoretical models in simulating the performance of amorphous silicon solar cells. Proceedings of the 10th European Photovoltaic solar energy conference. Portugal, Lisbon:412-415.
    Qu, W. L. and Mudawar, I.2002. Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink[J]. International Journal of Heat and Mass Transfer,45(12):2549-2565.
    Rich (1953). Trans, ASME.
    Robert, F., M. G., Alma, C.2010. Solar Energy -Renewable Energy and the Environment[M]. CRC Press, Boca Raton,FL,USA.
    Rosell, J. I., Vallverdu, X., Lechon, M. A., et al.2005. Design and simulation of a low concentrating photovoltaic/thermal system[J]. Energy Conversion and Management, 46(18-19):3034-3046.
    Royne, A., Dey, C.J., Mills, D.R.2005. Cooling of photovoltaic cells under concentrated illumination:a critical review. Solar Energy Materials and Solar Cells,86(4),451-483.
    Royne, A.2005. Cooling devices for densely packed, high concentration PV arrays [D]. [M.Sc]. Australia, Sydney:School of Physics, University of Sydney.
    Royne, A., Dey, C.J.2007. Design of a jet impingement cooling device for densely packed PV cells under high concentration. Solar Energy,81(8),1014-1024.
    Saitoh, H., Hamada, Y., Kubota, H., et al.2003. Field experiments and analyses on a hybrid solar collector[J]. Applied Thermal Engineering,23(16):2089-2105.
    Salman V. J.1989. Convective heat transfer in microchannels[J]. Journal of Electronic Materials, 13(5):611-618.
    Sasaki, T., Arafune, K., Lee, H. S., et al.2006. Effects of thermal cycle annealing on reduction of defect density in lattice-mismatched InGaAs solar cells[J]. Physica B-Condensed Matter, 376:626-629.
    Shah, R.K. and London A.L.1978. Advances in heat transfer[M]. New York, Academic, 196-223.
    Stan, M., Aiken, D., Cho, B., et al.2008. Very high efficiency triple junction solar cells grown by MOVPE[J]. Journal of Crystal Growth,310(23):5204-5208.
    Stone, K. W., Lopez, C. W., Mcalister, R. E.1995. Economic-Performance of the See Stirling Dish[J]. Journal of Solar Energy Engineering-Transactions of the Asme,117(3):210-214.
    Tao, T., Zheng, H. F., He, K. Y., et al.2011. A new trough solar concentrator and its performance analysis[J]. Solar Energy,85(1):198-207.
    Thomas, H. and Pierce, L. K.2001. Building integrated PV and PV/hybrid products-the PV:BONUS experience[J]. The NCPV Program Review Meeting, Lakewood,Colorado.
    Thomas, H. P., Hayter, S. J., Martin, R. L., et al.2000. PV and PV/Hybrid products for buildings[J].16th European Photovoltaic Solar Energy Conference and Exhibition, Glasgow,UK.
    Tobias, I., L. A., Minano J.C.1991. PV eye:a high efficiency converter based on light trapping and spectrum splitting[J]. proceedings of the International Conference on Photovoltaic Solar Energy Conference.
    Wen, Z.M. and Choo, K. F.1997. The Optimum Thermal Design of Microchannel Heat Sinks[J]. IEEE/CPMT Electronic Packaging Technology Conference,123-129.
    Zakharchenko, R., Licea-Jimenez, L., Perez-Garcia, S. A., et al.2004. Photovoltaic solar panel for a hybrid PV/thermal system[J]. Solar Energy Materials and Solar Cells,82(1-2): 253-261.
    Zondag, H. A., van Helden, W. G. J., Bakker, M., et al.2005. PV/T roadmap:a European guide for the development and market introduction of PVT technology[J]. The 6th Framework Programme.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700