用户名: 密码: 验证码:
基于差频技术及光学参量方法产生可调谐THz波的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太赫兹波技术在物理、化学、生命科学等基础研究领域,以及医学成像、安全检查、产品检测、空间通信、武器制导等应用研究领域都具有十分重要的研究价值和广泛的应用前景,而太赫兹波辐射源技术的进步正是推动太赫兹技术及其相关交叉学科迅速发展的关键所在。利用非线性光学差频方法和基于晶格振动模受激电磁耦子散射过程的太赫兹参量振荡技术产生的THz波辐射,具有高能量、高相干性、单频、可宽范围调谐,以及实验装置结构简单、易于操作、可室温运转等优点,因此近十几年来倍受世界各国科研工作者青睐。而在国内,利用非线性光学方法产生THz波辐射的研究仍处于起步阶段,对其相关理论和实验的研究鲜有报道。
     本论文的主要研究内容和创新点如下:
     1.实验研究了近简并点双共振KTP-OPO的可调谐双波长输出特性;对剩余射线带色散补偿相位匹配原理进行了理论介绍,并利用此KTP-OPO的双波长输出作为差频泵浦源,理论研究了在利用光学各向同性半导体晶体差频产生可调谐THz波过程中所涉及的相位匹配问题,得到了有意义的研究结果。
     2.首次根据ZnTe晶体的最佳相位匹配波段范围,搭建了双晶体KTP-OPO,获得了宽调谐范围的双波长输出,实现了高能量、高效率运转,为利用ZnTe晶体差频产生可调谐THz波辐射提供了一种行之有效的差频泵浦源。
     3.对基于受激电磁耦子散射过程的太赫兹波参量发生/振荡器(TPG/TPO)的工作原理,以及不同情况下THz波在此过程中的增益、吸收特性进行了详细的理论研究和数值模拟;通过对晶格振动模的电磁耦子色散特性的研究,在国际上首次提出了一种TPO输出频率调谐方法。
     4.根据由铌酸锂晶体组成的TPG的实验结果,对TPO进行了实验研究,通过角度调谐获得了相干窄带、连续可调谐的高能量Stokes光输出,这就意味着同时产生了相干可调谐的THz波辐射。除此之外,还发现了明显的二阶Stokes光调谐输出相干散射现象。
     5.理论设计了可应用于THz波段的相位型菲涅耳波带片,提供了一种会聚THz波的有效手段。
The terahertz technique has attracted much attention from a variety of applications in fundamental and applied research field, such as physics, chemistry, life sciences, medical imaging, safety inspection, radio astronomy, modern communication, weapon guidance and so on. The technological progress of terahertz radiation source plays an important role in promoting the development of various terahertz technique and the related cross subjects. The generation of high-power, coherent, widely tunable, narrow-band terahertz wave, based on the process of the difference frequency generation and the stimulated polariton scattering in a polar crystal respectively, is expected to provide a promising terahertz radiation source with the obvious and exclusive advantages of compactness, simplicity for tuning, operation at room temperature and so on, which causes great research interest among the researchers all over the world. However, the research of this potential THz-wave generation technique is still in its infancy, and few relevant theoretical or experimental studies were reported in the domestic fields in recent years.
     The main contents and key creation points of this dissertation are as follows:
     1. A high-power, narrow-linewidth, angle-tuned pulsed dual-wavelength KTP-OPO operating near the degenerate point is experimentally demonstrated. The theoretical investigation of the phase-matching properties for the tunable coherent terahertz wave generation in the isotropic semiconductor nonlinear materials is presented, based on the dual-wavelength KTP-OPO mentioned above in the process of the difference frequency generation (DFG). The cross-Reststrahlen band dispersion compensation phase-matching technique involved in this interaction is introduced theoretically.
     2. According to the perfectly phase-matched wavelength range of the ZnTe crystal, we successfully showed a high-power, narrow linewidth, widely tunable, dual-wavelength KTP-OPO with two KTP crystals for the first time, which can be used as one of the most potential pump sources for the THz-wave DFG.
     3. The principle of operation of terahertz-wave parametric generation or oscillator (TPG / TPO) via the stimulated polariton scattering process is theoretically introduced in detail. The properties of THz-wave gain and absorption under different conditions in this process is presented. According to the investigation of the dispersion properties of the polariton in the polar crystal, a novel frequency tuning technique for TPO is reported for the first time.
     4. According to the experimental results of TPG using LiNbO3, a high-power, coherent tunable Stokes light is obtained in the TPO experiments, which means that the tunable, coherent THz-wave radiation with high power is also generated. The phenomenon of the coherent tunable second-order Stokes light scattering is also observed.
     5. The phase-correcting Fresnel zone plate used in the terahertz region is designed, which provided an efficient lens-like focusing means of THz-wave radiation.
引文
[1] Peter H. Siegel. Terahertz Technology, IEEE Transactions on microwave theory and techniques, 2002, 50(3) :910~928
    [2] Bradley Ferguson,张希成.太赫兹科学与技术研究回顾, 物理,2003,32(5):286~293
    [3] 王秀敏,徐新龙,李福利,THz 技术进展,首都师范大学学报,2003,24(3):17~25
    [4] P. Y. Han, M. Tani, M. Usami, et a1., A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy, Journal of Applied Physics, 2001, 89(4): 2357~2359
    [5] B. Fergnson, X. C. Zhang, Materials for terahertz science and technology, Nature Materials, 2002, (1): 26~33
    [6] T. Dekorsy, H, Auer, C. Wasehke, et a1., Emision of Submillimeter Electromagnetic Waves by Coherent Phonons, Phys. Rev. Lett., 1995, 74: 738~741
    [7] B. B. Hu, X. C. Zhang, and D. H. Auston, Terahertz radiation induced by subband-gap femtosecond optical excitation of GaAs, Phys. Rev. Lett., 1991, 67(19): 2709~2712
    [8] J. T. Darrow, X. C. Zhang, and D. H. Auston, Power scalling of large-aperture photoconducting antennas, Appl. Phys. Lett., 1991, 58(1): 25~27
    [9] N. Froberg, M. Mack, B. B. Hu, et al., 500 GHz electrically steerable photoconducting antenna array, Appl. Phys. Lett., 1991, 58(5): 446~448
    [10] G. L. Carr, M. C. Martin, W. C. Mckinney et al., High power terahertz radiation from relativistic electronics, Nature, 2002, 420:153~156
    [11] R. Kohler, A. Tredicucci, F. Beltram, et al., Terahertz semiconductor heterostructure laser, Nature, 2002, 417: 156~159
    [12] B. B. Hu and M. C. Nuss, Imaging with terahertz waves, Opt. Lett., 1995, 20(16): 1716~1718
    [13] Q. Wu, T. D. Hewitt, and X. C. Zhang, Two-dimensional electro-optic imaging of terahertz beams, Appl. Phys. Lett., 1996, 69(8): 1026~1028
    [14] Z. P. Jiang, X. C. Zhang, Single-shot spatio-temporal terahertz field imaging, Opt. Lett., 1998, 23(14): 1114~1116
    [15] S. Hunsche, M. Koch, I. Brener, et al., THz near-field imaging, Optics Communications, 1998, 150(126): 22~26
    [16] Q. Chen, Z. P. Jiang, G. X. Xu, et al., Near-field terahertz imaging with a dynamic aperture, Opt. Lett., 2000, 25(15): 1122~1124
    [17] T. Loffler, T. Bauer, K. J. Siebert, et al., Terahertz dark-fields imaging of biomedical tissue, Optics Express, 2001, 9(12): 616~621
    [18] T. D. Dorney, J. L. Johnson, J. V. Rudd et al., Terahertz reflection imaging using Kirchoff migration, Opt. Lett., 2001, 26(19): 1513~1515
    [19] D. M. Mittleman, M. Gupla,R Neelamani et al., Recent advances in terahertz imaging, Applied Physics B, 1999, 68: 1085~1094
    [20] Ruffin A.Boh,Decker Joan, Laurent Sanchez—Palencia et al., Time reversal and object reconstruction with single — cycle pulses, Opt. Lett., 2001, 26(10): 681~683
    [21] 马晓菁,代斌,葛敏,太赫兹辐射的研究及应用,化工时刊,2006,20(12):50~53
    [22] 金晓,课题组,束小建等,远红外自由电子激光太赫兹源研究,物理通报,2005,5:56~57
    [23] M. S. Sherwin, C. A. Schmuttenmaer and P. H. Bucksbaum, Enditors. Opportunities in THz Science [R]. Report of a DOE-NSF-NIH Workshop held February12-14, 2004, Arlington, VA.
    [24] A. G. MKELZ, A. Roitberg and E. J. Heilweil, Chemical Physics Letters, 2000, 320: 42~48
    [25] Q. Chen, Z. P. Jiang, X. C. Zhang, The interaction between terahertz radiation and biological tissue, Pro. SPIE, 1999, 3616: 98~105
    [26] P. R. Smith, D. H. Auston, and M. C. Nuss, Subpicosecond photoconducting dipole antennas, IEEE Journal of quantum electronics, 1988, 24: 255~260
    [27] 谢旭,钟华,袁韬等,使用太赫兹技术研究航天飞机失事的原因,物理,2003,32(9):583~584
    [28] 王少宏,许景周,汪力等,物理,2001,30(10):612~615
    [29] http://www.mtinstruments.com/
    [30] S. Komiyama, Far-Infrared Emission from Population-Inverted Hot-Carrier System in p-Ge, Phys. Rev. Lett., 1982, 48(4): 271~274
    [31] E. Bründermann, A. M. Linhart, and H. P. R?ser. Miniaturization of p -Ge lasers: Progress toward continuous wave operation, Appl. Phys. Lett., 1996, 68(10): 1359~1361
    [32] 刘峰奇,王占国.红外量子级联激光器,物理,2001, 30(10): 596~601
    [33] 李琦, 王骐, 尚铁梁,量子级联激光器的发展及其应用,激光与红外,2001,31(2):73~75
    [34] Jun-ichi Shikata, Kodo Kawase and Hiromasa Ito. The generation and linewidth control of terahertz waves by parametric processes, Elec. Comm. in Japan, Part 2,2003, 86(5): 52~63
    [35] H. Rubens and O. V. Baeyer. On Extremely Long Waves Emitted by the QuartzMercury Lamp, Phil. Mag., 1911, 21: 689~703
    [36] http://www.coherent.com.cn/downloads/co2%20lasers/OpticallyPumpedLaser.pdf
    [37] Gregory S. Herman. Far infrared spectra of nonlinear optical crystals, SPIE, 2379: 291~297
    [38] 高翔,刘海庆,揭银先等,太赫兹连续波 DCN 激光器的实验研究,激光技术,2006,30(1):64~69
    [39] X. C. Zhang,B. B. Hu,J. T. Darrow, et a1., Generation of femtosecond electromagnetic pulses from semiconductor surfaces, Appl. Phys. Lett, 1990, 6(11): 101l~1013
    [40] 周泽魁,张同军,张光新,太赫兹波科学与技术,自动化仪表,2006,27(3):1~6
    [41] J. W. Hans, P. Powers, M, Scalora, et al., Novel, tunable and enhanced terahertz sources using nonlinear photonic crystal, Laser and Fiber-Optical Networks Modeling, Proceedings of LFNM 2003. 5th International Workshop, 2003, 5(9): 252~254
    [42] L. Xu, X. C. Zhang and D. H. Auston, Terahertz beam generation by femtosecond optical pulses in electrooptic materials, Appl. Phys. Lett., 1992, 61(15): 1784~1786
    [43] H. Hamster, A. Sullivan, S. Gordon. Supbicosecond, electromagnetic pulses from intense laser-plasma interaction, Phys. Rev. Lett., 1993, 71(17): 2725~2728
    [44] H. Hamster, A. Sullivan, S. Gordon. Short-pulse terahertz radiation from high-intensity-laser-produced plasma, Physical Review E, 1994, 49(1): 671~677
    [45] D. J. Cook and R. M. Hochstrasser. Intense terahertz pulses by four-wave rectification in air, OPTICS LETTERS, 2000, 25(16): 1210~1212
    [46] Markus Kress, Torsten Loffler, Susanne Eden. Terahertz-pulse generation by photoionization of air of both fundamental and second-harmonic waves, OPTICS LETTERS, 2004, 29(10): 1120~1122
    [47] Xu Xie, Jianming Dai, and X. C. Zhang. Coherent control of THz wave generation in ambient air, Phys. Rev. Lett., 2006, 96(75005): 075005-1~075005-4
    [48] Frits Zernike, Jr. and Paul R. Berman. Generation of Far Infrared as a Difference Frequency, Phys. Rev. Lett., 1965, 15(26): 999~1002
    [49] R. L. Aggarwal, B. Lax, H. R. Fetterman et al. CW generation of tunable narrow-band far-infrared radiation, J. Appl. Phys., 1974, 45(9): 3972~3974
    [50] K. H. Yang, J. R. Morris, P. L. Richards, et al. Phase-matched far-infrared generation by optical mixing of dye laser beams, Appl. Phys. Lett., 1973, 23(12): 669~671
    [51] T. Tanabe, K. Suto, J. Nishizawa, et al. Frequence-tunable high-power terahertz wave generation from GaP, Journal of applied physics, 2003, 93(8): 4610~4615
    [52] T. Tanabe, K. Suto, J. Nishizawa, et al., Tunable terahertz wave generation in the 3- to 7-THz region from GaP, Appl. Phys. Lett., 2003, 83(2): 237~239
    [53] W. Shi and Y. J. Ding, Tunable terahertz waves generated by mixing two copropagating infrared beams in GaP, Opt. Lett., 2005, 30(9): 1030~1032
    [54] W. Shi and Y. J. Ding, Efficient, tunable, and coherent 0.18–5.27-THz source based on GaSe crystal, Opt. Lett., 27(16): 1454~1456
    [55] W. Shi and Y. J. Ding, Continuously tunable and coherent terahertz radiation by means of phasematched difference-frequency generation in zinc germanium phosphide, Appl. Phys. Lett., 2003, 83(5): 848~850
    [56] Y. J. Ding, High-power tunable terahertz sources based on parametric processes and applications, IEEE Journal of selected topics in quantum elecronics, 20074, 13(3): 705~720
    [57] K. Kawase, Takaaki Hatanaka, Hidenori Takahashi, et al, Tunable terahertz-wave generation from DAST cystal by dual signal-wave parametric oscillation of periodically poled lithium niobate, Opt. Lett., 2000, 25(23): 1714~1716
    [58] P. E. Powers, R. A. Alkuwari, J. W. Haus, et al., Terahertz generation with tandem seeded optical parametric generators, Opt. Lett., 2005, 30(6): 640~642
    [59] K. Huang, On the interaction between the radiation field and ionic crystals, Proc. Royal Soc., 1951, A208: 352~365
    [60] M. Born, K. Huang, Dynamical theory of crystal lattice, Oxford: Oxford University Press, 1954
    [61] C. H. Henry and J. J. Hopfield, Raman scattering polaritons, Phys. Rev. Lett., 1965, 15(25): 964~966
    [62] R. Loudon, Theory of stimulated raman scattering from lattice vibrations. Proc. Phys. Soc., 1963, 82: 393~400
    [63] C. H. Henry and C. G. B. Garrett, Theory of parametric gain near a lattice resonance, Phys. Rev., 1968, 171(3): 1058~1064
    [64] M. A. Piestrup, R. N. Fleming, and R. H. Pantell. Continuously tunable submillimeter wave source, Appl. Phys. Lett., 1975,26 (8):418~421
    [65] K. Kawase, Jun-ichi Shikata, Hiroaki Minamide, et al. Arrayed silicon prism coupler for a terahertz-wave parametirc oscillator, Appl. Opt., 2001, 40(9): 1423~1426
    [66] K. Kawase, Manabu Sato, Tetsuo Taniuchi, et al, Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler, Appl. Phys. Lett., 1996, 68 (18): 2483~2485
    [67] K. Kawase, Juni-chi Shikata and Hiromasa Itov. Terahertz wave parametric source, J. Phys D: Appl. Phys, 2001, 34: R1~R14
    [68] Jun-ichi Shikata, Kodo Kawase, Ken-ichi Karino, et al., Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO: LiNbO3 crystals, Transactions on microwave theory and technique, 2000, 48(4): 653~661
    [69] Kazuhiro Imai, Kodo Kawase, Jun-ich Shikata, et al., Injection-seeded terahertz-wave parametric oscillator, Appl. Phys. Lett., 2001, 78 (8): 1026~1028
    [70] K. Kawase, Jun-ich Shikata, Kazuhiro Imai, et al., Transform-limited, narrow-linewidth, terahertz-wave parametric generator, Appl. Phys. Lett., 2001,78(19): 2819~2821
    [71] Jun-ichi Shikata, Manabu Sato, Tetsuo Taniuchi, et al., Enhancement of terahertz-wave output from LiNbO3 optical parametirc oscillators by cryogenic cooling, Opt. Lett., 1999, 24(4): 202~204
    [72] Atsushi Sato, Kodo Kawase, and Hiroaki Minamide. Tabletop terahertz-wave parametric generator using a compact, diode-pumped Nd:YAG laser, Review of scientific instruments, 2001, 72(9): 3501~3504
    [73] S.Hayashi1, H.Minamide, T.Ikari, Y.Ogawa, et al, Palmtop Terahertz-Wave Parametric Generators, 2005 Joint 30th Intl. Conf. on Infrared and Millimeter Waves & 13th Intl. Conf. on Terahertz Electronics, 2005: 399~400
    [74] A. C. Chiang, T. D. Wang, Y. Y. Lin, et al., Enhanced terahertz-wave parametric generation and oscillation in lithium niobate waveguides at terahertz frequencies, Opt. Lett., 2005, 30 (24): 3392~3394
    [1] K. Takashi and S. Ichiro, Study on wavelength conversion by compound-semiconductor-based quasi phas-matching devices, 2005 Photonics based on wavelength Integration and Manipulation IPAP Books 2: 151~160
    [2] Messaoud Bahoura, Gregory S. Herman, Norman P. Barnes, et al., Terahertz wave source via difference-frequency mixing using cross-Reststrahlen band dispersion compensation phase matching: a Material Study, Proceeding of SPIE, 2000, 3928: 132~140
    [3] R. A. Kaindl, F. Eickemeyer, M. Woemer et al., Broadband phase-matched difference frequency mixing of femtosecond pulses in GaSe: Experiment and theory, Appl. Phys. Lett., 1999, 75(8): 1060~1062
    [4] R. Huber, A. Brodschelm, F. Tauser et al., Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz, Appl. Phys. Lett., 2000, 76(22): 3191~3193
    [5] S. Verghese, K. A. McIntosh, and E. R. Brown, Highly tunable fiber-coupled photomixers with coherent terahertz output power, IEEE Trans. Microwave Theory Tech., 1997, 45: 1301~1309
    [6] B. B. Hu, and M. C. Nuss, Imaging with terahertz waves, 1995, Opt. Lett., 20(16): 1716~1718
    [7] 王卓,光学方法产生连续、准连续 THz 波的理论研究,天津大学硕士学位论文,2007
    [8] 姚宝权,王月珠,王骐,中红外光参量振荡器发展状况分析,激光技术,2002,26(3):217~220
    [9] W. Shi and Y. J. Ding. Continuously tunable and coherent terahertz radiation by means of phasematched difference-frequency generation in zinc germanium phosphide, Appl. Phys. Lett., 2003, 83(5): 848~850
    [10] W. Shi, Y. J. Ding, Peter G. Schunemann. Coherent terahertz waves based on difference-frequency generation in an annealed zinc–germanium phosphide crystal: improvements on tuning ranges and peak powers, Optics Communications, 2004, 233: 183~189
    [11] 姚宝权,可见至中远红外宽调谐光参量振荡器某些性能优化研究,哈尔滨工业大学工学博士学位论文,2002
    [12] Y. J. Ding and I. B. Zotova. Coherent and tunable terahertz oscillators, generators, and amplifiers, Journal of Nonlinear Optical Physics & Materials, 2002, 11 (1): 75~97
    [13] Y. J. Ding, W. Shi, Widely-tunable, monochromatic, and high-power terahertz sources and their applications, Journal of Nonlinear Optical Physics & Materials, 2003, 12 (4): 557~585
    [14] K. L. Vodopyanov, L. A. Kulevskii, New dispersion relationships for GaSe in the 0.65-18μm spectral region, Optics Communications, 1995, 118: 375~378
    [15] P. Y. Han, M. TANI, F. Pan, et al, Use of the organic crystal DAST for terahertz beam applications, Opt. Lett., 2000, 25(9): 675~677
    [16] H. P. Wagner, M. Kuhnelt, W. Langbein, et al, Dispersion of the second-order nonlinear susceptibility in ZnTe, ZnSe, and ZnS, Phys. Rev. B, 1998, 58(16): 10494~10501
    [17] K. Kawase, Takaaki Hatanaka, Hidenori Takahashi, et al. Tunable terahertz-wave generation from DAST cystal by dual signal-wave parametric oscillation of periodically poled lithium niobate, Opt. Lett, 2000, 25(23): 1714~1716
    [18] P. E. Powers, R. A. Alkuwari, J. W. Haus, et al. Terahertz generation with tandem seeded optical parametric generators, Opt. Lett, 2005, 30(6): 640~642
    [19] http://www.rainbowphotonics.com/
    [20] F. Pan, G. Knopfle, Ch. Bosshard, et al., Electro-optic properties of the organic salt DAST, Appl. Phys. Lett., 1996, 69(1): 13~15
    [21] G. Knopfle, R. Schlesser, R. Ducret, et al., Optical and nonlinear optical properties of DAST crystals, Nonlinear Optics, 1995, 9: 143~149
    [22] P. Y. Han, M. Tani, F. Pan, et al., Characterization and application of DAST at THz frequency, CLEO, 2000, 556, CThX4
    [23] Yuzo Sasaki, Avetisyan Yuri, Kodo Kawase, et al. Terahertz-wave surface-emitted difference frequency generationin slant-stripe-type periodically poled LiNbO3 crystal, Appl. Phys. Lett., 2002, 81(18): 3323~3325
    [24] S. Verghese, K. A. McIntosh, and E. R. Brown. Optical and terahertz power limitsin the low-temperature-grown GaAs photomixers, Appl. Phys. Lett., 1997, 71(19): 2743~2745
    [25] V. Krozer, B. Leone, H. Roskos. Optical Far-IR Wave Generation -State-of-the-Art and Advanced Device Structures, Microwave and Terahertz Photonics, Proceedings of SPIE, 2004, 5466: 178~192
    [26] E. R. Brown, S. Verghese, and K. A. McIntosh. Terahertz Photomixing in Low-Temperature-Grown GaAs, Advanced Technology MMW, Radio, and Terahertz Telescopes, Proceedings of SPIE, 1998, 3357: 132~142
    [1] R. L. Aggarwal, B. Lax, H. R. Fetterman et al., CW generation of tunable narrow-band far-infrared radiation, J. Appl. Phys., 1974, 45(9): 3972~3974
    [2] K. H. Yang, J. R. Morris, P. L. Richards, et al., Phase-matched far-infrared generation by optical mixing of dye laser beams, Appl. Phys. Lett., 1973, 23(12): 669~671
    [3] T. Tanabe, K. Suto, J. Nishizawa, et al., Frequency-tunable high-power terahertz wave generation from GaP, Journal of applied physics, 2003, 93(8): 4610~4615
    [4] K. Kawase, M. Mizuno, S. Sohma, et al., Difference-frequency terahertz-wave generation from DAST by use of an electronically tuned Ti: sapphire laser, Opt. Lett., 1999, 24(15): 1065~1067
    [5] K. Kawase, Takaaki Hatanaka, Hidenori Takahashi, et al. Tunable terahertz-wave generation from DAST cystal by dual signal-wave parametric oscillation of periodically poled lithium niobate, Opt. Lett, 2000, 25(23): 1714~1716
    [6] P. E. Powers, R. A. Alkuwari, J. W. Haus, et al., Terahertz generation with tandem seeded optical parametric generators, Opt. Lett, 2005, 30(6): 640~642
    [7] 姚建铨,非线性光学频率变换及激光调谐技术,北京:科学出版社,1995
    [8] http://gb.castech.com/newEbiz1/EbizPortalFG/portal/html/index.html
    [9] K. Kato, Parametric oscillation at 3.2 μm in KTP pumped at 1.064 μm, IEEE J. Quantum Electron., 1991, 27(5): 1137~1140
    [10] H. Vanherzeele, J. D. Bierlein, F. C. Zumsteg, Index of refraction measurements and parametric generation in hydrothermally grown KTiOPO4, Appl. Opt., 1988, 27(16): 3314~3315
    [11] 蓝信钜,激光技术,北京:科学出版社,2000
    [12] K. Takashi and S. Ichiro, Study on wavelength conversion by compound-semiconductor-based quasi phas-matching devices, 2005 Photonics based on wavelength Integration and Manipulation IPAP Books 2: 151~160
    [13] Messaoud Bahoura, Gregory S. Herman, Norman P. Barnes, et al., Terahertz wave source via difference-frequency mixing using cross-Reststrahlen band dispersion compensation phase matching: a Material Study, Proceeding of SPIE,2000, 3928: 132~140
    [14] R. L. Aggarwal, B. Lax, and G. Favrot, Nonlinear phase matching in GaAs, Appl. Phys. Lett, 1973, 22(7): 329~330
    [15] T. J. Bridges and A. R. Strnad, Submillimeter Wave Generation by Difference-Frequency Mixing in GaAs, Appl. Phys. Lett., 1972, 20(10): 382~384
    [16] I. Tomita, H. Suzuki, H. Ito, et al., Terahertz-wave generation from quasi-phase-matched GaP for 1.55 μm pumping, Appl. Phys. Lett., 2006, 88: 071118-1~071118-3
    [1] 方容川,固体光谱学,合肥:中国科学技术大学出版社,2001.
    [2] 张光寅,蓝国祥,王玉芳,晶格振动光谱学(第二版),北京:高等教育出版社,2001.
    [3] 方俊鑫,陆栋,固体物理学(上、下册),上海:上海科学技术出版社,1980.
    [4] 程光煦,拉曼 布里渊散射——原理及应用,北京:科学出版社,2001.
    [5] 刘思敏,固体光谱讲义,南开大学物理科学与技术学院.
    [1] P. A. Franken, A. E. Hill, C. W. Peters et al., Generation of optical harmonics, Phys. Rev. Lett., 1961, 7: 118~119
    [2] R. H. Kingston, Parametric amplification and oscillation at optical frequencies, Proc. IRA, 1962, 50: 472~474
    [3] N. M. Kroll, Parametric amplification in spatially extended media and application to the design of tunable oscillators at optical frequencies, Phys.Rev., 1962, 127: 1027~1211
    [4] S. A. Akhmanov and R. V. Khoklov, Concering one possibility of amplification of light waves, Sov. Phys. JETP, 1963, 16: 252
    [5] J. A. Armstrong, N. Bloembergen, J. Ducuing, et al., Interactions between light waves in a nonlinear dielectric, Phys. Rev., 1962(6), 127:1918~1939
    [6] C. C. Wang and G. W. Raceete, Measurement of parametric gain accompanying optical difference frequency generation, Appl. Phys. Lett., 1965, 6(8): 169~171
    [7] J. A. Giordmaine and R. C. Miller, Tunable coherent parametric oscillation in LiNbO3 at optical frequencies, Phys. Rev. Lett., 1965, 14(24): 973~976
    [8] C. V. Raman and R. S. Krishnan, A new type of secondary radiation, Nature, 1928, 121: 501~502
    [9] G. Landsberg and L. Mandelsltam, Naturwissenschaften, 1928, 16: 557
    [10] E. J. Woodbury and W. K. Ng, Ruby laser operation in the near IR, Rroc IRE, 1962, 50: 2367
    [11] K. Huang, On the interaction between the radiation field and ionic crystals, Proc. Royal Soc., 1951, A208: 352~365
    [12] C. H. Henry and J. J. Hopfield, Raman scattering by polaritons, Phy. Rew. Lett., 1965, 15(25): 964~966
    [13] 张光寅,蓝国祥,王玉芳,晶格振动光谱学(第二版),北京:高等教育出版社,2001
    [14] R. Loudon, Theory of stimulated raman scattering from lattice vibrations. Proc. Phys. Soc., 1963, 82: 393~400
    [15] M. A. Piestrup, R. N. Fleming and R. H. Pantell, Continuously tunable submillimeter wave source, Applied Physics Letters, 1975, 26(8): 418~421
    [16] K. H. Yang, et al, Phase-matched far-infrared generation by optical mixing of dye laser beams, Applied Physics Letters, 1973, 23(12): 669~671
    [17] P. N. Butcher, R. Loudon, and T. P. McLear, Parametric amplification near resonance in nonlinear dispersive media, Proc. Phys. Soc., 1965, 85: 565~581
    [18] Y. R. Shen, Theory of stimulated raman effect, Phys. Rev., 1965, 138(6A): A1741~A1746
    [19] C. H. Henry and C. G. B. Garrett, Theory of parametric gain near a lattice resonance, Phys. Rev., 1968, 171(3): 1058~1064
    [20] S. S. Sussman, Tunable light scattering from transverse optical modes in Lithium Niobate, Microwave Laboratory Report No. 1851, S tanford University, pp.34, Apr. 1970
    [21] D. A. Kleinam, Nonlinear dielectric polarization in optical media, Phys. Rev., 1962, 126(6): 1977~1979
    [22] N. Bloembergen and P. S. Pershan, Light wave at the boundary of nonlinear media, Phys. Rev., 1962, 128(2): 606~622
    [23] A.S.Barker, Jr., Transverse and longitudinal optic mode study in MgF2 and ZnF2, Phy. Rev., 136(5A): A1290~A1295 1964)
    [24] A. S. Barker, Jr., R. Loudon, Dielectirc properties and optical phonons in LiNbO3, Phy. Rev., 1967,158(2): 433~445
    [25] http://www.nature.com/cgi-taf/gateway.taf?g=3&file=/materials/month/articles/m021031-6.himl
    [26] V. G. Dmitriev, G. G. Grzdyan, D. N. Nikogosiyan, Handbook of Nonlinear Optical Crystals, Springer-Verlag, Berlin, 1991
    [27] 李铭华,杨春晖,徐玉恒等,光折变晶体材料科学导论,北京:科学出版社,2003
    [28] A. F. Penna, A. Chaves, P. da R. Andrade, and S. P. S. Porto, Light scattering by lithium tantalite at room temperature, Physical Review B, 1976, 13(11): 4907~4917
    [29] G. J. Edwards and M. Lawrence, A temperature-dependent dispersion equation for congruently grown lithium niobate, Opt. Quantum Electron, 1984, 16: 373~375
    [30] Ariel Bruner, David Eger, Moshe Oron, et al., Refractive index dispersion measurements of congruent and stoichiometric LiTaO3, Proceedings of SPIE, 2002, 4628: 66~73
    [31] A. S. Barker, Jr., and R. Loudon, Dielectric properties and optical phonons in LiNbO3, Physical Review, 1967, 158(2): 433~445
    [32] A. S. Barker, Jr., A. A. Ballman and J. A. Ditzenberger, Infrared study of the lattice vibrations in LiTaO3, Physical Review B, 1970, 2(10): 4233~4239
    [33] Jun-ichi Shikata, Kodo Kawase, and Hiromasa Ito, The generation and linewidth control of terahertz waves by parametric processes, Electronics and Communications in Japan, Part 2, 2003, 86 (5): 52~65
    [34] M. Schall, H. Helm, and S.R. Keiding, Far Infrared Properties of Electro-optic Crystals Measured by THz Time-domain Spectroscopy, International Journal of Infrared and Millimeter Waves, 1999, 20(4): 595~604
    [35] H. E. Puthoff, R. H.Pantell, B. G. Huth, et al, Near-forward raman scattering in LiNbO3, Journal of Applied Physics, 1968, 39 (4): 2144~2146
    [36] U. T. Schwarz and Max Maier, Frequency dependence of phonon-polariton damping in lithium niobate, 1996, 53 (9): 5074~5077
    [37] U. T. Schwarz and Max Maier, Damping mechanisms of phonon polaritons, exploited by stimulated Raman gain measurements, 1998, 58 (2): 766~775
    [38] W. D. Johnston, Jr., and I. P. Kaminow, Temperature dependence of Raman and Rayleigh Scattering in LiNbO3 and LiTaO3, Physical Review, 1968, 168(3): 1045~1054
    [39] R. C. Miller and A. Savage, Temperature dependence of the optical properties of ferroelectric LiNbO3 and LiTaO3, Applied Physics Letters, 1966, 9(4): 169~171
    [1] K. Kawase, Jun-ichi Shikata, Hiroaki Minamide, et al. Arrayed silicon prism coupler for a terahertz-wave parametirc oscillator, Appl. Opt., 2001, 40(9): 1423~1426
    [2] K. Kawase, Juni-chi Shikata and Hiromasa Itov. Terahertz wave parametric source, J. Phys D: Appl. Phys, 2001, 34: R1~R14
    [3] K. Kawase, M. Sato, K. Nakamura, et al., Unidirectional radiation of widely tunable THz wave using a prism coupler under noncollinear phase matching condition, Appl. Phys. Lett., 1997, 71(6): 753~755
    [4] Kazuhiro Imai, Kodo Kawase, Jun-ich Shikata, et al., Injection-seeded terahertz-wave parametric oscillator, Appl. Phys. Lett., 2001, 78 (8): 1026~1028
    [5] K. Kawase, Jun-ich Shikata, Kazuhiro Imai, et al., Transform-limited,narrow-linewidth, terahertz-wave parametric generator, Appl. Phys. Lett., 2001,78(19): 2819~2821
    [1] 金国藩,严瑛白,邬敏贤等,二元光学,北京:国防工业出版社,1998
    [2] Veldkamp W B. Binary optics: the optics technology of the 1990s. CLEO, USA, 1990:21
    [3] 陈岩松,王玉堂,李秀英等,一种相位型再现元件—相息图,激光,1979,6:28~33
    [4] V. Moren, J.F. Roman, and J.R. Salgueiro, High efficiency diffractive lenses: Deduction of kinoform profile, American Journal of Physics, 1997, 65(6): 556~562
    [5] 黄婉云,范玲,二元光学进展,大学物理,1996,15(10):1~6
    [6] 黄婉云,傅立叶光学教程,北京:北京师范大学出版社,1985
    [7] 郑勇,韩红梅,二元光学的发展及意义,新乡教育学院学报,2003,16(3):67~68
    [8] 马正先,陈丽,熊建文等,二元光学及其进展,华南师范大学学报(自然科学版),1997,2:89~95
    [9] 赵书安,二元光学略述,金陵科技学院学报,2004,20(3):22~29
    [10] 韩良凯,周进,高文琦,二元光学元件的衍射效率及其振幅矢量解法,大学物理,1995,14(10):36~43
    [11] 周进,高文琦,黄信凡等,用二元光学方法制作的高效率衍射光栅,中国激光,1995,A22(2):123~125
    [12] 沐仁旺,周进,高文琦,几种有应用前景的二元光学元件的研究,激光与红外,1999,29(3):181~184
    [13] 周进,韩良凯,高文琦等,二元光学元件各级光强的分布规律和衍射效率,中国激光,1996,A23(5):449~452
    [14] 赵凯华,钟锡华,光学,北京:北京大学出版社,1996
    [15] 温海东,光折变相位图和相位元件,博士学位论文,南开大学,2001
    [16] 唐新科,菲涅耳波带片的焦距,青海师范大学学报(自然科学版),1996,2:37~39
    [17] 马恩波,潜议菲涅耳波带片,承德民族师专学报,2003,23(2):48~49
    [18] 赵秀琴,菲涅耳波带片与普通透镜的比较,太原教育学院学报,2004,22(1):66~67
    [19] http://www.mtinstruments.com/
    [20] 郭晴,王汝笠,郭中原等,二元位相型菲涅耳透镜列阵器件的研制及其应用实验,红外与毫米波学报,1995,14(1):18~26
    [21] M. King, J. Rodgers, F. Sobel, F. Wentworth et a, Quasi-Optical Components and Surface Waveguides for the 100- to 300- GHz Frequency Range, Electronic Communications. Inc., Report No. 2 on Contract AF19(604)-5475. Nov. 1960.
    [22] F. Sobel, F.L. Wentworth and J.C. Wiltse, Quasi-Optical Surface Waveguide and Other Components for the 100- to 300- Gc Region, IRE Transactions on Microwave Theory and Techniques, 1961, MIT-9: 512-518
    [23] J.M. Cotton, F. Sobel, M. Cohn and J.C. Wiltse, Millimeter Wave Research, Electronic Communications, Inc. Final Technical Report on Contract AF (602)-2457, Dec. 1962.
    [24] S. Wang, T. Yuan, E.D. Walsby et al, Characterization of T-ray binary lenses, Optics Letters, 2002, 27(13): 1183~1185
    [25] E.D.Walsby, J.Alton, C.Worrall et al, Imprinted diffractive optics for terahertz radiation, Optics Letters, 2007, 32(9): 1141~1143
    [26] J.C. Wiltse, Large angle zone plate antennas, Proceedings of SPIE, 2003, 5104: 45~56
    [27] J.C. Wiltse, Zone plate designs for terahertz frequencies, Proceedings of SPIE, 2005, 5970: 167~179
    [28] J.C. Wiltse, Advanced Zone Plate Antenna Design, Proceedings of SPIE, 2000,4111: 201~209
    [29] J.C. Wiltse, Phase-correcting zone plate antennas at terahertz frequencies, Proceedings of SPIE, 2003, 5070: 98-107
    [30] F. Sobel, F.L. Wentworth, J.C. Wiltse, Quasi-optical surface waveguide and other components for the 100 to 300 GHz region, I.R.E. Transactions on Microwave Theory and Techniques, 1961, MTT-9: 512-518
    [31] D.N. Black and J.C. Wiltse, Millimeter-wave characteristics of phase-correcting Fresnel zone plates, IEEE Transactions on Microwave Theory and Techniques, 1987, MTT-35: 1122-1129
    [32] 郑武城,安连生,韩娅娟等,光学塑料及其应用,北京:地质出版社,1993
    [33] J. C. Wiltse, The Stepped Conical Zone Plate Antenna, Proceedings of SPIE, 2001, 4386: 85-92
    [34] J. C. Wiltse, Bandwidth characteristics for the stepped conical zoned antenna, Proceedings of SPIE, 2002, 4732: 59~68
    [35] 李红军,李凤友,卢振武等,入射光波波长对菲涅耳透镜衍射效率的影响,中国激光,2001,A28(10):909~912
    [36] 赵华军,石东平,程正富,菲涅耳透镜的衍射特性及误差分析,激光杂志,2006,27(4):45~46
    [37] Dean Faklis, G. Michael Morris, Spectral properties of multiorder diffractive lenses, Appl . Opt . , 1995 , 34 (14) :2462~2468
    [38] Kenro Miyamoto, The phase fresnel lens, Journal of the optical society America, 1961, 51(1): 17~20
    [39] Dale A. Buralli, G. Michael Morris, and John R. Rogers, Optical performance of holographic kinoforms, Appl . Opt . , 1989, 28(5): 976~983
    [40] A. D. Kathman and S. K. Pitalo, Binary optics in lens design, Proceedings ofSPIE, 1990, 1354: 297~309
    [41] Andrew Wood, Mane-Si Laure Lee and Simone Cassette, Infrared hybrid optics with high broadband efficiency, Proceedings of SPIE,2005,5874: G1~G12
    [42] J. C. Wiltse, The Fresnel zone-plate lens, Proceedings of SPIE, 1985, 544: 41-47
    [43] J.C. Wiltse, Dual-band Fresnel zone plate antennas, Proceedings of SPIE, 1997, 3062: 181-185

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700