用户名: 密码: 验证码:
GaSe晶体太赫兹时域光谱及差频产生太赫兹辐射源研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太赫兹辐射源和太赫兹时域光谱,是太赫兹技术研究领域的两个重要方向。本文搭建了一套太赫兹时域光谱系统,结合密度泛函微扰理论研究了GaSe晶体的吸收光谱,并在GaSe晶体中光学差频产生窄带可调谐的太赫兹辐射。主要研究内容包括:
     1、搭建了一套太赫兹时域光谱系统。通过实验比较飞秒激光产生太赫兹辐射的多种方法,建立了一套基于ZnTe(110)晶体光整流产生和电光采样探测的太赫兹时域光谱系统,用1mm厚的ZnTe晶体产生和探测太赫兹辐射,通过几何优化,系统的信噪比大于1000,光谱范围为0.1-2.5THz,光谱分辨率50GHz,为研究样品在太赫兹波段的光学性质提供了一个很好的平台。
     2、实验验证了太赫兹时域光谱系统的优化方案。通过求解非线性耦合波方程分析了太赫兹辐射的波形,比较了群速失配对发射晶体和探测晶体的不同影响,在实验上验证用1mm厚ZnTe晶体产生太赫兹辐射,3.5mm厚ZnTe晶体探测太赫兹辐射,可以实现谱宽和灵敏度的最优组合。通过噪声分析,提出了电光采样的平衡正交探测模式,并实验证实在同样的条件下,使用平衡正交探测模式可以将信噪比提高2.5倍。
     3、研究了GaSe晶体在太赫兹波段的吸收结构。实验测量了室温下GaSe晶体的傅立叶变换红外吸收光谱,发现GaSe晶体在剩余射线带两侧存在很多吸收结构。测量了GaSe晶体在低温下的太赫兹时域光谱,通过密度泛函微扰理论计算的声子谱,指认了GaSe在太赫兹波段的吸收峰,并推断样品中含有堆叠缺陷。
     4、在GaSe晶体中差频产生窄线宽可调谐的太赫兹辐射。利用Nd:YAG激光器和窄线宽光参量振荡器,在GaSe晶体中共线相位匹配产生太赫兹辐射。通过构造长脉冲法,利用热辐射计在稳态的响应度,测量了太赫兹辐射脉冲能量。用傅立叶变换红外光谱仪的步进扫描功能测量了太赫兹辐射的频率。这套全固态太赫兹辐射源重复频率10Hz,在0.5-4.7THz范围内可调谐,在3THz频率的峰值功为17.3W,谱线宽度小于0.3cm-1,可用于太赫兹辐射高分辨光谱研究。
     5、和本文相关的其它研究。在太赫兹时域光谱的基础上,研究了透射式太赫兹扫描成像。在差频产生窄线宽可调谐的太赫兹辐射的过程中,研制了双波长光参量振荡器,并且差频产生了可调谐的红外线。
Terahertz sources and terahertz time-domain spectra are two important fields interahertz technology and attract great interests of research in recent years. We have builtup a terahertz time-domain spectral system and use it to investigate the absorptionspectrum of GaSe crystals combined with the calculation of density-functionalperturbation theory. In addition, we have realized a tunable terahertz wave source with anarrow line-width by difference-frequency generation in GaSe crystals. The majorresults of this thesis are outlined as following:
     1、We have set up a terahertz time-domain spectral system. After extensiveexperimental comparison of many kinds of terahertz sources generated byfemtosecond laser, the terahertz time-domain spectral system is finally based onthe optical rectification and electro-optic sampling of ZnTe (110) crystal with thethickness of 1 mm. The geometrically optimized system is a good experimentalplatform for the study of optical properties of many samples in terahertz rangeswith a signal-to-noise ratio more than 1000, a spectral range in 0.1-2.5 THz and aspectral resolution about 50 GHz.
     2、We have validated the optimization of the terahertz time-domain spectral system.Firstly, terahertz waveforms were analyzed by solving nonlinearly coupled waveequations. The different influence of group-velocity mismatch on the ZnTeemitter and the sensor was pointed out and the optimal balance between bandwidth and sensitivity of the system was experimentally demonstrated using 1 mmthick ZnTe as an emitter and 3.5 mm thick ZnTe as a sensor. Secondly, thebalanced cross-polarization detection mode was proposed by the noise analysisof the system and the improvement of the signal-to-noise ratio wasexperimentally confirmed to 2.5 times higher in the same condition.
     3、We have investigated the absorption spectra of GaSe crystals in the terahertzrange. Abundant absorption structure beside the reststrahlen band of GaSecrystals was found when the FTIR absorption spectrum was measured in theroom temperature. The absorption peaks of GaSe crystals in the terahertz rangewere assigned by time-domain spectrum at low temperatures combined with thecalculation of density-functional perturbation theory and the stack faults in theGaSe sample were predicted.
     4、We have demonstrated the tunable, narrow line-width terahertz source based ondifference frequency mixing in GaSe. Employing an Nd:YAG laser and a narrowline-width OPO, the tunable terahertz radiation was realized by collinearphase-matching. The absolute pulse energy was measured with a bolometeraccording to its response to the stable radiation by constructing of a long terahertz pulse from its single response to a nanosecond terahertz pulse. Thefrequency of terahertz radiation is measured with a FTIR using the step-scanfunction. The all-solid terahertz source produces 17.3 W peak power at 3.07 THzat a repetition of 10 Hz in the tunable range of 0.5-4.7 THz with a line-width lessthan 0.3 cm-1 and has a potential application in high-resolution spectralinvestigations.
     5、We also carried out some work related to this thesis. The transmission scanterahertz imaging was introduced following the terahertz time-domain spectrum.The dual-wavelength OPO was developed and the tunable mid-infrared radiationwas obtained in the GaSe before the terahertz source was realized.
引文
[1] Auston D H. Picosecond optoelectronic switching and gating in silicon[J]. Appl.Phys. Lett, 1975, 26(3): 101-103
    [2] Lee C H. Picosecond optoelectronic switching in GaAs[J]. Appl. Phys. Lett,1977, 30(2): 84-86
    [3] Auston D H, Johnson A M, Smith P R, Bean J C. Picosecond optoelectronicdetection, sampling, and correlation measurements in amorphoussemiconductors[J]. Appl. Phys. Lett., 1980, 37(4): 371-373
    [4] Smith P R, Auston D H, Johnson A M, Augustyniak W M. Picosecondphotoconductivity in radiation-damaged silicon-on-sapphire films[J]. Appl. Phys.Lett., 1981, 38(1): 47-50
    [5] Auston D H, Cheung K P, Smith P R. Picosecond photoconducting Hertziandipoles[J]. Appl. Phys. Lett., 1984, 45(3): 284-286
    [6] Smith P R, Auston D H, Nuss M C. Subpicosecond photoconducting dipoleantennas[J]. IEEE Journal of Quantum Electronics, 1988, 24(2): 255-260
    [7] van Exter M V, Fattinger C, Grischkowsky D. Terahertz time-domainspectroscopy of water vapor[J]. Opt. Lett., 1989, 14: 1128-1130
    [8] van der Exter M, Grischkowsky D. Characterization of an optoelectronicterahertz beam system[J]. IEEE Trans Microwave Theory Tech, 1990, 38(11):16841691
    [9] Pedersen J E, Lyssenko V G, Hvam J M, Jepsen P U, et al. Ultrafast local fielddynamics in photoconductive THz antennas[J]. Appl. Phys. Lett., 1993, 62(11):1265-1267
    [10] Jepsen P U, Jacobsen R H, Keiding S R. Generation and detection of terahertzpulses from biased semiconductor antennas[J]. J. Opt. Soc. Am. B, 1996, 13:2424-2436
    [11] Ludwig C, Kuhl J. Studies of the temporal and spectral shape of terahertz pulsesgenerated from photoconducting switches[J]. Appl. Phys. Lett., 1996, 69(9):1194-1196
    [12] Tani M, Matsuura S, Sakai K, Nakashima S. Emission characteristics ofphotoconductive antennas based on low-temperature-grown GaAs andsemi-insulating GaAs[J]. Appl Opt, 1997, 36(30): 7853-7859
    [13] Jepsen P U, Keiding S R. Radiation patterns from lens-coupled terahertzantennas[J]. Opt. Lett., 1995, 20: 807-809
    [14] Rudd J V, Johnson J L, Mittleman D M. Quadrupole radiation from terahertzdipole antennas[J]. Opt Lett, 2000, 25(20): 1556-1558
    [15] Cai Y, Brener I, Lopata J, Wynn J, et al. Design and performance of singularelectric field terahertz photoconducting antennas[J]. Appl. Phys. Lett., 1997,71(15): 2076-2078
    [16] Duvillaret L, Garet F, Roux J F, Coutaz J L. Analytical modeling andoptimization of terahertz time-domain spectroscopy experiments usingphotoswitches as antennas[J]. IEEE Journal of Selected Topics in QuantumElectronics, 2001, 7(4): 615-623
    [17] Darrow J T, Hu B. B. Zhang X-C, Auston D H. Subpicosecond electromagneticpulses from large-aperture photoconducting antennas[J]. Opt. Lett., 1990, 15:323-325
    [18] Hu B B, Darrow J T, Zhang X-C, Auston D H, et al. Optically steerablephotoconducting antennas[J]. Appl. Phys. Lett., 1990, 58(10): 886-888
    [19] Xu L, Zhang X-C, Auston D H, Jalali B. Terahertz radiation from large apertureSi p-i-n diodes[J]. Appl. Phys. Lett., 1991, 59: 3357-3359
    [20] Darrow J, Zhang X, Auston D, Morse J. Saturation properties of large-aperturephotoconducting antennas[J]. IEEE J. Quantum Electrons, 1992, 28: 1607-1616
    [21] Benicewicz P K, Taylor A J. Scaling of terahertz radiation from large-aperturebiased InP photoconductors[J]. Opt. Lett., 1993, 18(16): 1332-1334
    [22] Rodriguez G, Caceres S R, Taylor A J. Modeling of terahertz radiation frombiased photoconductors: transient velocity effects[J]. Opt. Lett., 1994, 19(23):1994-1996
    [23] Rodriguez G, Taylor A J. Screening of the bias field in terahertz generation fromphotoconductors[J]. Opt. Lett., 1996, 21(14): 1046
    [24] You D, Jones R R, Bucksbaum P H, Dykaar D R. Generation of high-powersub-single-cycle 500-fs electromagnetic pulses[J]. Opt. Lett., 1993, 18(4):290-292
    [25] Yang K, Richards P, Shen Y R. Generation of far-infrared radiation bypicosecond light pulses in LiNbO3[J]. Appl. Phy. Lett., 1971, 19(11): 320-323
    [26] Auston D H. Subpicosecond electro-optic shock waves[J]. Appl. Phys. Lett.,1983, 43(8): 713-715
    [27] Auston D H, Cheung K P, Valdmanis J A, Kleinman D A. Cherenkov radiationfrom femtosecond optical pulses in electro-optic media[J]. Phys. Rev. Lett., 1984,53: 1555-1558
    [28] Hu B B, Zhang X C, Auston D H, Smith P R. Free space radiation fromelectro-optic crystals[J]. Appl. Phys. Lett., 1990, 56: 506-508
    [29] Nahata A, Auston D H, Wu C, Yardley J T. Generation of terahertz radiationfrom a poled polymer[J]. Appl. Phys. Lett., 1995, 67: 1358-1360
    [30] Nahata A, Weling A S, Heinz T F. A wideband coherent terahertz spectroscopysystem using optical rectification and electro-optic sampling[J]. Appl. Phys. Lett.,1996, 69: 2321-2323
    [31] Zhang X-C, Hu B, Darrow J, Auston D H. Generation of femtosecondelectromagnetic pulses from semiconductor surfaces[J]. Appl. Phys. Lett., 1990,56: 1011-1013
    [32] Hu B B, Zhang X C, Auston D H. Temperature dependence of femtosecondelectromagnetic radiation from semiconductor surfaces[J]. Appl. Phys. Lett.,1990, 57: 2629-2631
    [33] Chuang S L, Schmitt-Rink S, Greene B I, Saeta P N, et al. Optical rectification atsemiconductor surfaces[J]. Phys Rev Lett, 1992, 68(1): 102-105
    [34] Greene B I, Saeta P N, Dykaar D R, Schmitt-Rink S, et al. Far-infrared lightgeneration at semiconductor surfaces and its spectroscopic applications[J]. IEEEJournal of Quantum Electronics, 1992, 28(10): 2302-2312
    [35] Zhang X-C, Auston D H. Optoelectronic measurement of semiconductorsurfaces and interfaces with femtosecond optics[J]. J. Appl. Phys., 1992, 71:326-338
    [36] Dekorsy T, Auer H, Waschke C, Bakker H J, et al. Emission of submillimeterelectromagnetic waves by coherent phonons[J]. Phys Rev Lett, 1995, 74(5):738-741
    [37] Howells S C, Schlie L A. Temperature dependence of terahertz pulses producedby difference- frequency mixing in InSb[J]. Appl. Phys. Lett., 1995, 67(25):3688-3690
    [38] Zhang X-C, Jin Y, Hewitt T D, Sangsiri T, et al. Magnetic switching of THzbeams[J]. Appl. Phys. Lett., 1993, 62(17): 2003-2005
    [39] Sarukura N, Ohtake H, Izumida S, Liu Z. High average-power THz radiationfrom femtosecond laser-irradiated InAs in a magnetic field and its ellipticalpolarization characteristics[J]. J. Appl. Phys., 1998, 84(1): 654-656
    [40] KreβM, L?ffler T, Thomson M D, D?rner R, et al. Determination of thecarrier-envelope phase of fewcycle laser pulses with terahertz-emissionspectroscopy[J]. Nat. Phys., 2006, 2: 327-331.
    [41] Khurgin J B. Generation of the teraherz radiation usingχ(3 )in semiconductor[J].J. Nonlinear Optical Physics and Materials, 1995, 4(1): 163-189
    [42] A'Haché, Kostoulas Y, Atanasov R, Hughes J L, et al. Observation of coherentlycontrolled photocurrent in unbiased, bulk GaAs[J]. Phys. Rev. Lett., 1997, 78:306-309
    [43] Spasenovic M, Betz M, Costa L, van Driel H M. All-optical coherent control ofelectrical currents in centrosymmetric semiconductors[J]. Phys. Rev. B, 2008, 77:085201
    [44] Hamster H, Sullivan A, Gordon S, White W, et al. Subpicosecondelectromagnetic pulses from intense laser-plasma interaction[J]. Phys Rev Lett,1993, 71(17): 2725-2728
    [45] Cook D J, Hochstrasser R M. Intense terahertz pulses by four-wave rectificationin air[J]. Opt Lett, 2000, 25(16): 1210-1212
    [46] Xie X, Dai J, Zhang X C. Coherent control of THz wave generation in ambientair[J]. Phys Rev Lett, 2006, 96(7): 075005
    [47] KreβM, L?ffler T, Eden S, Thomson M, et al. Terahertz-pulse generation byphotoionization of air with laser pulses composed of both fundamental andsecond-harmonic waves[J]. Opt Lett, 2004, 29(10): 1120-1122
    [48] Bartel T, Gaal P, Reimann K, Woerner M, et al. Generation of single-cycle THztransients with high electric-field amplitudes[J]. Opt Lett, 2005, 30(20):2805-2807
    [49] Kim K Y, Glownia J H, Taylor A J, Rodriguez G. Terahertz emission fromultrafast ionizing air in symmetry-broken laser fields[J]. Opt. Express, 2007,15(8): 4577-4584
    [50] Leemans W P, Geddes C G, Faure J, Toth C, et al. Observation of terahertzemission from a laser-plasma accelerated electron bunch crossing aplasma-vacuum boundary[J]. Phys Rev Lett, 2003, 91(7): 074802
    [51] Sheng Z, Mima K, Zhang J, Sanuki H. Emission of Electromagnetic Pulses fromLaser Wakefields through Linear Mode Conversion[J]. Phys. Rev. Lett., 2005,94: 095003.
    [52] D'Amico C, Houard A, Franco M, Prade B, et al. Conical forward THz emissionfrom femtosecond-laser-beam filamentation in air[J]. Phys Rev Lett, 2007,98(23): 235002
    [53] Houard A, Liu Y, Prade B, Tikhonchuk V T, et al. Strong enhancement ofterahertz radiation from laser filaments in air by a static electric field[J]. PhysRev Lett, 2008, 100(25): 255006
    [54] Faries D, Gehring K, Richards P and Shen Y. Tunable far-infrared radiationgenerated from the difference frequency between two ruby lasers[J]. Phys. Rev.,1969, 180: 363-367
    [55] Kawase K, Ogawa Y, Minamide H and Ito H. Terahertz parametric sources andimaging applications[J]. Semicond. Sci. Technol. 2005, 20: S258-S265
    [56] Tanabe T, Suto K, Nishizawa J, Saito K and Kimura T. Tunable terahertz wavegeneration in the 3- to -7 THz region from GaP[J]. Appl.Phys. Lett. 2003, 83:237-239
    [57] Shi W and Ding Y. Efficient,tunable, and coherent 0.18-5.27-THz source basedon GaSe crystal[J]. Opt. Lett. 2002, 27: 1454-1456
    [58] Shi W, Ding Y and Schunemann P. Coherent terahertz waves based ondifference-frequency generation in an annealed zinc-germanium phosphidecrystal: improvements on tuning ranges and peak powers[J]. Opt. Comm., 2004,233: 183-189
    [59] Creeden D, McCarthy J C, Ketteridge P A,et al. Compact, high average power,fiber-pumped terahertz source for active real-time imaging of concealedobjects[J]. Opt. Exp. 2007, 15(10): 6478-6483
    [60] Stothard D J M, Edwards T J, Walsh D, Thomson C L, Rae C F, Dunn M H, andBrowne P G.. Line-narrowed, compact, and coherent source of widely tunableterahertz radiation[J]. Appl. Phys. Lett., 2008, 92: 141105.
    [61] Gu P, Tani M, Sakai K, Yang T-R. Detection of terahertz radiation fromlongitudinal optical phonon-plasmon coupling modes in InSb film using anultrabroadband photoconducting antenna[J]. Appl. Phys. Lett., 2000, 77:1798-1781
    [62] Wu Q, Zhang X-C. Free-space electro-optic sampling of terahertz beams[J].Appl. Phys. Lett., 1995, 67(24): 3523-3525
    [63] Wu Q, Zhang X-C. Ultrafast electro-optic field sensors[J]. Appl. Phys. Lett.,1996, 68(12): 1604-1606.
    [64] Wu Q, Zhang X-C. Free-space electro-optics sampling of mid-infrared pulses[J].Appl. Phys. Lett., 1997, 71(10): 1285-1286.
    [65] Jiang Y and Ding Y. Efficient terahertz generation from two collinearlypropagating CO2 laser pulses[J]. Appl. Phys. Lett. 2007, 91: 091108
    [66] Shi W and Ding Y J. Observation of different-frequency generation by mixing ofterahertz and near-ifrared laser beams in a GaSe crystal[J]. Appl. Phys. Lett.2006,88: 101010
    [67] Cao H and Nahata A. Coherent detection of pulsed narrowband terahertzradiation[J]. Appl. Phys. Lett. 2006, 88: 011101.
    [68] Guo R, Ohno S, Minamide H, Ikari T, and Ito H. Highly sensitive coherentdetection of terahertz waves at room temperature using a parametric process[J].Appl. Phys. Lett. 2008, 88: 021106
    [69] van Exter M, Grischkowsky D. Carrier dynamics of electrons and holes inmoderately doped silicon[J]. Phys. Rev. B, 1990, 41(17): 12140-12149
    [70] van Exter M, Grischkowsky D. Optical and electronic properties of doped siliconfrom 0.1 to 2 THz[J]. Appl. Phys. Lett., 1990, 56(17): 1694-1696
    [71] Katzenellenbogen N, Grischkowsky D. Electrical characterization to 4 THz of N-and P-type GaAs using THz time-domain spectroscopy[J]. Appl. Phys. Lett.,1992, 61(7): 840-842
    [72] Kojima S, Tsumura N, Takeda M W, Nishizawa S. Far-infraredphonon-polariton dispersion probed by terahertz time-domain spectroscopy[J].Phys. Rev. B, 2003, 67: 035102.
    [73] Walther M, Fischer B M, Uhd J P. Noncovalent intermolecular forces inpolycrystalline and amorphous saccharides in the far infrared[J]. ChemicalPhysics, 2003, 288(2-3): 261-268
    [74] Hu B B, Nuss M C. Imaging with terahertz waves[J]. Opt. Lett., 1995, 20(16):1716-1718
    [75] Wu Q, Hewitt T D, Zhang X C. Two-dimensional electro-optic imaging of THzbeams[J]. Appl. Phys. Lett., 1996, 69(8): 1026-1028
    [76] Ferguson B. Three dimensional T-ray inspection systems. Ph.D. thesis, AdelaideUniversity, 2004.
    [77] Tonouchi M, Yamashita M, Hangyo M. Terahertz radiation imaging ofsupercurrent distribution in vortex-penetrated YBa2Cu3O7-δthin film strips[J]. J.Appl. Phys., 2000, 87(10): 7366-7375
    [78] Adam A J, van der Valk N, Planken P C. Measurement and calculation of thenear field of a terahertz apertureless scanning optical microscope[J]. J. Opt. Soc.Am. B, 2007, 24(5): 1080-1090
    [79] Shi Y, Yang Y, Xu X, Ma S, Yan W, and Wang L. Ultrafast carrier dynamics inAu/GaAs interfaces studied by terahertz emission spectroscopy[J]. Appl. Phys.Lett., 2006, 88: 161109
    [80] Shi Y, Xu X, Yang Y, Yan W, Ma Shi, and Wang L. Anomalous enhancement ofterahertz radiation from semi-insulating GaAs surfaces induced by opticalpump[J]. Appl. Phys. Lett., 2006, 89: 081129.
    [81] Chen H, Wang L, et al. Investigation of guanidine hydrochloride inducedchlorophyll protein 43 and 47 denaturation in the terahertz frequency range[J]. J.Appl. Phys., 2007, 102: 074701
    [82] Yan W, Yang Y, Chen H, and Wang L. Terahertz electric field in a three-layersystem produced by parallel dipoles with a Gaussian spatial profile[J]. Phys. Rev.B, 2007, 75: 085323
    [83] Sun Y, Xia X, Feng H, Yang H, Gu C, and Wang L. Modulated terahertzresponses of split ring resonators by nanometer thick liquid layers[J]. Appl. Phys.Lett., 2008, 92: 221101
    [84] Xia X, Sun Y, Yang H, Feng H, Wang L, and Gu C. The influences of substrateand metal properties on the magnetic response of metamaterials at terahertzregion[J]. J. Appl. Phys., 2008, 104: 033505
    [85]盛政明,张杰.由激光在等离子体中激发的尾波场产生的超强太赫兹电磁辐射[J].激光与光电子学进展, 2005, 42(12): 34-35
    [86]盛政明,张杰.强激光与等离子体相互作用产生的超强太赫兹辐射[J].物理,2005, 34(09): 636-639
    [87]王晓红,张亮亮,胡颖,张存林. THz辐射在DNA光谱研究中的应用[J].光谱学与光谱分析, 2006, 26(03): 385-391
    [88]岳伟伟,王卫宁,赵国忠,张存林, et al.芳香族氨基酸的太赫兹光谱研究[J].物理学报, 2005, 54(07): 3094-3099
    [89]张振伟,崔伟丽,张岩,张存林.太赫兹成像技术的实验研究[J].红外与毫米波学报, 2006, 25(03): 217-220
    [90]李海涛,王新柯,牧凯军,张艳东, et al.连续太赫兹波在安全检查中的实验研究[J].激光与红外, 2007, 37(09): 876-878
    [91]沈京玲,张存林.太赫兹波无损检测新技术及其应用[J].无损检测, 2005,27(03): 146-147
    [92]曹俊诚.太赫兹量子级联激光器研究进展[J].物理, 2006, 35(08): 632-636
    [93]曹俊诚,吕京涛.共振声子辅助的太赫兹量子级联激光器中杂质散射的蒙特卡洛模拟(英文)[J].半导体学报, 2006, 27(02): 304-308
    [94] Li H, Cao J C, Han Y J, Guo X G, Tan Z Y, LüJ T, Luo H, Laframboise S R,and Liu H C. A study of terahertz quantum cascade lasers: Experiment versussimulation[J]. J. Appl. Phys., 2008, 104: 043101
    [95] Li H, Cao J C, LüJ T. Monte Carlo simulation of carrier transport and outputcharacteristics of terahertz quantum cascade lasers[J]. J. Appl. Phys., 2008, 103:103113
    [96] Luo H, Laframboise S R, Wasilewski Z R, Aers G C, Liu H C, Cao J C.Terahertz quantum-cascade lasers based on a three-well active module[J]. Appl.Phys. Lett. 2007, 90: 041112
    [97] Feng W, and Cao J C. Theoretical study of terahertz current oscillation inGaAs1-xNx[J]. J. Appl. Phys., 2008, 104: 013111
    [98] Han J, Wan F, Zhu Z, Liao Y, Ji T, Ge M, Zhang Z. Shift in low-frequencyvibrational spectra of transition-metal zirconium compounds[J]. Appl. Phys. Lett.,2005, 87: 172107
    [99] Azad A K, Han J, Zhang W. Terahertz dielectric properties of high-resistivitysingle-crystal ZnO[J]. Appl. Phys. Lett., 2006, 88: 021103
    [100] Han J, and Zhu Z. Optical and dielectric properties of ZnO tetrapod structures atterahertz frequencies[J]. Appl. Phys. Lett., 2006, 89: 031107
    [101] Han J, Wan F, Zhu Z. Dielectric response of soft mode in ferroelectric SrTiO3[J].Appl. Phys. Lett., 2007, 90: 031104
    [102] Han J, Azad A K, Gong M, Lu X, Zhang W. Coupling between surface plasmonsand nonresonant transmission in subwavelength holes at terahertz frequencies[J].Appl. Phys. Lett., 2007, 91: 071122
    [103] Lu X, Han J, Zhang W. Resonant terahertz reflection of periodic arrays ofsubwavelength metallic rectangles[J]. Appl. Phys. Lett., 2008, 92: 121103
    [104]葛敏,赵红卫,张增艳,王文锋, et al.两种联苯酚类化合物的太赫兹时域光谱研究[J].物理化学学报, 2005, 21(09):1063-1066
    [105]赵红卫,葛敏,王文锋,李晴暖, et al.太赫兹时域光谱技术在化学和生物学研究中的应用[J].化学通报, 2005, 68(02): 87-93
    [106]张文,单文磊,史生才. 660-GHz频段波导型SIS混频器嵌入阻抗的特性研究[J].红外与毫米波学报, 2002, 21(6): 465-468
    [107]申小芳,姚骑均,林镇辉,史生才, et al.用外差混频和直接检波方法测量亚毫米波连续波源的频谱[J].红外与毫米波学报, 2005, 24(5): 321-327
    [108]胡婕,陈鹤鸣.光子晶体太赫兹波导带隙的研究[J].光电子技术, 2007,27(04): 246-249
    [109]黄小琴,陈鹤鸣.太赫兹波在二维光子晶体波导中的传输特性研究[J].光电子技术, 2007, 27(04): 243-245
    [110]周荣梅,陈鹤鸣. THz波段光子晶体谐振腔的特性分析[J].光电子技术, 2007,27(04): 268-271
    [111]孙博,姚建铨,王卓,王鹏.利用各向同性半导体晶体差频产生可调谐THz辐射的理论研究[J].物理学报, 2007, 56(03): 1390-1396
    [112]王卓,姚建铨. ZnGeP_2晶体差频产生THz波的研究[J].科学技术与工程,2007, 7(13): 3101-3103
    [113]刘盛纲.太赫兹技术的新发展[J].中国基础科学, 2006年01期: 7-12
    [114]张怀武.我国太赫兹基础研究[J].中国基础科学, 2008年01期: 15-20
    [115]金晓,束小建,丁武,窦玉焕,吴中发,杜祥琬.远红外自由电子激光太赫兹源研究[J].物理通报, 2005年第5期: 56-57
    [116]王桂梅,刘初玉,鲁向阳,庄杰佳,赵夔,陈佳洱.北京大学高功率相干Terahertz光源设计[J].高能物理与核物理, 2007, 31(9):823-825
    [117]张同意,王屹山,范文慧,朱少岚,赵卫.腔内型光电导太赫兹辐射产生器设计[J].光子学报, 2008, 37(2): 219-224
    [118]刘明利,张同意, et. al.大孔径光电导天线产生高功率窄带宽THz辐射特性分析[J].光子学报, 2007, 36(10): 1793-1798
    [119]施卫,张显斌,贾婉丽,李孟霞,徐景周,张希成.用飞秒激光触发GaAs光电导体产生THz电磁波的研究[J].半导体学报, 2004, 12: 1735-1738
    [120]贾婉丽,施卫,纪卫莉,马德明.光电导开关产生太赫兹电磁波双极特性分析[J].物理学报, 2007, 56(7): 3845-3850
    [121] Don-gwen Zhang, Zhi-hui Lv, Lin Sun, Zheng-zheng Shao, and Jian-min Yuan.Terahertz Spectra of GaSe: Fundamental and two-order phonon processes. 2008Joint 33nd International Conference on Infrared and Millimeter Waves and the16th International Conference on Terahertz Electronics, 2008 Sept. 18, (In press)
    [122] Dong-wen Zhang, Zhi-hui Lv, Lin Sun, Jian-min Yuan. Dielectric properties ofGaSe crystal measured by Terahertz time-domain spectroscopy. 2007 Joint 32ndInternational Conference on Infrared and Millimeter Waves and the 15thInternational Conference on Terahertz Electronics, 2007 Sept. 2, p239
    [123]张永俊.差频产生太赫兹的数值计算与模拟. 2006,国防科学技术大学,硕士学位论文
    [124] Dongwen Zhang, Zhihui Lv, Lin Sun, Zhengzheng Shao, Jianmin Yuan. TunableT-ray generation in GaSe crystals. Proceedings of SPIE, 2008 (In press)
    [1] Saikai K, Tani M. Introduction to Terahertz Pulses. In: Terahertz Optoelectronics.ed by Sakai K. Springer-Verlag: New York, 2005
    [2] Duvillaret L, Garet F-F, Roux J-F, Coutaz J-L. Analytical modeling andoptimization of terahertz time-domainspectroscopy experiments, usingphotoswitches as antennas[J]. IEEE J. Sel. Top. Quantum Electron. 2001, 7:615-623
    [3] Darrow J, Zhang X-C, Auston D, Morse J. Saturation Properties ofLarge-Aperture Photoconductor Antennas[J]. IEEE J. Quantum Electron, 1992,28, 1607-1616
    [4] You D, Jones R R, Bucksbaum P H, Dykaar D R. Generation of high-powersub-single-cycle 500-fs electromagnetic pulses[J]. Opt. Lett., 1993, 18(4): 290.
    [5] Park S G, Melloch M R, Weiner A M. Comparison of terahertz waveformsmeasured by electro-optic and photoconductive sampling[J]. Appl. Phys. Lett.,1998, 73(22): 3184-3186
    [6] Kono S, Tani M, and Sakai K. Generation and detection of broadband pulsedterahertz radiation. In: Terahertz Optoelectronics. ed by Sakai K.Springer-Verlag: New York, 2005
    [7] Jepsen P U, Jacobsen R H, Keiding S R. Generation and detection of terahertzpulses from biased semiconductor antennas[J]. J. Opt. Soc. Am. B, 1996, 13(11):2424-2436
    [8] Kono S, Tani M, Sakai K. Coherent detection of. mid-infrared radiation up to 60THz with an LT-GaAs[J]. IEEE Proc. Optoelectron, 2002, 149: 105-109
    [9] Gu P, Tani M, Sakai K, Yang T-R. Detection of terahertz radiation fromlongitudinal optical phonon plasmon coupling modes in InSb film using anultrabroadband photoconductive antenna[J]. Appl. Phys. Lett., 2000, 77(12):1798-1800
    [10] Ralph S E, Grischkowsky D. THz spectroscopy and source characterization byoptoelectronic interferometry[J]. Appl. Phys. Lett., 1992, 60(9): 1070-1072
    [11] Kono S, Tani M, Sakai K. Coherent detection of mid-infrared radiation up to 60THz with an LT-GaAs photoconductive antenna[J]. IEE Proceedings -Optoelectronics, 2002, 149(3): 105-109
    [12] www.cctonline.com.cn
    [13] Y R Shen. The Principles of Nonlinear Optics[M]. John Wiley & Sons, Inc.:New York, 1984.
    [14] Faries D W, Gehring K A, Richards P L, Shen Y R. Tunable far-Infraredradiation generated from the difference frequency between two ruby lasers[J].Phys. Rev., 1969, 180(2): 363
    [15] Kawase K, Shikata J, Ito H. Terahertz wave parametric source[J]. J. Phys. D:Appl. Phys., 2002, 35: R1-R14
    [16] Tanabe T, Suto K, Nishizawa J, Kimura T, Saito K. Frequency-tunablehigh-power terahertz wave generation from GaP[J]. J. Appl. Phys., 2003,93(8):4610-4615
    [17] Shi W, and Ding Y J. A monochraomatic and high-power terahertz sourcetunable in the ranges 0f 2.7-38.4 and 58.2-3540μm for variety of potentialapplications[J]. Appl. Phys. Lett., 2004, 84(10):1635-1637
    [18] Creeden D, McCarthy J C, Ketteridge P A, et. al. Compact, high average power,fiber-pumped terahertz source for active real-time imaging of concealedobjects[J]. Optics Express, 2007, 15(10): 6478-6483
    [19] Zhang X-C, Ma X F, Jin Y, Lu T M. Terahertz optical rectification from anonlinear organic crystal[J]. Appl. Phys. Lett., 1992, 61(26): 3080-3082
    [20] Wu Q, Zhang X-C. Ultrafast electro-optic field sensors[J]. Appl. Phys. Lett.,1996, 68(12): 1604-1606
    [21] Boyd S. Nolinear Optics[M]. San Diego: Academic, 1992.
    [22] Wu Q, Zhang X-C. 7 terahertz broadband GaP electro-optic sensor[J]. Appl.Phys. Lett., 1997, 70(14): 1784-1786
    [23] Chuang S L, Schmitt-Rink S, Greene B I, Saeta P N, et al. Optical rectification atsemiconductor surfaces.[J]. Phys Rev Lett, 1992, 68(1): 102-105
    [24] Gu P, Tani M. Terahertz radiation from semiconductor surfaces. In: TerahertzOptoelectronics. ed by Sakai K. Springer-Verlag: New York, 2005
    [25] Gu P, Tani M, Kono S, Sakai K. Study of terahertz radiation from InAs andInSb[J]. J. Appl. Phys., 2002, 91: 5533-5537
    [26] Kono S, Gu P, Tani M, Sakai K. Temperature dependence of terahertz radiationfrom n-type InSb and n-type InAs surfaces[J]. Appl. Phys. B: Lasers and Optics,2000, 71(6): 901-904
    [27] Hu B B, de Souza E A, Knox W H, Cunningham J E, et al. Identifying thedistinct phases of carrier transport in semiconductors with 10 fs resolution.[J].Phys Rev Lett, 1995, 74(9): 1689-1692
    [28] Howells S C, Herrera S D, Schlie L A. Infrared wavelength and temperaturedependence of optically induced terahertz radiation from InSb[J]. Appl. Phys.Lett., 1994, 65(23): 2946-2948
    [29] Takahashi H, Suzuki Y, Sakai M, Ono S, et al. Significant enhancement ofterahertz radiation from InSb by use of a compact fiber laser and an externalmagnetic field[J]. Appl. Phys. Lett., 2003, 82(13): 2005-2007
    [30] Golde D, Meier T, Koch S W. High harmonics generated in semiconductornanostructures by the coupled dynamics of optical inter- and intrabandexcitations[J]. Phys. Rev. B, 2008, 77(7): 75330-75336
    [1] Grischkowsky D, Keiding, van Exter M, Fattinger C. Far-infrared time-domainspectroscopy with terahertz beams of dielectrics and semiconductors[J]. J. Opt.Soc. Am. B, 1990, 7(10): 2006-2015
    [2] Globus T, Woolard D, Bykhovskaia M, Gelmont B, et al. THz-frequencyspectroscopic sensing of DNA and related biological materials[J]. Internationaljournal of high speed electronics and systems, 2003, 13: 903-936
    [3] Han P Y, Tani M, Usami M, Kono S, et al. A direct comparison betweenterahertz time-domain spectroscopy and far-infrared Fourier transformspectroscopy[J]. J. Appl. Phys., 2001, 89(4): 2357-2359
    [4] Sun F G, Ji W, Zhang X-C. Two-photon absorption induced saturation of THzradiation in ZnTe[J]. Lasers and Electro-Optics, 2000, 479-480
    [5] Yariv A. Quantum electronics[M]. 2nd ed. John wiley & Sons, 1975
    [6] Planken P C, Nienhuys H K, Bakker H J, Wenckebach T. Measurement andcalculation of the orientation dependence of terahertz pulse detection in ZnTe[J].J. Opt. Soc. Am. B, 2001, 18(3): 313-317
    [7] Armstrong J A, Bloembergen N, Ducuing J, Pershan P S. Interactions betweenLight Waves in a Nonlinear Dielectric[J]. Phys. Rev., 1962, 127(6): 1918-1939
    [8] Bloembergen N, Pershan P S. Light Waves at the Boundary of NonlinearMedia[J]. Phys. Rev., 1962, 128(2): 606-622
    [9] Kleinman D A. Theory of Second Harmonic Generation of Light[J]. Phys. Rev.,1962, 128(4): 1761-1775
    [10] Shen Y R. The principles of nonlinear optics[M]. New York: John Wiley & Sons,1984
    [11] Marple D T F. Refractive Index of ZnSe, ZnTe, and CdTe[J]. J. Appl. Phys.,1964, 35(3): 539-542
    [12] Gallot G, Grischkowsky D. Electro-optic detection of terahertz radiation[J]. J.Opt. Soc. Am. B, 1999, 16(8): 1204-1212
    [13] Schall M, Walther M, Uhd J P. Fundamental and second-order phonon processesin CdTe and ZnTe[J]. Phys. Rev. B, 2001, 64(9): 094301
    [14] Zhao G, Schouten R N, van der valk N, Wenckebach W T, et al. Design andperformance of a THz emission and detection setup based on a semi-insulatingGaAs emitter[J]. Review of scientific instruments, 2002, 73(4): 1715-1719
    [15] Jiang Z, Sun F G, Chen Q, Zhang, X C. Electro-optic sampling near zero opticaltransmission point[J]. Appl. Phys. Lett., 1999, 74(9): 1191-1193
    [1] van Exter M, Grischkowsky D. Carrier dynamics of electrons and holes inmoderately doped silicon[J]. Phys. Rev. B, 1990, 41(17): 12140
    [2] van Exter M, Grischkowsky D. Optical and electronic properties of doped siliconfrom 0.1 to 2 THz[J]. Appl. Phys. Lett., 1990, 56(17): 1694-1696
    [3] Katzenellenbogen N, Grischkowsky D. Electrical characterization to 4 THz of N-and P-type GaAs using THz time-domain spectroscopy[J]. Appl. Phys. Lett.,1992, 61(7): 840-842
    [4] Schall M, Walther M, Uhd J P. Fundamental and second-order phonon processesin CdTe and ZnTe[J]. Phys. Rev. B, 2001, 64(9): 094301
    [5] Brazis R, Nausewicz D. Far-infrared photon absorption by phonons in ZnTecrystals[J]. Optical Materials, 2008, 30(5): 789-791
    [6] Walther M, Fischer B, Schall M, Helm H, et al. Far-infrared vibrational spectraof all-trans, 9-cis and 13-cis retinal measured by THz time-domainspectroscopy[J]. Chemical Physics Letters, 2000, 332(3-4): 389-395
    [7] Fischer B M, Walther M, Jepsen P U. Far-infrared vibrational modes of DNAcomponents studied by terahertz time-domain spectroscopy[J]. Phys. Med. Biol.,2002, 47(21): 3807-3814
    [8] Yu B, Zeng F, Yang Y, Xing Q, et al. Torsional vibrational modes of tryptophanstudied by terahertz time-domain spectroscopy[J]. Biophysical journal, 2004,86(3): 1649-1654
    [9] Markelz A G, Roitberg A, Heilweil E J. Pulsed Terahertz Spectroscopy of DNA,Bovine Serum Albumin and Collagen between 0.1 and 2.0 THz[J]. Chem. Phys.Lett., 2000, 320: 42
    [10] Brucherseifer M, Nagel M, Bolivar P H, Kurz H, et al. Label-free probing of thebinding state of DNA by time-domain terahertz sensing[J]. Appl. Phys. Lett.,2000, 77(24): 4049-4051
    [11] Kohler R, Tredicucci A, Beltram F, Beere H E, et al. Terahertzsemiconductor-heterostructure laser[J]. Nature, 2002, 417: 156-159
    [12] Huber R, Tauser F, Brodschelm A, Bichler M, et al. How many-particleinteractions develop after ultrafast excitation of an electron-hole plasma[J].Nature, 2001, 414: 286-289
    [13] Xie A, van der Meer A, Austin R H. Excited-State Lifetimes of Far-InfraredCollective Modes in Proteins[J]. Phys. Rev. Lett., 2001, 88(1): 018102
    [14] Mittleman D M, Gupta M, Neelamani R, Baraniuk R G, et al. Recent advancesin terahertz imaging[J]. Appl. Phys. B., 1999, 68(6): 1085-1094
    [15] O'Hara J, Grischkowsky D. Quasi-optic terahertz imaging[J]. Opt. Lett., 2001,26(23): 1918-1920
    [16] McClatchey K, Reiten M T, Cheville R A. Time resolved synthetic apertureterahertz impulse imaging[J]. Appl. Phys. Lett., 2001, 79(27): 4485-4487
    [17] Cheville R A, Grischkowsky D. Time domain terahertz impulse rangingstudies[J]. Appl. Phys. Lett., 1995, 67(14): 1960-1962
    [18] Fitzgerald A J, Berry E, Zinovev N N, Walker G C, et al. An introduction tomedical imaging with coherent frequency radiation[J]. Physics in Medicine andBiology, 2002, 47(7): 67-84
    [19] Hu B B, Nuss M C. Imaging with terahertz waves[J]. Opt. Lett., 1995, 20(16):1716
    [20] Jiang Z, Zhang X-C. Single-shot spatiotemporal terahertz field imaging[J]. Opt.Lett., 1998, 23(14): 1114-1116
    [21] Mittleman D M, Hunsche S, Boivin L, Nuss M C. T-ray tomography[J]. Opt.Lett., 1997, 22(12): 904-906
    [22] Chen Q, Jiang Z, Xu G X, Zhang X-C. Near-field terahertz imaging with adynamic aperture[J]. Opt. Lett., 2000, 25(15): 1122-1124
    [23] Fillard J P. Near optics and nanoscopy[M]. Singapore: Wold Scientific, 1996.
    [24] Hunsche S, Koch M, Brener I, Nuss M C. THz near-field imaging[J]. OpticsCommun, 1998, 150(1-6): 22-26
    [25] Duvillaret L, Garet F, Coutaz J L. A reliable method for extraction of materialparameters in terahertz time-domain spectroscopy[J]. IEEE Journal of SelectedTopics in Quantum Elecronics, 1996, 2(3): 739-746
    [26] Hashimshony D, Geltner I, Cohen G, Avitzour Y, et al. Characterization of theelectriacal properties and thickness of thin epitaxial semiconductor layers by Thzreflection spectroscopy[J]. J. Appl. Phys., 2001, 90(11): 5778-5781
    [27] Shapiro S M, Axe J D. Raman Scattering from Polar Phonons[J]. Phys. Rev. B,1972, 6(6): 2420
    [28] She C Y, Masso J D, Edwards D F. Raman scattering by polarization waves inuniaxial crystals[J]. J. Phys. Chem. Solid., 1971, 32: 1887-1900
    [29] Scott J F, Porto S P. Longitudinal and transverse optical lattice vibrations inquartz[J]. Phys. Rev., 1967, 161(3): 903
    [30] Claus R. Light scattering by optical phonons and polaritons in perfect crystals[J].Phys Status Solidi B, 1972, 50(1): 11-32
    [31] Spitzer W G, Kleinman D A. Infrared lattice bands of quartz[J]. Phys. Rev., 1961,121(5): 1324
    [32] Shirley E L, Lawler, Hadley M. Two-phonon infrared spectra of Si and Ge:Calculating and assigning features[J]. Phys. Rev. B, 2007, 76(5): 054116
    [33] Herrmann M, Fukasawa R, Morikawa O. Terahertz Imaging. In: TerahetzOptoelectronics, ed by Sakai K. Springer-Verlag: New York, 2005, p 331-381
    [34] Bethe H A. Theory of Diffraction by Small Holes[J]. Phys. Rev., 1944, 66(7-8):163
    [35] Genet C, Ebbesen T W. Light in tiny holes[J]. Nature, 2007, 445: 39-46
    [1] Kaindl R A, Eickemeyer F, Woerner M, Elsaesser T. Broadband phase-matcheddifference frequency mixing of femtosecond pulses in GaSe: Experiment andtheory[J]. Appl. Phys. Lett., 1999, 75(8): 1060-1062
    [2] Huber R, Brodschelm A, Tauser F, Leitenstorfer A. Generation andfield-resolved detection of femtosecond electromagnetic pulses tunable up to 41THz[J]. Appl. Phys. Lett., 2000, 76(22): 3191-3193
    [3] Kubler C, Huber R, Leitenstorfer A. Ultrabroadband terahertz pulses: generationand field-resolved detection[J]. Semiconductor Science and Technology, 2005, 7:128-133
    [4] Shi W, Ding Y J, Fernelius N, Vodopyanov K. Efficient, and coherent0.18-5.27-THz source based on GaSe crystal[J]. Opt. Lett., 2002, 27(16):1454-1456
    [5] Baroni S, de Gironcoli S, Corso A D, Giannozzi P. Photons and related crystalproperties from density-functional perturbation theory[J]. Rev. Mod. Phys., 2001,73: 515-562
    [6] Pellicer P J, Segura A, Ferrer C, Munoz V, et al. High-pressure X-ray-absorptionstudy of GaSe[J]. Phys. Rev. B, 2002, 65:174103
    [7] Camara M O, Mauger A, Devos I. Electronic structure of the layer compoundsGaSe and InSe in a tight-binding approach[J]. Phys. Rev. B, 2002, 65(12):125206
    [8] Cenzua K, Gelato L M, Penzo M, EParthé. Inorganic structure types with revisedspace groups. I[J]. Acta Crystallographica Section B, 1991, 47: 433-439
    [9] Schlüter M, Camassel J, Kohn S, Voitchovsky J P, et al. Optical properties ofGaSe and GaSxSe1-x mixed crystals[J]. Phys. Rev. B, 1976, 13(8): 3534-3547
    [10] Sigh D. Planewaves, Pseudopotentials and the LAPW Method[M].Massachusetts: Kluwer Academic Publishers, 1994
    [11] Balaha P, Schwarz K, Madsen G, Kvasnicka D, et al. An Augmented PlaneWave Plus Local Orbitals Program for Calculating Crystal Properties[M].Vienna University of Thechnology, 2002
    [12] Bl?chl P E, Jepsen O, Andersen O K. Improved tetrahedron method forBrillouin-zone integrations[J]. Phys. Rev. B, 1994, 49(23): 16223
    [13] Boettger J C. All-electron full-potential calculation of the electronic bandstructure, elastic constants, and equation of state for graphite[J]. Phys. Rev. B,1997, 55(17): 11202-11211
    [14] Nagel S, Baldereschi A, Maschke K. Tight-binding study of the electronic statesin GaSe polytypes[J]. Journal of Physics C: Solid State Physics, 1979, 12(9):1625-1639
    [15] Panella V, Carlotti G, Socino G, Giovannini L, et al. Elastic properties of GaSefilms epitaxially grown on the Si(111)1? 1-H surface, studied by Brillouinscattering[J]. Journal of Physics: Condensed Matter, 1999, 11(35): 6661-6668
    [16] Mosca D H, Mattoso N, Lepienski C M, Veiga W, et al. Mechanical propertiesof layered InSe and GaSe single crystals[J]. J. Appl. Phys., 2002, 91(1): 140-144
    [17] Takumi M, Hirata A, Ueda T, Koshio Y, et al. Structural Phase Transitions ofGaSe[J]. physica status solidi B, 2001, 223(2): 423-426
    [18] M Gatulle M, Fischer M, Chevy A. Elastic constants of the layered compoundsGas, GaSe, InSe, and their pressure dependence I. Experimental part[J]. physicastatus solidi B, 1983, 119(1): 327-336
    [19] Plucinski L, Johnson R L, Kowalski B J, Kopalko K, et al. Electronic bandstructure of GaSe(0001): Angle-resolved photoemission and ab initio theory[J].Phys. Rev. B, 2003, 68(12): 125304
    [20] http://www.pwscf.org/
    [21] Hamann D R, Schl M, Chiang C. Norm-Conserving Pseudopotentials[J]. Phys.Rev. Lett., 1979, 43(20): 1494
    [22] Maiti C R, Ghosh P N. Layer dynamics of high-symmetry crystals withatom-atom interactions[J]. Journal of Physics C: Solid State Physics, 1978,11(12): 2475-2482
    [23] Yoshida H, Nakashima S, Mitsuishi A. Phonon Raman spectra of layercompound GaSe[J]. Physica Status Solidi (b), 1973, 59(2): 655-666
    [24] Hayek M, Brafman O, Lieth R M. Splitting and Coupling of Lattice Modes in theLayer Compounds GaSe, GaS, and GaSexS1-x[J]. Phys. Rev. B, 1973, 8(6): 2772
    [25] Kuroda N, Ueno O, Nishina Y. Lattice-dynamical and photoelastic properties ofGaSe under high pressures studied by Raman scattering and electronicsusceptibility[J]. Phys. Rev. B, 1987, 35(8): 3860
    [26] Toullec R L, Chervin J C, Piccioli N. Anharmonic effect in phonon spectra ofGaSe[J]. Appl. Optics., 1981, 20(14): 2566-2573
    [27] Vodopyanov K L, Kulevskii L A. New dispersion relationships for GaSe in the0.65-18μm spectral region[J]. Optics Communications, 1995, 118: 375-378
    [28] Yu B L, Zeng F, Kartazayev V, Alfano R R, et al. Terahertz studies of thedielectric response and second-order phonons in a GaSe crystal.[J]. Appl. Phys.Lett., 2005, 87(18): 182104
    [29]张光寅,蓝国详,王玉芳.晶格振动光谱学[M]. 2nd ed.北京:高等教育出版社, 2001
    [1] Vodopyanov K L, and Kulevskii L A. New dispersion relationships for GaSe inthe 0.65-18μm spectral region[J]. Optics Communications, 1995, 118:375-378
    [2] Shi W, Ding Y J, Fernelius N, Vodopyanov K. Efficient, tunable, and coherent0.18-5.27-THz source based on GaSe crystal[J]. Opt. Lett., 2002, 27:1454-1456
    [3] http://www.crystech.com/cn/products/crystals/nlocrystals/KTP.htm
    [4] Yao J, Sheng W, Shi W. Accurate calculation of the optimum phase-matchingparameters in three-wave interactions with biaxial nonlinear-optical crystals[J]. J.Opt. Soc. Am B, 1992, 9:891-902
    [5] Yao J W, Fahlen T S. Calculations of optimum phase match parameters for thebiaxial crystal KTiPO4[J]. J. Appl. Phys., 1984, 55:65-68
    [6] Koechner W. Solid-state laser engineering[M]. Springer-Verlag:BerlinHeidelberg, 1999
    [7] Oudar J L, Kupecek P J, and Chemla D S. Medium infrared tunable downconversion of a YAG-pumped infrared dye laser in gallium selenide[J]. Opt.Commun., 1979, 29:119-122
    [8] Gusev Y A. Tunable mid-IR difference-frequency generator[J]. Sov. Tech. Phys.Lett., 1980, 6:541-542
    [9] Bianchi A, and Garbi M. Down conversion in the 4-18μm range with GaSe andAgGaSe2 nonlinear crystals[J].Opt. Commun., 1979, 30:122-124
    [10] Okorogu A O, Mirov S B, Lee W, Crouthamel D I, Jenkins N, Dergachev A Y,Vodopyanov K L, and Badikov V V. Tunable Mid Infrared Downconversion inGaSe and AgGaS2 [J]. Opt. Commun., 1998, 155:307-313
    [11] Baltramiejunas R, Gavryushin V, Raciukaitis G. Giant nonlinear losses in GaSecrystals under two-photon resonant conditions[J]. Solid State Comm., 1991, 80:303-306
    [12] Adduci F, Catalano I M, Cingolani A, Minafra A. Direct and indirect two-photonprocesses in layered semiconductors[J]. Phys. Rev. B, 1977, 15:926-931
    [13] Shi W, Ding Y and Schunemann P. Coherent terahertz waves based ondifference-frequency generation in an annealed zinc-germanium phosphidecrystal: improvements on tuning ranges and peak powers[J]. Opt. Comm., 2004,233:183-189
    [14] Shi W, Ding Y J, and Mu X. Tunable and coherent nanosecond rediation in therange of 2.7-28.7μm based on different-frequency generation in galliumselenide[J]. App. Phys Lett., 2002, 80(21):3889-3891
    [15] Kawase K, Ogawa Y, Minamide H and Ito H. Terahertz parametric sources andimaging applications[J]. Semicond. Sci. Technol., 2005, 20: S258-S265
    [16] Stothard D J M, Edwards T G, Walsh D, Thomson C L, Rae C F, Dunn M H, andBrowne P G. Line-narrowed, compact, and coherent source of widely tunableterahertz radiation[J]. Appl. Phys. Lett., 2008, 92:141105
    [17] Vodopyanov K L, Mirov S B, Voevodin V G, Schunemann P G. Two-photonabsorption in GaSe and CdGeAs2[J]. Opt. Comm., 1998, 155:47
    [18] Houard A, Liu Y, and Mysyrowicza A, Leriche B. Calorimetric detection of theconical terahertz radiation from femtosecond laser filaments in air[J]. Appl. Phys.Lett., 2007, 91:241105

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700