用户名: 密码: 验证码:
三聚氯氰与二甲亚砜促进的苄醇的选择性氯代及醚化反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文报道了三聚氯氰(2,4,6-trichloro-1,3,5-triazine)与二甲亚砜(DMSO)促进的苄醇的化学选择性氯代及醚化的新方法。
     本文的第一部分报道了一种苄醇的选择性氯代新方法。该方法以0.55当量的三聚氯氰作为氯代试剂,二甲亚砜作为反应溶剂,室温条件下,10-40分钟内将苄醇转化为相应的氯代产物,产率80-100%(16个例子)。该氯代反应条件温和,中性的反应条件能够与多种对酸敏感的官能团兼容,如缩醛、酯基、碳碳双键、硅醚等。大量分子内及分子间竞争实验表明,该氯代方法对于苄醇具有高度的化学选择性(8个例子)。该方法已被成功地应用于中药天麻的活性成分——天麻苷的选择性氯代。此外,我们还为这一苄醇的选择性氯代反应提出了可能的反应机理。
     本文的第二部分报道了一种苄醇的化学选择性醚化新方法。该方法以1.2当量的三聚氯氰和1当量的二甲亚砜作为反应试剂,以甲醇或者乙醇作为反应溶剂,15分钟至18小时内将苄醇转化为相应的甲基或乙基苄醚,产率40-94%(12个例子)。大量分子内竞争实验表明,该方法能够在苄羟基、脂肪羟基和酚羟基同时存在下,选择性地将苄羟基转化为相应的甲基苄醚(7个例子)。该方法已被成功应用于甾体2-甲氧甲基雌二醇的制备。与文献报道的合成路线相比,新的合成路线无需保护与去保护步骤。此外,我们还为这一苄醇的选择性醚化反应提出了可能的反应机理。
     总之,本文所报道的苄醇的选择性氯代及醚化新方法操作简单,试剂廉价易得,反应条件温和,为有机化学和药物化学提供了有力的工具。
Chemoselective chlorination and etherification of benzyl alcohols using TCT (2,4,6-trichloro-1,3,5-triazine) and DMSO have been reported in this dissertation.
     An efficient chlorination of benzyl alcohols using 0.55 equiv of TCT in DMSO has been reported in the first part of this dissertation. Various benzyl alcohols were converted into the corresponding chlorides in the yields of 80-100% within 10 to 40 min at room temperature (16 examples). The reaction conditions are mild and compatible with substrates bearing acid-labile founctional groups, such as acetal, ester, olefin and silyl ether. Both competitive intramolecular and intermolecular reactions for benzyl alcohols in the presence of aliphatic alcohols indicate high selectivity (8 examples). The procedure has been successfully used in the selective chlorination of gastrodin, the active ingredient of Tianma. Furthermore, a possible mechanism for the selective chlorination of benzyl alcohols is proposed.
     An efficient transformation of benzyl alcohols into their methyl or ethyl ethers using 1.2 equiv of TCT and 1 equiv of DMSO in methanol or ethanol has been reported in the second part of this dissertation. Benzyl alcohols were transformed into their methyl or ethyl ethers in the yields of 40-94% within 15 min to 18 h (12 examples). Competitive intramolecular reactions indicate that the etherification is chemoselective for benzylic hydroxyls in the presence of aliphatic and phenolic hydroxyls (7 examples). This procedure has been successfully used in the synthesis of 2-methoxymethylestradiol. Compared with the current synthetic route, the new route is shortened, without protection and deprotection steps. Moreover, a plausible mechanism for the selective etherification of benzyl alcohols is proposed.
     In conclusion, the chemoselective chlorination and etherification of benzyl alcohols reported herein are operationally simple, and require inexpensive and commercially available reagents, which represent new useful tools in organic and medicinal chemistry.
引文
[1] Blotny, G. Recent Applications of 2,4,6-Trichloro-1,3,5-triazine and Its Derivatives in Organic Synthesis, Tetrahedron, 2006, 62 (41): 9507~9522.
    [2] Luo, G.; Xu, L.; Poindexter, G. S. A Novel Solid-phase Chlorinating Reagent for the Synthesis of Acyl Chlorides, Tetrahedron Lett. 2002, 43 (49): 8909~8912.
    [3] Masala, S.; Tadei, M. Solid-Supported Chloro[1,3,5]triazine. A Versatile New Synthetic Auxiliary for the Synthesis of Amide Libraries, Org. Lett. 1999, 1 (9): 1355~1357.
    [4] Falorni, M.; Porcheddu, A.; Tadei, M. Mild Reduction of Carboxylic Acids to Alcohols Using Cyanuric Chloride and Sodium Borohydride, Tetrahedron Lett. 1999, 40 (23): 4395~4396.
    [5] Rayle, H. L.; Fellmeth, L. Development of a Process for Triazine-Promoted Amidation of Carboxylic Acids, Org. Process Res. Dev. 1999, 3 (3): 172~176.
    [6] Bandgar, B. P.; Pandit, S. S. Synthesis of Acyl Azides from Carboxylic Acids Using Cyanuric Chloride, Tetrahedron Lett. 2002, 43 (18): 3413~3414.
    [7] Blotny, G. A New, Mild Preparation of Sulfonyl Chlorides, Tetrahedron Lett. 2003, 44 (7): 1499~1501.
    [8] Sandler, S. R. Cyanuric Chloride: A Novel Laboratory Hydrochlorinating Reagent for Alcohols, J. Org. Chem. 1970, 35 (11): 3967~3968.
    [9] De Luca, L.; Giacomelli, G.; Porcheddu, A. An Efficient Route to Alkyl Chlorides from Alcohols Using the Complex TCT/DMF, Org. Lett. 2002, 4 (4): 553~555.
    [10] Karimi, B.; Hazarkhami, H.; Zareyee, D. Trimethylchlorosilane (TMSCl) and Cyanuric Chloride (CC) Catalyzed Efficient Oxidative Coupling of Thiols with Dimethylsulfoxide, Synthesis, 2002, (7): 2513~2516.
    [11] De Luca, L.; Giacomelli, G.; Porcheddu, A. A Mild and Efficient Alternative to the Classical Swern Oxidation, J. Org. Chem. 2001, 66 (23): 7907~7909.
    [12] De Luca, L.; Giacomelli, G.; Porcheddu, A. Mild and Highly Selective Formyl Protection of Primary Hydroxyl Groups, J. Org. Chem. 2002, 67 (15): 5152~5155.
    [13] De Luca, L.; Giacomelli, G.; Porcheddu, A. Beckmann Rearrangement of Oximes under Very Mild Conditions, J. Org. Chem. 2002, 67 (17): 6272~6274.
    [14] Porcheddu, A.; Giacomelli, G.; Salaris, M. Microwave-Assisted Synthesis of Isonitriles: A General Simple Methodology, J. Org. Chem. 2005, 70 (6): 2361~2363.
    [15] Kornblum, N.; Powers, J. W.; Anderson, G. J. A New and Selective Method of Oxidation, J. Am. Chem. Soc. 1957, 79 (24): 6562~6562.
    [16] Liu, H. J.; Nyangulu, J. M. Phenyl Dichlorophosphate as an Activating Agent in the Pfitzner-moffatt Oxidation, Tetrahedron Lett. 1988, 29 (26): 3167~3170.
    [17] Huang, S. L.; Omura, K.; Swern, D. Oxidation of Sterically Hindered Alcohols to Carbonyls with Dimethyl Sulfoxide-Trifluoracetic Anhydride, J. Org. Chem. 1976, 41 (20): 3329~3331.
    [18] Trost, B. M.; Fray, M. J. Studies Directed toward Taxanes. Preparation ofα-Ketols by Oxidative Ring-opening of Epoxides, Tetrahedron Lett. 1988, 29 (18): 2163~2166.
    [19] Raina, S.; Bhuniya, D.; Singh, V. K. A Mild Method for Conversion of Epoxides intoα-Chloro Ketones, Tetrahedron Lett. 1992, 33 (40): 6021~6022.
    [20] Raina, S.; Singh, V. K. Reaction of Epoxides with Activated DMSO Reagent. General Method for Synthesis ofα-Chlorocarbonyl Compounds: Application in Asymmetric Synthesis of (3S)-2,3-Oxidosqualene, Tetrahedron, 1995, 51 (8): 2467~2476.
    [21] Zevaco, T.; Du?ach, E.; Postel, M. Bi(III)-Mandelate/DMSO: A New Oxidizing System for the Catalyzed C-C Cleavage of Epoxides, Tetrahedron Lett. 1992, 34 (16): 2601~2604.
    [22] Dave, P.; Byun, H. S.; Engel, R. An Improved Direct Oxidation of Alkyl Halides to Aldehydes, Synth. Commun. 1986, 16 (11): 1343~1346.
    [23] Carranza, R. S.; Perez, G. C.; Perez, G. S. Study of Alkyl Nitrites Oxidation with DMSO, Tetrahedron, 1986, 42 (15): 4133~4136.
    [24] Majetich, G.; Hicks, R.; Reister S. Electrophilic Aromatic Bromination Using Bromodimethylsulfonium Bromide Generated, J. Org. Chem. 1997, 62 (13): 4321~4326.
    [25] Snyder, D. C. Conversion of Alcohols to Chlorides by TMSCl and DMSO, J. Org. Chem. 1995, 60 (8): 2638~2639.
    [26]黄培强,靳立人,陈安齐,有机合成,北京:高等教育出版社,2004,520~522.
    [27] Sakaguchi, S.; Noshiki, Y.; Kitamura, T.; et al. Efficient Catalytic Alkane Nitration with NO2 under Air Assisted by N-hydroxyphthalimide, Angew. Chem. Int. Ed. 2001, 40 (1): 222~224.
    [28] Tanaka, S; Yamamoto, H.; Michaelson, R. C.; et al. Stereoselective Epoxidations of Acyclic Allylic Alcohols by Transition Metal-hydroperoxide Reagents. Synthesis of dl-C18 Cecropia Juvenile Hormone from Farnesol, J. Am. Chem. Soc. 1974, 96 (16): 5254~5255.
    [29] Breslow, R.; Corcoran, R.; Dale, J. A.; et al. Selective Steroid Halogenations Directed by Proximity and Substituent Effects, J. Am. Chem. Soc. 1974, 96 (6): 1973~1974.
    [30] Rideout, D. C.; Breslow, R. Hydrophobic Acceleration of Diels-Alder Reactions, J. Am. Chem. Soc. 1980, 102 (26): 7816~7817.
    [31] Maruoka, K.; Imoto, H.; Yamamoto, H. Exo-Selective Diels-Alder Reaction Based on a Molecular Recognition Approach, J. Am. Chem. Soc. 1994, 116 (26): 12115~12116.
    [32] Ono, N.; Miyake, H.; Kamimura, A. Regioselective Diels-Alder Reactions. The Nitro Group as a Regiochemical Control Element, J. Chem. Soc. Perkin Trans. I, 1987, (9): 1929~1935.
    [33] Hutchins, R. O.; Taffer, I. M. Aqueous Polar Aprotic Solvents. Efficient Sources of Nucleophilic Oxygen, J. Org. Chem. 1983, 48 (8): 1360~1362.
    [34] Larock, R. C. A Guide to Functional Group Preparations, Comprehensive Organic Transformations, 2nd ed., New York: John Wiley & Sons, Inc. 1989, 353~360.
    [35] Stroh, R.; Hahn, W. Methoden der Organischen Chemie, 4th ed., Müller, E. Ed., Stuttgart: Georg ThiemeVerlag, 1962, 831~834.
    [36] Kigukaawa, K.; Ichino, M. Direct Halogenation of Sugar Moiety of Nucleosides, Tetrahedron Lett. 1971, 12 (1): 87~90.
    [37] Burckhalter, J. H.; Stephens, V. S.; Hall, L. A. R. Antihistaminics: the N-beta-Dimethylaminoethyl Derivatives of Carbazole and Diphenylamine. J. Am. Pharm. Assoc. 1950, 39 (5): 271~273.
    [38] Müller, P.; Rossier, J. C. Solvent Effects on the Steric Course of the Solvolysis of Tertiary Acyclic Derivatives, J. Chem. Soc. Perkin Trans. II, 2000, (11): 2232~2237.
    [39] Shoppee, C. W.; Coll, J. C. Steroids and Walden Inversion. Part LXVIII. A Re-examination of the Substitution Reactions of the 5-Cholestan-3-ols, J. Chem. Soc. C, 1970, 1124~1125.
    [40] Carman, R. M.; Shaw, I. M. The Reaction of Tertiary Alcohols with Phosphorus Pentachloride, Aust. J. Chem. 1976, 29 (1): 133~143.
    [41] Gloede, J. Derivate des Phosphorsaeure-O-phenylenesters. 24. Verhalten von Phosphorpentachlorid Gegenueber O-Funktionellen PIII-Verbindungen, Z. Chem. 1982, 22: 126~128.
    [42] Tipson, R. S. Preparation of N-(2-Chloroethyl)-4-(phenylazo)aniline, J. Org. Chem. 1962, 27 (4): 1449~1449.
    [43] Liu, H. J.; Chan, W. H.; Lee, S. P. Convenient Procedures for Esterification of Carboxylic Acids, Tetrahedron Lett. 1978, 19 (46): 4461~4464.
    [44] Slagle, J. D.; Huang, T. T. S.; Franzus, B. Mechanism of the Triphenylphosphine-tetrachloromethane-alcohol Reaction: Pericyclic or Clustered Ion Pairs? J. Org. Chem. 1981, 46 (17): 3526~3530.
    [45] Snyder, E. I. Conversion of Allylic Alcohols to Chlorides without Rearrangement, J. Org. Chem. 1972, 37 (9): 1466~1470.
    [46] Harrison, C. R.; Hodge, P.; Hunt, B. J.; et al. Preparation of Alkyl Chlorides, Acid Chlorides, and Amides Using Polymer-supported Phosphines and Carbon Tetrachloride: Mechanism of These Reactions, J. Org. Chem. 1983, 48 (21): 3721~3728.
    [47] Olastri, M. P. P.; Sagal, J. F.; Chang, G. The Conversion of Alcohols to Halides Using a Filterable Phosphine Source, Tetrahedron Lett. 2001, 42 (13): 2459~2460.
    [48] Harrison, C. R.; Williom, P. H.; Rogers, J. Conversion of Carboxamides and Oximes to Nitriles or Imidoyl Chlorides Using a Polymer Supported Phosphine and Carbon Tetrachloride, Synth. Commun. 1977, 12 (1): 41~43.
    [49] Gibson, H. W.; Lee, S. H.; Engen, P. T.; et al. New Triarylmethyl Derivatives: "Blocking Groups" for Rrotaxanes and Polyrotaxanes, J. Org. Chem. 1993, 58 (14): 3748~3756.
    [50] Crosignani, S.; Nadal, B.; Li, Z.; et al. A Novel Stereoselective One-pot Conversion of Alcohols into Alkyl Halides Mediated by N,N’-Diisopropylcarbodiimide, Chem. Commun. 2003, 260~261.
    [51] Eilingsfeld, H.; Seefelder, M.; Weidinger, H. Amidchloride und Carbamidchloride, Angew. Chem. 1960, 72 (22): 836~845.
    [52] Dods, R. F.; Roth, J. S. Halogenation of Nucleosides by (Halomethylene) Dimethylene Ammonium Halides, Tetrahedron Lett. 1969, 10 (3): 165~168.
    [53] Yoshihara, M.; Eda, T.; Sakaki, K.; et al. Conversion of Alcohols to Alkyl Halides Using Iminium Salts, Synthesis, 1980, (9): 746~748.
    [54] Ranu, B. C.; Jana, R. Direct Halogenation of Alcohols and Their Derivatives with tert-Butyl Halides in the Ionic Liquid [pmIm]Br under Sonication Conditions - A Novel, Efficient and Green Methodology, Eur. J. Org. Chem. 2005, (4): 755~758.
    [55] Lee, J. G.; Kang, K. K. Selenium Dioxide Catalyzed Conversion of Alcohols to Alkyl Chlorides by Chlorotrimethylsilane, J. Org. Chem. 1988, 53 (15): 3634~3637.
    [56] Labrouillere, M.; Le Roux, C.; Gaspard-lloughmane, H.; et al. Bismuth (III) Chloride-Catalyzed Chlorination of Alcohols by Chlorosilanes, Synlett. 1994, (9): 723~725.
    [57] Firouzabadi, H.; Iranpoor, N.; Karimi, B.; et al. Silica Chloride (SiO2-Cl), a New Heterogeneous Reagent, for the Selective and Efficient Conversion of Benzylic Alcohols to Their Corresponding Chlorides and Iodides, Synth. Commun. 2003, 33 (21): 3671~3677.
    [58]罗海,孙中吉,天麻素的基础药理研究和临床应用,武警医学院学报,2007,16 (4):465~468.
    [59] Smith, H. E.; Fontana, L. P. Optically Active Amines. 35. A Sector Rule for the Circular Dichroism of the Benzene Chromophore, J. Org. Chem. 1991, 56 (1): 432~435.
    [60] Levene, P. A.; Rothen, A.; Kuna, M. The Mechanism of the Reaction of Substitution and Walden Inversion, J. Biol. Chem. 1937, 120 (2): 777~797.
    [61] Levene, P. A.; Marker, R. E. Configurational Relationships of Methylphenyl-, Methylcyclohexyl-, and Methyl-hexylcarbinols and Their Homologues, J. Biol. Chem. 1932, 97 (2): 379~391.
    [62]古凤才,肖衍繁,张明杰等,基础化学实验教程,北京:科学出版社,2004, 33~39.
    [63] Adams, R. E.; Press, J. B.; Degan, E. G. Synthesis of 4-Hydroxy-1H-indole-2- carbonitrile via a Vinylnitrene Cyclization, Synth. Commun. 1991, 21 (5): 675~681.
    [64] Nikaido, T.; Sung, Y.; Ohmoto, T.; et al. Inhibitors of Cyclic Adenosine 3',5'-Monophosphate Phosphodiesterase in Phyllostachys Nigra Munro Var. Henonis Stapf. and Phragmites Communis Trin., and Inhibition by Related Compounds, Chem. Pharm. Bull. 1984, 32 (2): 578~584.
    [65] Leclerca, N.; Galmiche, L.; Attias, A. J. 6-(Arylvinylene)-3-pyridinylboronic Esters. Part 2: Versatile Building Blocks for Push–pull Nonlinear Optical Chromophores, Tetrahedron Lett. 2003, 44 (31): 5883~5887.
    [66] Noller, C. R.; Adams, R. The Use of Aliphatic Acid Anhydrides in the Preparation of Ketones by the Friedel and Crafts Reaction, J. Am. Chem. Soc. 1924, 46: 1889~1896.
    [67] Read, W. T. Researches on Hydantoins Synthesis of the Soporific, 4,4-Phenylethyl-hydantoin, J. Am. Chem. Soc. 1922, 44 (8): 1746~1755.
    [68] Balsells, R. E.; Frasca, A. R. Photochemical Reaction of Alcohols—II : Irradiation of Aromatic Alcohols, Tetrahedron, 1982, 38 (16): 2525~2538.
    [69] Wilkinson, C.; Metcalf, R. L.; Fukuto, T. R. Structure and Synergism, Some Structural Requirements of Methylenedioxyphenyl Derivatives as Synergists of Carbamate Insecticides, J. Agric. Food Chem. 1966, 14 (1): 73~79.
    [70] Bernstein, J.; Yale, H. L.; Losee, K.; et al. The Chemotherapy of Experimental Tuberculosis. III. The Synthesis of Thiosemicarbazones and Related Compounds, J. Am. Chem. Soc. 1951, 73 (3): 906~912.
    [71] Almog, J.; Baldwin, J. E.; Crossley, M. J.; et al. Synthesis of“Capped Porphyrins”, Tetrahedron, 1981, 37 (21): 3589~3601.
    [72] Paul, R.; Jaglowski, A. J. The Role of Substituents and Solvents in Promoting "Medium-size" Ring-Chain Tautomerism, J. Org. Chem. 1990, 55 (12): 3891~3896.
    [73] Perry, R. P. Thiosemicarbazones of Some Vanillin Derivatives, J. Am. Chem. Soc. 1954, 76 (13): 3591~3592.
    [74] Martos, M. B. Preparation of Acetobromo-Sugars, Nature, 1950, 165: 369~369.
    [75]周俊,杨雁宾,杨崇仁,天麻的化学研究II.天麻苷及其类似物的合成,化学学报,1980,38 (2):162~166.
    [76] Tsunao, H.; Hideki, T.; Tetsuo, I. The Bitter Iridoids from Viburnum Urceolatum, Phytochemistry (Elsevier), 1983, 22 (9): 1977~1982.
    [77] Hutchins, R. O.; Taffer, I. M. Aqueous Polar Aprotic Solvents. Efficient Sources of Nucleophilic Oxygen, J. Org. Chem. 1983, 48 (8): 1360~1362.
    [78] Pettit, G. R.; Kasturi, T. R. Steroids and Related Natural Products. VII. Boron Trifluoride Etherate—Lithium Aluminum Hydride Reduction of Smilagenin Acetate, J. Org. Chem. 1961, 26 (11): 4553~4556.
    [79] Kimura, Y.; Kirszensztejn, P.; Regen, S. L. Poly(ethy1ene glycol)-Grafted Copolymers as Synthetic Equivalents of Benzyltriethylammonium Chloride for Triphase Catalytic Alkylation, J. Org. Chem. 1983, 48 (3): 385~386.
    [80] Lin, J. M.; Li, H. H.; Zhou, A. M. Synthesis of Benzyl/Allyl Alkyl Ethers from Corresponding Magnesium Alkoxides, Tetrahedron Lett. 1996, 37 (29): 5159~5160.
    [81] Dueno, E. E.; Chu, F., Kim, S. I.; et al. Cesium Promoted O-Alkylation of Alcohols for the Efficient Ether Synthesis, Tetrahedron Lett. 1999, 40 (10): 1843~1846.
    [82] Caserio, M. C.; Roberts, J. D.; Neeman, M.; et al. Methylation of Alcohols with Diazomethane, J. Am. Chem. Soc. 1958, 80 (10): 2584~2585.
    [83] Christensen, L. F.; Broom, A. D. Specific Chemical Synthesis of Ribonucleoside O-Benzyl Ethers, J. Org. Chem. 1972, 37 (22): 3398~3401.
    [84] Overman, L. E.; Ricca, D. J.; Tran, V. D. First Total Synthesis of Scopadulcic Acid B, J. Am. Chem. Soc. 115 (5): 2042~2044.
    [85] Gupta, S. C.; Kummerow, F. A. An Improved Procedure for Preparing Glycerol Ethers, J. Org. Chem. 1959, 24 (3): 409~410.
    [86] Marks, E. M.; Lipkin, D.; Bettman, B. An Improved Method for Synthesizing Isobutyl Ethyl Ether, J. Am. Chem. Soc. 1937, 59 (6): 946~947.
    [87] Smith, H. A.; Smith, R. J. The Preparation of Ethers of Triphenylcarbinol from the Triphenylcarbonium Ion, J. Am. Chem. Soc. 1948, 70 (7): 2400~2401.
    [88] Kim, S.; Chung, K. N.; Yang, S. Direct Synthesis of Ethers via Zinc Chloride Mediated Etherification of Alcohols in Dichloroethane, J. Org. Chem. 1987, 52 (17): 3917~3919.
    [89] De Mico, A.; Margarita, R.; Piancatelli, G. Electrophilic Assistance for Cross-Coupling Reactions: a Simple Synthesis of Mixed Allylic Ethers, Tetrahedron Lett. 1995, 36 (15): 2679~2680.
    [90] Salehi, P.; Iranpoor, N.; Behbahani, F. K. Selective and Efficient Alcoholyses of Allylic, Secondary- and Tertiary Benzylic Alcohols in the Presence of Iron (III), Tetrahedron, 1998, 54 (5-6): 943~948.
    [91] Rutherford, K. G.; Mamer, O. A.; Prokipcak, J. M.; et al. A Novel Synthesis of Some Mixed Arylmethyl-Alkyl Ethers, Can. J. Chem. 1966, 44: 2337~2339.
    [92] Jenner, G. Iodine Mediated Synthesis of Alkyl t-Alkyl Ethers, Tetrahedron Lett. 1988, 29 (20): 2445~2448.
    [93] Emert, J.; Goldenberg, M.; Chiu, G. L.; et al. Synthesis of Dibenzyl Ethers via the Dehydration of Benzylic Alcohols in Dimethyl Sulfoxide, J. Org. Chem. 1977, 42 (11): 2012~2013.
    [94] Edsall, A. B.; Mohanakrishnan, A. K.; Yang, D.; et al. Effects of Altering the Electronics of 2-Methoxyestradiol on Cell Proliferation, on Cytotoxicity in Human Cancer Cell Cultures, and on Tubulin Polymerization, J. Med. Chem. 2004, 47 (21): 5126~5139.
    [95] Peters, R. H.; Chao, W. R.; Sato, B.; et al. Steroidal Oxathiazine Inhibitors of Estrone Sulfatase, Steroids, 2003, 68: 97~110.
    [96] Lovely, C. J.; Gilbert, N. E.; Liberto, M. M.; et al. 2-(Hydrozyalkyl)estradiols: Synthesis and Biological Evaluation, J. Med. Chem. 1996, 39 (9): 1917~1923.
    [97] Gopalan, P.; Katz, H. E.; McGee, D. J.; et al. Star-Shaped Azo-Based Dipolar Chromophores: Design, Synthesis, Matrix Compatibility, and Electro-optic Activity, J. Am. Chem. Soc. 2004, 126 (6): 1741~1747.
    [98] Noji, M.; Ohno, T.; Fuji, K.; et al. Secondary Benzylation Using Benzyl Alcohols Catalyzed by Lanthanoid, Scandium, and Hafnium Triflate, J. Org. Chem. 2003, 68 (24): 9340~9347.
    [99] Dominguez, X. A.; Gomez, B.; Homberg, E.; et al. Studies on Bis-(benzylisoquinolines). I. Synthesis of dl-N-(4-Hydroxyphenylacetyl)- 5-iodo-4-acetoxy-3-methoxyphenylalanine Methyl Ester, J. Am. Chem. Soc. 1955, 77 (5): 1288~1290.
    [100] Simonoff, R. New Compounds. p-Benzyloxy-α-methylbenzyl Alcohol, J. Am. Chem. Soc. 1947, 69 (8): 2073~2073.
    [101] Rufer, C.; Kessler, H. J.; Schroeder, E. Chemotherapeutic Nitroheterocycles. 18. 2-(5-Nitro-2-imidazolylmethylene)-1-indanones, -1-tetralones, and–acetophenones Substituted by Aminoalkoxy Groups, J. Med. Chem. 1975, 18 (3): 253~258.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700