用户名: 密码: 验证码:
面向小型天线设计的多模谐振器理论
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天线是电磁波的收发转置,其性能需要足够的尺寸作保证。在空间受限的通信系统中,天线由于尺寸的原因无法满足设计的指标要求,成为无线通信设备体积进一步减小的“瓶颈”。本文以天线设计的视角,探索并总结了面向天线小型化设计的多模谐振器理论。该理论的核心思想为:在不增加原有天线尺寸的前提下,通过构造基于原有天线结构的其他模式,提高原有天线的性能,如带宽、频带数、频谱效率等。与传统小型天线设计方案相比,增加了“模式”资源作为新的设计自由度,有效地实现了天线尺寸的缩小以及性能的提高。研究成果可以广泛应用于小型移动终端、基站以及毫米波天线阵列的天线设计中。
     在小型移动终端天线设计领域,本文通过构造天线单元的多个模式,利用模式间的耦合和切换实现天线的多频带和小型化。本文首先提出了一种馈电点切换的四频IFA手机天线,构造两种匹配的IFA模式,在原有尺寸下实现多频的覆盖;为了进一步增加覆盖的频带数目和减小天线的尺寸,本文采用了一种短路点切换的七频环天线方案;在此基础上,为了改进环天线的辐射效率,本文提出了一种“环-IFA”七频手机天线,尺寸仅为5560mm3。最后,基于广义多模谐振器的思想,本文提出了离散模式和连续模式的宽带匹配网络,实现天线尺寸的缩小。
     在基站天线设计领域,本文通过构造两种正交极化模式,在空间受限系统中实现两种极化的高隔离度。首先,本文提出了一种平面双极化槽天线,实现采用同一馈电结构激励同一辐射单元的两个正交极化;为了减小天线的尺寸,我们采用环天线代替槽天线;其次,本文采用3-D的设计结构,提出了基于CPW的双极化方案,实现了天线尺寸的进一步缩小;在此基础上,提出了“槽-单极子”双极化天线方案,提高了两种极化模式的隔离度;最后针对水平全向覆盖的需求,本文提出了一种“双槽”细柱形天线,在天线小型化和高隔离度的基础上实现了双极化的水平全向覆盖。
     在毫米波天线阵列领域,本文基于两种圆极化模式耦合的设计思想,设计了一种“槽-贴片”的宽带圆极化天线单元。同时研究了该天线单元在组阵时产生耦合的机理,提出了天线单元间的隔离方案。最后实现了一种工作于60GHz、基于LTCC工艺、介质集成波导同相馈电的44圆极化天线阵列。
The antenna is the device for microwave transmitting and receiving, and goodperformance of antenna can be obtained with sufficient volume. However, the antennais unable to operate in a space-limited system. Therefore, the volume of mobile devicecan’t be minimized due to the limitation of antennas. In this thesis, we have studied thetheory of multi-mode resonators in the view of small antenna design. In this theory, newmodes are constructed in the origin antenna structure. The antenna performance hasbeen improved due to the new added modes without increasing the antenna dimensions.Compared with the conventional small antenna design strategy, the “mode” resource hasbeen added as another design freedom for the enhancement of performance, such asimpedance bandwidth, radiation efficiency and so on. The proposed theory can beadopted in the antenna applications of small-volume mobile terminal, base station andmillimeter wave array.
     For the mobile antenna design, we have constructed different modes in the antennaelement. By coupling and switching the antenna modes, achieved is multi-bandapplication and dimension minimization of antenna. We have proposed a feedingswitchable IFA antenna, for the purpose of small antenna dimension and quad-bandcoverage. What’s more, a shorting switchable loop antenna is designed with smallervolume and more bands coverage. In order to enhance the radiation efficiency withoutthe increase of antenna dimension, a hepta-band IFA-loop antenna is presented underthe multi-mode resonator theory, and the dimension of this antenna is only5560mm3.We also adopted the multi-mode resonator theory in the design of matching network.The series modes and discrete modes matching network are also designed for antennaminimization.
     For the base station antenna design, the thesis is focused on the topic of multipleantenna design in space-limited system. We have constructed two orthogonal modes toprovide dual polarizations with high ports isolation. We use the dual-polarized antennain order to take the place of two space-isolated single polarized antennas. Firstly, wehave proposed a dual-polarized slot antenna with dual-mode CPW feeding. For theantenna dimension minimization, the loop element is adopted instead of the slot element. Further more, we have used3-D structure to design a CPW-based dual-polarizedantenna. In order to enhance the isolation between two polarization modes, we haveproposed a slot-monopole antenna. We also designed a slender cylinder type dual-slotantenna, for the purposed of horizontal omnidirectional coverage.
     In the design of millimeter wave antenna, we have proposed a wideband circularlypolarized antenna element with the strategy of modes coupling. The mutual couplingbetween two antenna elements is also studied in the array design and new decouplingmethod is proposed to achieve good performance. Finally, we have completed a LTCCbased44-element60-GHz SIW-fed circularly polarized antenna array, with theimpedance bandwidth and axial ratio bandwidth both covering the60GHz band of57-64GHz.
引文
[1] K. Fujimoto, A. Henderson.小型天线.陈志宁,译.南京:兵器工业出版社,1992.
    [2]周朝栋,杨恩耀.电小天线.西安:西安电子科技大学出版社,1990.
    [3] D. B. Miron. Small Antenna Design. Burlington, MA: Newnes,2006.
    [4] R. C. Hansen. Electrically Small, Superdirective, and Superconducting Antennas.Hoboken, New Jersey: John Wiley&Sons, Inc.,2006.
    [5] G. Breed. Basic Principles of Electrically Small Antennas. High FrequencyElectronics,2007:50-53.
    [6] John S.(Jack) Belrose, VE2CV, VY9CRC. The Truth and Untruth about ElectricallySmall Antennas. http://www.qcwa70.org/truth%20and%20untruth.pdf.
    [7]何蔚.小型化与宽频带天线技术研究[博士学位论文].上海:上海交通大学电子工程系,2007.
    [8]中华人民共和国工业与信息化部.通信业发展势头良好.2011.http://www.miit.gov.cn/n11293472/n11293832/n11294132/n12858447/14405153.html
    [9]尚国强. M公司无线移动终端竞争战略研究[硕士学位论文].上海:上海海事大学工商管理(MBA),2006.
    [10]张煦.无线移动通信技术快速发展历程和趋向.移动通信:2000,6:9-12.
    [11]王志勤.宽带无线移动通信技术发展趋势.电信网技术:2010,12:36-38.
    [12]房志江.小型化及多频段天线技术研究[博士学位论文].上海:上海交通大学电子信息与电气工程学院,2009.
    [13] ITU-R WRC-07. World Radiocommunication Conference[EB/OL].[2007-12-22].http://www.itu.int/ITU-R/index.asp
    [14] Z. Zhang. Antenna Design for Mobile Devices. New Jersey: John Wiley&Sons (Asia)Pte Ltd.,2011.
    [15] D. W. Griffin, A. J. Parfitt. Electromagnetic design aspects of packages for monolithicmicrowave integrated circuit-based arrays with integrated antenna elements. IEEETrans. Antennas Propag..1995.43(9):927-931.
    [16] H. A. Wheeler. Fundamental limitations of small antennas. Proceedings of the IRE.1947.35(12):1479-1484.
    [17] L. J. Chu. Physical limitations of omni-directional antennas. J. Appl. Phys..1948.19:1163–1175.
    [18] R. C. Hansen. Fundamental limitations in antennas. Proc. IEEE.1981.69:170–182.
    [19] G. Wen. Physical limitations of antenna. IEEE Trans. Antennas Propag..2003.51(8):2116-2123.
    [20] R. E. Collin, S. Rothschild. Evaluation of antenna Q. IEEE Trans. Antennas Propag..1964.12:23–27.
    [21] D. F. Sievenpiper. D. C. Dawson. M. M. Jacob. T. Kanar. S. Kim. J. Long. R. G.Quarfoth. Experimental Validation of Performance Limits and Design Guidelines forSmall Antennas. IEEE Trans. Antennas Propag..2012.60(1):8-19.
    [22] R. W. Ziolkowski. An Efficient, Electrically Small Antenna Designed for VHF andUHF Applications. IEEE Antennas Wireless Propag. Lett..2008.7:217-220.
    [23] P. Hallbj rner. Electrically small unbalanced four-arm wire antenna. IEEE Trans.Antennas Propag..2004.52(6):1424-1428.
    [24] C. Hong. Small annular slot antenna with capacitor loading. Electron. Lett..2000.36(2):110-111.
    [25] L. Ukkonen. M. Schaffrath. D. W. Engels. L. Syd nheimo. M. Kivikoski. Operabilityof Folded Microstrip Patch-Type Tag Antenna in the UHF RFID Bands within865-928MHz. IEEE Antennas Wireless Propag. Lett..2006.5:414-417.
    [26] K. V. Caekenberghe. N. Behdad. K. M. Brakora. K. Sarabandi. A2.45-GHzElectrically Small Slot Antenna. IEEE Antennas Wireless Propag. Lett..2008.7:346-348.
    [27] B. Ghosh. S. M. Haque. D. Mitra. S. Ghosh. A Loop Loading Technique for theMiniaturization of Non-Planar and Planar Antennas. IEEE Trans. Antennas Propag..2010.58(6):2116-2121.
    [28] J. Jung. I. Park. Electromagnetically coupled small broadband monopole antenna.IEEE Antennas Wireless Propag. Lett..2003.2:349-351.
    [29] L. Mall. R.B. Waterhouse. Simple, small antenna terminal for maritime satellitecommunications. Electron. Lett..2004.40(11):646-648.
    [30] C. D. Leveque. B. Jecko. Small-sized low-profile antenna to replace monopoleantennas. Electron. Lett..1998.34(8):716-717.
    [31] R. B. Greegor. C. G. Parazzoli. J. A. Nielsen. M. H. Tanielian. D. C. Vier. S. Schultz.C. L. Holloway. R. W. Ziolkowski. Demonstration of Impedance Matching Using amu-Negative (MNG) Metamaterial IEEE Antennas Wireless Propag. Lett..2009.8:92-95.
    [32] F. Bilotti. A. Alú. L Vegni. Design of Miniaturized Metamaterial Patch Antennas Withμ-Negative Loading. IEEE Trans. Antennas Propag..2008.56(6):1640-1647.
    [33] F. Qureshi. M. A. Antoniades. G. V. Eleftheriades. A compact and low-profilemetamaterial ring antenna with vertical polarization. Wireless Propag. Lett..2005.4:333-336.
    [34] S. Lee and J. Lee. Electrically Small MNG ZOR Antenna With MultilayeredConductor. Wireless Propag. Lett..2010.9:724-727.
    [35] A. Lai. K. Leong. T. Itoh. Infinite Wavelength Resonant Antennas With MonopolarRadiation Pattern Based on Periodic Structures. IEEE Trans. Antennas Propag..2007.55(3):868-876.
    [36] J. Park. Y. Ryu. J. Lee. Mu-Zero Resonance Antenna. IEEE Trans. Antennas Propag..2010.58(6):1865-1875.
    [37] M. Komulainen. M. Berg. H. Jantunen. E. T. Salonen. C. Free. A Frequency TuningMethod for a Planar Inverted-F Antenna. IEEE Trans. Antennas Propag..2008.56(4):944-950.
    [38] M. Komulainen. M. Berg. H. Jantunen. E. Salonen. Compact varactor-tuned meanderline monopole antenna for DVB-H signal reception. Electron. Lett..2004.43(24):1324-1326.
    [39] D. Manteuffel. M. Arnold. Y. Makris. Z. N. Chen. Concepts for future multistandardand ultra wideband mobile terminal antennas using multilayer LTCC technology.IEEE International Workshop on Antenna Technology.2009.
    [40] B. Kim. B. Pan. S. Nikolaou. Y. Kim. J. Papapolymerou. M. M. Tentzeris. A NovelSingle-Feed Circular Microstrip Antenna With Reconfigurable Polarization Capability.IEEE Trans. Antennas Propag..2008.56(3):630-638.
    [41] K. Tong. J. Huang. New Proximity Coupled Feeding Method for ReconfigurableCircularly Polarized Microstrip Ring Antennas. IEEE Trans. Antennas Propag..2008.56(7):1860-1866.
    [42] S. S. Yang. K. Luk. A Wideband L-Probes Fed Circularly-Polarized ReconfigurableMicrostrip Patch Antenna. IEEE Trans. Antennas Propag..2008.56(2):581-584.
    [43] S. Wu. T. Ma. A Wideband Slotted Bow-Tie Antenna With ReconfigurableCPW-to-Slotline Transition for Pattern Diversity. IEEE Trans. Antennas Propag..2008.56(2):327-334.
    [44] N. Kingsley. G. E. Ponchak. J. Papapolymerou. Reconfigurable RF MEMS PhasedArray Antenna Integrated Within a Liquid Crystal Polymer (LCP) System-on-Package.IEEE Trans. Antennas Propag..2008.56(1):108-118.
    [45] N. Jin. F. Yang. Y. Rahmat-Samii. A novel patch antenna with switchable slotdual-frequency operation with reversed circular polarizations. IEEE Trans. AntennasPropag..2006.54(3):1031-1034.
    [46] G. H. Huff. J. T. Bernhard. Integration of packaged RF MEMS switches with radiationpattern reconfigurable square spiral microstrip antennas. IEEE Trans. AntennasPropag..2006.54(2):464-469.
    [47] W. G. Lin. Microwave Filters Employing a Single Cavity Excited in More than OneMode. J. Appl. phys..195.22(1):989-1001.
    [48]翟彦芬.多模滤波器的设计与研究[硕士学位论文].成都:中国电子科技大学,2009.
    [49] A.E. Atia. A.E. Williams. Narrow-bandpass waveguide filters. IEEE Trans. Microw.Theory Tech..1972.20(4):258-265.
    [50] R. J. Cameron. J. D. Rhodes. Asymmetric Realizations for Dual-Mode BandpassFilters. IEEE Trans. Microw. Theory Tech..1981.29(1):51-58.
    [51] S. J. Fiedziuszko. Dual-Mode Dielectric Resonator Loaded Cavity Filters. IEEE Trans.Microw. Theory Tech..1982.30(9):1311-1316.
    [52] J. M. Pond. S. Liu. N. Newman. Bandpass filters using dual-mode and quad-modeMobius resonators. IEEE Trans. Microw. Theory Tech..2001.49(12):2363-2368.
    [53] J. M. Pond. M bius Dual-Mode Resonators and Bandpass Filters. IEEE Trans. Microw.Theory Tech..2000.48(12):2465-2471.
    [54] L. Hsieh. K. Chang. Dual-mode quasi-elliptic-function bandpass filters using ringresonators with enhanced-coupling tuning stubs. IEEE Trans. Microw. Theory Tech..2002.50(5):1340-1345.
    [55] M. Matsuo. H. Yabuki. M. Makimoto. Dual-mode stepped-impedance ring resonatorfor bandpass filter applications. IEEE Trans. Microw. Theory Tech..2001.49(7):1235-1240.
    [56] J. S. Hong. M. J. Lancaster. Microstrip bandpass filter using degenerate modes of anovel meander loop resonator. IEEE Microw. Guided Wave Lett.1995.5(11):371-372.
    [57] Y. Lin. C. Chen. K. Chen. H. Chen. K. Wong. A Miniature Dual-Mode BandpassFilter Using Al2O3Substrate. IEEE Microw. Wireless Compon. Lett..2007.17(8):580-582.
    [58] A. Torabi. K. Forooraghi. Miniature Harmonic-Suppressed Microstrip Bandpass FilterUsing a Triple-Mode Stub-Loaded Resonator and Spur Lines. IEEE Microw. WirelessCompon. Lett..2011.21(5):255-257.
    [59] M. Zhou. X. Tang. F. Xiao. Miniature Microstrip Bandpass Filter UsingResonator-Embedded Dual-Mode Resonator Based on Source-Load Coupling. IEEEMicrow. Wireless Compon. Lett..2010.20(3):139-141.
    [60]傅君眉,冯恩信.高等电磁理论.西安:西安交通大学出版社,2000.
    [61]鲁述,徐鹏根.电磁场边值问题解析方法.武汉:武汉大学出版社,2005.
    [62] R.F. Harrington.计算电磁场的矩量法.王尔杰,肖良勇,林炽森,官德明,译.南京:国防工业出版社,1981.
    [63]李宗谦,余京兆,高葆新.微波工程基础.北京:清华大学出版社,2004.
    [64]张克潜,李德杰.微波与光电子学中的电磁理论.北京:电子工业出版社,2001.
    [65] Y. Chi. K. Wong. Compact Multiband Folded Loop Chip Antenna for Small-SizeMobile Phone. IEEE Trans. Antennas Propag..2008.56(12):3797-3803.
    [66] Samuel. C. K. Ko. Ross. D. Murch. Compact integrated diversity antenna for wirelesscommunications. IEEE Trans. Antennas Propag..2001.49(6):954-960.
    [67] T. Taga. Analysis for mean effective gain of mobile antennas in land mobile radioenvironments. IEEE Trans. Veh. Technol..1990.39(2):117-131.
    [68] R. Vaughan. J. Anderson. Antenna diversity in mobile communications. IEEE Trans.Veh. Technol..1987.36(4):149-172.
    [69] Y. Gao. X. Chen. Z. Ying. C. Parini. Design and Performance Investigation of aDual-Element PIFA Array at2.5GHz for MIMO Terminal. IEEE Trans. AntennasPropag..2007.55(12):3433-3441.
    [70] Y. Ding. Z. Du. K. Gong. Z. Feng. A Novel Dual-Band Printed Diversity Antenna forMobile Terminals. IEEE Trans. Antennas Propag..2007.55(7):2088-2096.
    [71] S. Blanch. J. Romeu. I. Corbella. Exact representation of antenna system diversityperformance from input parameter description. Electron. Lett..2003.39(9):705-707.
    [72] M. Tzortzakakis. R. J. Langley. Quad-Band Internal Mobile Phone Antenna. IEEETrans. Antennas Propag..2007.55(7):2097-2103.
    [73] M. Ali. G. J. Hayes. H. Hwang. R. A. Sadler. Design of a multiband internal antennafor third generation mobile phone handsets. IEEE Trans. Antennas Propag..2003.51(7):1452-1461.
    [74] C. Lin. K. Wong. Printed Monopole Slot Antenna for Internal Multiband MobilePhone Antenna. IEEE Trans. Antennas Propag..2007.55(12):3690-3697.
    [75] A. Diallo. C. Luxey. P. L. Thuc. R. Staraj. G. Kossiavas. Efficient two-port antennasystem for GSM/DCS/UMTS multimode mobile phones. Electron. Lett..2007.43(7):369-370.
    [76] D. Qi. B. Li. H. Liu. Compact triple-band planar inverted-f antenna for mobilehandsets. Microw. Opt. Technol. Lett..2004.41(6):483-486.
    [77] P. Ciais. R. Staraj. G. Kossiavas. C. Luxey. Compact internal multiband antenna formobile phone and WLAN standards. Electron. Lett..2004.40(15):920-921.
    [78] S. Yeh. K. Wong. T. Chiou. S. Fang. Dual-band planar inverted F antenna forGSM/DCS mobile phone. IEEE Trans. Antennas Propag..2003.51(5):1124-1126.
    [79] K.R. Boyle. P.G. Steeneken. A Five-Band Reconfigurable PIFA for Mobile Phones.IEEE Trans. Antennas Propag..2007.55(11):3300-3309.
    [80] J. Cho. C.W. Jung. K. Kim. Frequency-reconfigurable two-port antenna for mobilephone operating over multiple service bands. Electron. Lett..2009.45(20):1009-1011.
    [81] M. Komulainen. M. Berg. H. Jantunen. E. Salonen. C. Free. A Frequency TuningMethod for a Planar Inverted-F Antenna. IEEE Trans. Antennas Propag..2008.56(4):944-950.
    [82] Y. S. Shin. S. O. Park. A Compact Loop Type Antenna for Bluetooth, S-DMB, Wibro,WiMax, and WLAN Applications. IEEE Antennas Wireless Propag. Lett..2007.6:320-323.
    [83] Y. W. Chi. K. L. Wong. Internal compact dual-band printed loop antenna for mobilephone application. IEEE Trans. Antennas Propag..2007.55(5):1457-1462.
    [84] Y. W. Chi. K. L. Wong. Quarter-Wavelength Printed Loop Antenna With an InternalPrinted Matching Circuit for GSM/DCS/PCS/UMTS Operation in the Mobile Phone.IEEE Trans. Antennas Propagat..2009.57(9):2541-2547.
    [85] C. H. Ku. H. W. Liu. S. Y. Lin. Folded Dual-Loop Antenna for GSM/DCS/PCS/UMTSMobile Handset Applications. IEEE Antennas Wireless Propag. Lett..2010.9:998-1011.
    [86] K. Wong. W. Y. Chen. T. W. Kang. On-Board Printed Coupled-Fed Loop Antenna inClose Proximity to the Surrounding Ground Plane for Penta-Band WWAN MobilePhone. IEEE Trans. Antennas Propag.,2011.59(3):751-757.
    [87] D. H. Lee. A. Chauraya. Y. Vardaxoglou. W. S. Park. A Compact and Low-ProfileTunable Loop Antenna Integrated With Inductors. IEEE Antennas Wireless Propag.Lett..2008.7:621-624.
    [88] K. Wong. C. Huang. Printed loop antenna with a perpendicular feed for penta-bandmobile phone application. IEEE Trans. Antennas Propag..2008.56(7):2138-2141.
    [89] Z. Zhang. W. Chen. Z. Feng. M. F. Iskander. Integrated Dual-Band Antenna SystemDesign Incorporating Cell Phone Bezel. IEEE Antennas Wireless Propag. Lett..2008.7:585-587.
    [90] K. Wong. L. Lee. Multiband Printed Monopole Slot Antenna for WWAN Operation inthe Laptop Computer. IEEE Trans. Antennas Propag..2009.57(2):324-330.
    [91] C. L. Hu. W. F. Lee. Y. E. Wu. C. F. Yang. S. T. Lin. A Compact MultibandInverted-F Antenna for LTE/WWAN/GPS/WiMAX/WLAN Operations in the LaptopComputer. IEEE Antennas Wireless Propag. Lett..2010.9:1169-1173.
    [92] H. W. Liu. C. F. Yang. Miniature multiband monopole antenna for WWAN operationin laptop computer. Electron. Lett..2010.46(1):21-23.
    [93] X. Wang. W. Chen. Z. Feng. Multiband antenna with parasitic branches for laptopapplications. Electron. Lett..2007.43(19):1012-1013.vol.
    [94] D. M. Pozar. Microwave Engineering.3rd ed. New York: Wiley,2005.
    [95] S. G. Zhou. B. H. Sun. Y. F. Wei. Q. Z. Liu. Low profile wideband antenna withshaped beams for indoor DVB-H applications. Electron. Lett..2009.45(23):1151-1152.
    [96] B. Sun. J. Li. T. Zhou. Q. Liu. Planar meander sleeve monopole antenna forDVB-H/GSM mobile handsets. Electron. Lett..2008.44(8):508-509.
    [97] N. Behdad. K. Sarabandi. A varactor-tuned dual-band slot antenna IEEE Trans.Antennas Propag..2006.54(2):401-408.
    [98] Z. Milosavljevic. A varactor tuned DVB-H antenna. Proc. Int. Conf. on AntennaTechnology Small Antennas and Novel Metamaterials. Cambridge.2007:124–127.
    [99] T. Hirota. A. Minakawa. M. Muraguchi. Reduced-size branch-line and rat-race hybrids foruniplanar MMIC's. IEEE Trans. Microw. Thery Tech.1990.38(3):270-275.
    [100] K. Eccleston. S. Ong. Compact planar microstripline branch-line and rat-race couplers. IEEETrans. Microw. Thery Tech.2003.51(10):2119-2125.
    [101] H. Ghali. T. Moselhy. Miniaturized fractal rat-race, branch-line, and coupled-line hybrids.IEEE Trans. Microw. Thery Tech.2004.52(11):513-2520.
    [102] G. Adamiuk. W. Wiesbeck. T. Zwick. Multi-Mode Antenna Feed for Ultra WidebandTechnology. IEEE Radio and Wireless Symposium,2009:578-581.
    [103] X. Wang. W. Chen. Z. Feng. H. Zhang. Compact Dual-Polarized Antenna Combining PrintedMonopole and Half-Slot Antenna for MIMO Applications. IEEE Antennas PropagationSociety Int. Symposium, Charleston, SC, USA,2009:1-4.
    [104] P. Mattheijssen. M. Herben. G. Dolmans. L. Leyten. Antenna-pattern diversity versus spacediversity for use at handhelds. IEEE Trans. Veh. Technol..2004.53(4):1035-1042.
    [105] B. Poussot. J. Laheurte. L. Cirio. O. Picon. D. Delcroix. L. Dussopt. Diversity Measurementsof a Reconfigurable Antenna With Switched Polarizations and Patterns. IEEE Trans.Antennas Propag..2008.56(1):31-38.
    [106] J. Boerman. J. Bernhard. Performance Study of Pattern Reconfigurable Antennas in MIMOCommunication Systems, IEEE Trans. Antennas Propag..2008.56(1):231-236.
    [107] D. Piazza. P. Mookiah. M. D’Amico. K. R. Dandekar. Experimental Analysis of Pattern andPolarization Reconfigurable Circular Patch Antennas for MIMO Systems. IEEE Trans. Veh.Technol..2010.59(6):2352-2363.
    [108] M. Sanchez-Fernandez. E. Rajo-Iglesias. O. Quevedo-Teruel. M. Luz Pablo-González.Spectral Efficiency in Mimo Systems Using Space and Pattern Diversities under CompactnessConstraints. IEEE Trans. Veh. Technol..2008.57(3):1637-1645.
    [109] G. Huff. J. Bernhard. Integration of packaged RF MEMS switches with radiation patternreconfigurable square spiral microstrip antennas. IEEE Trans. Antennas Propag..2006.54(2):464-469.
    [110] A. Mak. C. Rowell. R. Murch. Low Cost Reconfigurable Landstorfer Planar Antenna Array.IEEE Trans. Antennas Propag..2009.57(10):3051-3061.
    [111] X. Wang. Z. Feng. K. Luk. Pattern and Polarization Diversity Antenna With High Isolationfor Portable Wireless Devices. IEEE Antennas and Wireless Propag. Lett..2009.8:209-211.
    [112] S. Yang. K. Luk. Design of a wide-band L-probe patch antenna for pattern reconfiguration ordiversity applications. IEEE Trans. Antennas Propag..2006.54(4):433-438.
    [113] J. Kim. W. Park. A Hadamard Matrix Feed Network for a Dual-Beam Forming ArrayAntenna. IEEE Trans. Antennas Propag..2009.57(1):283-286.
    [114] S. Wu. T. M. A Wideband Slotted Bow-Tie Antenna With Reconfigurable CPW-to-SlotlineTransition for Pattern Diversity. IEEE Trans. Antennas Propag..2008.56(2):327-334.
    [115] K. Ma. Y. Qian. T. Itoh. Analysis and applications of a new CPW-slotline transition. IEEETrans. Microw. Theory Tech..1999.47(4):426-432.
    [116] Y. Lin. C. Chen. Design and modeling of twin-spiral coplanar-waveguide-to-slotlinetransitions. IEEE Trans. Microw. Theory Tech..2000.48(3):463-466.
    [117] K. Hettak. N. Dib. A. Sheta. A. Omar. G. Delisle. M. Stubbs. S. Toutain. New miniaturebroadband CPW-to-slotline transitions. IEEE Trans. Microw. Theory Tech..2000.48(1):138-146.
    [118] J. Shin. D. H. Schaubert. A parameter study of stripline-fed Vivaldi notch-antenna arrays.IEEE Trans. Antennas Propag..1999.47(5):879-886.
    [119] J. M. Molina-Garcia-Pardo. J. V. Rodriguez. L. Juan-Llacer. Polarized Indoor MIMO ChannelMeasurements at2.45GHz. IEEE Trans. Antennas Propag..2008.56(12):3818-3828.
    [120] J. F. Valenzuela-Valdés. M. A. García-Fernández. A. M. Martínez-González. D. A.Sánchez-Hernández. Evaluation of True Polarization Diversity for MIMO Systems. IEEETrans. Antennas Propag..2009.57(9):2746-2755.
    [121] D. G. Landon. C. M. Furse. Recovering Handset Diversity and MIMO Capacity WithPolarization-Agile Antennas. IEEE Trans. Antennas Propag..2007.55(11):3333-3340.
    [122] T. Brown,“Indoor MIMO Measurements Using Polarization at the Mobile,” IEEE AntennasWireless Propag. Lett..2008.7:400-403.
    [123] A. S. Konanur. K. Gosalia. S. H. Krishnamurthy. B. Hughes. G. Lazzi. Increasing wirelesschannel capacity through MIMO systems employing co-located antennas. IEEE Trans.Microw. Theory Tech..2005.53(6):1837-1844.
    [124] H. Wong. K. L. Lau. K.-M. Luk. Design of dual-polarized L-probe patch antenna arrays withhigh isolation. IEEE Trans. Antennas Propag..2004.52(1):45-52.
    [125] S. C. Gao. L. W. Li. M. S. Leong. T.-S. Yeo. Dual-polarized slot-coupled planar antenna withwide bandwidth. IEEE Trans. Antennas Propag..2003.51(3):441-448.
    [126] Y. X. Guo. K. W. Khoo. L. C. Ong. Wideband Dual-Polarized Patch Antenna WithBroadband Baluns. IEEE Trans. Antennas Propag..2007.55(1):78-83.
    [127] C. Lee. S. Chen. P. Hsu. Isosceles Triangular Slot Antenna for Broadband Dual PolarizationApplications. IEEE Trans. Antennas Propag..2009.57(10):3347-3351.
    [128] E. A. Soliman. M. S. Ibrahim. A. K. Abdelmageed. Dual-polarized omnidirectional planar slotantenna for WLAN applications. IEEE Trans. Antennas Propag..2005.53(9):3093-3097.
    [129] T. J. Judasz. B. B. Balsley. Improved theoretical and experimental models for the coaxialcolinear antenna. IEEE Trans. Antennas Propag..1989.37(3):289-296.
    [130] R. Bancroft. B. Bateman. An omnidirectional planar microstrip antenna. IEEE Trans. IEEETrans. Antennas Propag..2004.52(11):3151-3153.
    [131] F. R. Hsiao. K. L. Wong. Omnidirectional planar folded dipole antenna. IEEE Trans.Antennas Propag..2004.55(7):1898-1902.
    [132] K. L. Wong. F. R. Hsiao. T. W. Chiou. Omnidirectional planar dipole array antenna. IEEETrans. Antennas Propag..2004.52(2):624-628.
    [133] W. Hong. K. Sarabandi. Low Profile Miniaturized Planar Antenna With OmnidirectionalVertically Polarized Radiation. IEEE Trans. Antennas Propag..2008.56(6):1533-1540.
    [134] C. A. Balanis. Antenna Theory: Analysis and Design.3rd ed. Hoboken, NJ:Wiley-Interscience.2005.
    [135] C. C. Lin. L. C. Kuo. H.-R. Chuang. A Horizontally Polarized Omnidirectional PrintedAntenna for WLAN Applications. IEEE Trans. Antennas Propag..2006.54(11):3551-3556.
    [136] C. H. Ahn. S. W. Oh. K. Chang. A Dual-Frequency Omnidirectional Antenna for PolarizationDiversity of MIMO and Wireless Communication Applications. IEEE Antennas WirelessPropag. Lett..2009.8:966-969.
    [137] A. L. Borja. P. S. Hall. Q. Liu. H. Iizuka. Omnidirectional Loop Antenna With Left-HandedLoading. IEEE Antennas Wireless Propag. Lett..2007.6:495-498.
    [138] T. Zwick. D. Liu. B. P. Gaucher. Broadband Planar Superstrate Antenna for IntegratedMillimeterwave Transceivers. IEEE Trans. Antennas Propag..2006.54(10):2790-2796.
    [139] D. Pozar. S. Targonski. H. Syrigos. Design of millimeter wave microstrip reflectarrays. IEEETrans. Antennas Propag..1997.45(2):287-296.
    [140] J. Xu. Z. N. Chen. X. Qing. W. Hong. Bandwidth Enhancement for a60GHz SubstrateIntegrated Waveguide Fed Cavity Array Antenna on LTCC. IEEE Trans. Antennas Propag..2011.59(3):826-832.
    [141] M. Sun. Y. P. Zhang. K. M. Chua. L. L. Wai. D. Liu. B. P. Gaucher. Integration of YagiAntenna in LTCC Package for Differential60-GHz Radio. IEEE Trans. Antennas Propag..2008.56(8):2780-12783.
    [142] A. Lamminen. J. S ily. A. Vimpari.60-GHz Patch Antennas and Arrays on LTCC WithEmbedded-Cavity Substrates. IEEE Trans. Antennas Propag..2008.56(9):2865-2874.
    [143] T. Seki. N. Honma. K. Nishikawa. K. Tsunekawa.60-GHz multilayer parasitic microstriparray antenna on LTCC substrate for system-on-package. IEEE Microw. Wireless Compon.Lett.2005.15(5):339-341.
    [144] H. Yoshida. Y. Sakamoto. U. Klein. T. Endo. Improvements in the millimeter-wavesubsystem for Josephson junction array voltage standard systems. IEEE Trans. Microw.Theory Tech..1993.41(12):2353-2358.
    [145] R. Zhou. D. Liu. H. Xin. Design of circularly polarized antenna for60GHz wirelesscommunications.3rd European Conference on Antennas and Propag..2009:3787-3789.
    [146] S. Pinel. I. K. Kim. K. Yang. J. Laskar.60GHz Linearly And Circularly Polarized AntennaArrays On Liquid Crystal Polymer Substrate.36th European Microwave Conference.2006:858-861.
    [147] A. R. Weily. Y. J. Guo. Circularly Polarized Ellipse-Loaded Circular Slot Array forMillimeter-Wave WPAN Applications. IEEE Trans. Antennas Propag..2009.57(10):3680-3684.
    [148] K. F. Hung. Y. C. Lin. Novel Broadband Circularly Polarized Cavity-Backed ApertureAntenna With Traveling Wave Excitation. IEEE Trans. Antennas Propag..2010.58(1):35-42.
    [149] M. Shahabadi. D. Busuioc. A. Borji. S. Safavi-Naeini. Low-cost, high-efficiency quasi-planararray of waveguide-fed circularly polarized microstrip antennas. IEEE Trans. AntennasPropag..2005.53(6):2036-2043.
    [150] J. Huang. A Ka-band circularly polarized high-gain microstrip array antenna. IEEE Trans.Antennas Propag..1995.43(1):113-116.
    [151] K. Itoh. T. Adachi. Novel circularly polarized antennas combining a slot with parasitic dipoles.In Proc. IEEE Antennas and Propag. Society Int. Symp..1980:52-55.
    [152] J. Hirokawa. T. Nanbu. M. Ando. N. Goto. Circularly-polarized waveguide array with slotsand dipoles. In Proc. IEEE Antennas and Propag. Society Int. Symp..1991:1338-1341.
    [153] K.-S. Min. J. Hirokawa. K. Sakurai. M. Ando. Phase control of circularly polarized wavesfrom a parasitic dipole mounted above a slot. In Proc. IEEE Antennas and Propag. Society Int.Symp.,1997:1348-1351.
    [154] K.S. Min. J. Hirokawa. K. Sakurai. M. Ando. N. Goto. Single-layer dipole array forlinear-to-circular polarization conversion of slotted waveguide array. In IEE Proc. Microw.Antennas Propag..1996.143:211-216.
    [155] R. Li. G. DeJean. M, M. Tentzeris. J. Papapolymerou. J. Laskar. Radiation-patternimprovement of patch antennas on a large-size substrate using a compact soft-surfacestructure and its realization on LTCC multilayer technology. IEEE Trans. Antennas Propag..2005.53(1):200-208.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700