用户名: 密码: 验证码:
宽带小型化天线及阵列技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代无线通信技术、大规模集成电路以及空间技术的飞速发展,各种电子设备都日趋小型化。而天线作为通信设备的前端关键部件,其性能优越与否对整个通信质量起着至关重要的作用,因此,研制出能与小型化设备相适应的各种小天线,特别是工作在HF、VHF/UHF频段的宽带小型化天线及阵列具有极其重要的意义。
     本文主要针对HF、VHF/UHF天线及阵列,利用Hilbert线的空间填充特性和电磁超介质左手特性,对天线的小型化、宽频带、高增益等关键技术进行理论和实验研究,提出了多种设计方案并制作了相关样机。
     本文的主要内容和结果如下:
     1.对宽带小型化天线及阵列的发展要求和研究进展进行了回顾和分析。分析表明:天线的小型化,特别是HF、VHF和UHF天线的小型化已经成为制约现代无线通信发展的颈瓶,虽然通过近几十年的研究取得了很大的进展,但在这个领域还存在许多亟待解决的难题和关键技术。
     2.对Hilbert天线小型化技术进行了研究。首先,对分形结构的基本概念和在天线中的应用进行了讨论和阐述,并具体就低阶空间填充线天线结构进行了分析。然后,将Hilbert线的空间填充技术和嵌入式匹配技术有机结合,根据实际工程应用环境提出了基于1阶Hilbert空间填充线的小型化天线结构,并利用遗传算法对嵌入式匹配网络和集总加载宽带匹配网络进行优化设计,结合自组构技术完成全频段的宽带设计和天线性能测试。最后,针对Hilbert天线所存在的缺陷,提出和设计了一种多偶极子共轴一体化宽频带小型化天线。
     3.对基于人工电磁媒质的电小天线进行了研究。首先,基于电磁超介质的基本物理特性,研究了空间匹配层与电小天线之间相互作用的机理和等效电路模型。根据工程应用要求,研究和设计了一种新型结构的宽带、全向高增益智能天线。然后,对基于复合左右传输线的宽带电小天线展开研究,阐述了构造左手传输线的理论依据,具体分析了复合左右手传输线单元结构的物理特性和等效实现,并设计出一种新型非周期性结构的宽带电小天线。
     4.将Hilbert线的空间填充技术和左右手传输线相结合,对基于1阶Hilbert偶极子的阵列模型进行理论分析,利用左右手传输线的相位特性对馈电网络进行了设计,提出了一种基于左右手传输线的Wilkinson功分器模型,借助ADS软件完成匹配网络的优化和设计。最后设计出一种适应流余散射通信系统要求的、可控波束的宽带小型化阵列天线。
     5.结论和展望。
With the rapid development of modern wireless communication technology, largescale integrated circuit and space technology, there has been a trend that all kinds ofelectronic devices are miniaturized. However, antenna plays a key role in the front endof the communication equipment, whose performance is crucial for the communicationquality. Therefore, it is very important to develop various miniaturized antennas,especially broadband and compact antennas and arrays in HF、VHF/UHF bands, toadapt the miniaturized equipments.
     The key techniques such as antenna miniaturization, broadband, high gain and soon have been studied theoretically and experimentally using Hilbert curves’space-filling properties and meta-material left-handed properties in HF, VHF/UHFantennas and arrays. Some designs have been proposed and the correspondingprototypes have been made.
     The main contents and results are as follows:
     1. The progress in broadband and miniaturization for antenna and array isreviewed and analyzed. It shows that miniaturization for antenna, especiallyminiaturization for HF, VHF and UHF antenna is a bottleneck in the presentdevelopment of wireless communication. Althrough remarkable progress has been madewithin the last few decades, but a lot of questions and key techniques have not beensolved in this field.
     2. Miniaturization technique for Hilbert antenna is studied. Firstly, the conceptionof fractal and its application in antenna are elaborated and discussed. Moreover, theantennas with lower order space-filling curves structures are analyzed in detail. Then,combined with Hilbert curve’ space-filling technique and embedded-matching techniqueorganically, a compact antenna is proposed using first-order Hilbert space-filling curvestechnique according to the actual condition. The embedded-matching network and thelumped loading matching network are optimized using the genetic algorithm. Thebroadband in all of the bands is designed using self-structuring technique and theproperties of the antenna are tested. Finally, a broadband and compact antenna with integrated dipole is proposed in order to make up the fault of Hilbert antenna.
     3. ESA (Electrically Small Antenna) based on artificially electromagneticmeta-materials is studied. Firstly, the physical properties of the meta-material areanalyzed. The interaction mechanism between the spatial match layer and ESA and theequivalent-circuit model are studied. A novel broadband, omni directional, high gainsmart antenna is studied and designed to meet with the requirement of application in theproject. Then, researches are focused based on broadband and compact antenna basedon composite right/left-handed trans-mission lines. Properties of the left-handedtransmission line and right/left-handed transmission line based on dipoles are depictedin detail. The physical properties and the equivalent realization of left-handed andright/left-handed transmission line structures are analyzed. Finally, a novel structure ofbroadband ESA is designed. A novel aperiodic broadband and compact antenna isdesigned.
     4. Combined Hilbert curves’ space-filling technique with compositeright/left-handed transmission line, an array model based on the first-order Hilbertdipoles is analyzed theoretically. The feed-network is analyzed and designed using thephase characteristic of the composite right/left-handed transmission line. Then, aWilkinson power divider is designed based on composite right/left-handed transmissionline and the matching network is analyzed and optimized using ADS software.Finally, a novel broadband and compact structure is designed to meet the requirement ofESA (Electrically Small Antenna) in the project.
     5. Conclusion and prospect.
引文
[1] L. J. Chu. Physical limitations of omni-directional antennas. J.Appl. Phys.,1948,19:1163-1175
    [2] H.A. Wheeler. Fundamental limitations of small antennas. Proc. IRE,1947,35:1479-1488
    [3] R. F. Harrington. Effect of antenna size on gain, bandwidth, and efficiency. J. Res. Nat. Bur.Stand.,1960,64-D:1-12
    [4] R. E. Collin, S. Rothschild. Evaluation of antenna Q. IEEE Trans.Ant. Prop.,1964,12:23-27
    [5] J. S. McLean.Are-examination of the fundamental limits on the radiation Q of electrically smallantennas. IEEE Trans. Ant. Prop.,1996,44:672-676
    [6] W.A. Davis, T. Yang, E. D. Caswell, W. L. Stutzman. Fundamental limits on antenna size: a newlimit. IET Microw. Ant. Prop.,2011,5:1297-1302
    [7] D. M. Grimes, C. A. Grimes. Radiation Q of dipole-generated fields. Radio Sci.,1999,34:281-296
    [8] G. A. Thiele, P. L. Detweiler, R. P. Penno. On the lower bound of the radiation Q for electricallysmall antennas. IEEE Trans. Ant. Prop.,2003,51:1263-1269
    [9] A. Boag, E. Michielssen, R. Mittra. Design of electrically loaded wire antennas using geneticalgorithms. IEEE Trans. Ant. Prop.,1996,44:687-695
    [10] J. D. Kraus, R. J. Marhefka.Antenna: For allApplications. New York: McGraw Hill,2002
    [11] H. Choo, R. Rogers, H. Lin. Design of electrically small wire antennas using genetic algorithmtaking into consideration of bandwidth and efficiency.2002IEEE Ant. Prop. Soc. Int. Symp.,Vol.1:330-333
    [12] D. Schaubert, F. Farrar, S. Hayes, A. Sindoris. Frequency-agile, polarization diverse microstripantennas and frequency scanned arrays. US Patent#4367474,1983
    [13] K. C. Gupta, J. Li, R. Ramadoss, C. J. Wang. Design of frequency-reconfigurable rectangularslot ring antenna.2000IEEE Ant. Prop. Soc. Int. Symp., Vol.1:326
    [14] D. Peroulis, K. Sarabandi, P. B. Katehi. A planar VHF reconfigurable slot antenna.2001IEEEAnt. Prop. Soc. Int. Symp., Vol.1:154-157
    [15] G. H. Huff, J, Feng, S. Zhang, J. T. Bernhard. A novel radiation pattern and frequencyreconfigurable single turn square spiral microstrip antenna. IEEE Microw. Wirel. Comp. Lett.,2003,13:57-59
    [16] C. Bozler, R. Drangmeister, S. Duffy, et al. MEMS microswitch arrays for reconfigurabledistributed microwave components,2000IEEE Ant. Prop. Soc. Int. Symp, Vol.2:587-591
    [17] E. Palantei, D. V. Thiel, S. G. O’Keefe. Reconfigurable patch with parasitic folded dipoles: areconfigurable antenna.2008IEEE Int. Work. Ant. Technol.,2008:251-254
    [18] W. S. Kang, J. A. Park, Y. J. Yoon. Simple reconfigurable antenna with radiation pattern.Electron. Lett.,2008,44:182-183
    [19] S. Zhang, G. H. Huff, J. Feng, J. T. Bernhard. A pattern reconfigurable microstrip parasiticarray. IEEE Trans. Ant. Prop.,2004,52:35-36
    [20] N. Symeon, R. Bairavasubramanian, C. Lugo, et al. Pattern and frequency reconfigurableannular slot antenna using PIN diodes. IEEE Trans. Ant. Prop.,2006,54:439-448
    [21] C. J. Panagamuwa, A. Chauraya, J. C. Vardaxoglou. Frequency and beam reconfigurableantenna using photoconducting switches. IEEE Trans. Ant. Prop.,2006,54:449-454
    [22] K. L. Wong. Compact and Broadband Microstrip Antennas. New York: John Wiley&Sons,Inc.,2002
    [23] N. Jin, F. Yang, Y. Rahmat-Samii. Anovel antenna with switchable slot (PASS): dual-frequencyoperation with reversed circular polarization. IEEE Trans. Ant. Prop.,2006,54:35-36
    [24] E. Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics. Phys.Rev. lett.,1987,58:2059-2062
    [25] S. John. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev.Lett.,1987,58:2486-2489
    [26] E. R. Brown, C. D. Parker, E. Yablonovitch. Radiation properties of a planar antenna on aphotonic-crystal substrate. J. Opt. Soc. Am. B,1993,10:404-407
    [27] S. He, M. Popov, M. Qiu, C. Simovski. The influence of the dielectricair interface on theradiation pattern of an antenna in a metallic photonic bandgap structure in a dielectric hostmedium. Microw. Opt. Technol. Lett.,2000,26:367-371
    [28] B. Temelkuran, M. Bayindir, E.Ozbay, et al. Photonic crystal-based resonant antenna with avery high directivity. J. Appl. Phys.,2000,87:603-605
    [29] W. L. Kang, M. Rader, I.Alexeff.Aconceptual study of stealth plasma antenna.1996IEEE Int.Conf. Plasma Sci.,261
    [30] S. R. Best. A comparison of the performance properties of the Hilbert curve fractal andmeander line monopole antennas. Microw. Opt. Technol. Lett.,2002,35:258-262
    [31] S. R. Best. Comments on Hilbert curve fractal antenna: A small resonant antenna forVHF/UHF applications. Microw. Opt. Technol. Lett.,2002,35:420-421
    [32] J. M. González-Arbesú, S. Blanch, J. Romeu. Are space filling curves efficient small antennas.IEEE Ant. Wirel. Propag. Lett.,2003,2:147-150
    [33] A. Lai, T. Itoh, C. Caloz. Composite right/left handed transmission line metamaterials. IEEEMicrow. Mag.,2004,5:34-50
    [34] H. Lizuka, P. S. Hall, A. L. Borja. Dipole antenna with left-handed loading. IEEE Ant. Wirel.Propag. Lett.,2006,5:483-485
    [35] H. Lizuka, P. S. Hall. Left-handed dipole antennas and their implementations. IEEE Trans.Ant.Propag.,2007,55:1246-1253
    [36] H. Lizuka, P. S. Hall. A left-handed dipole concept. IEEE Int. Worksh. Ant. Techn.,2006:396-399
    [37] C. Lin, H. Arai, T. Suda. A small monopole antenna based on composite right/left-handedtransmission line by coaxial structure. IEEE Int. Worksh. Ant. Techn.,2008:418-421
    [38] M. A. W. Nordin, H. E. A. El-Raouf, A. A.Yussuf. Bandwidth enhancement of a compactantenna based on the composite right/left-handed transmission-Line.2008Proc. Int. Conf.Comput. Commun. Eng.,1313-1316
    [39] A. Lai, K. K. M. K. H. Leong, T. Itoh. Novel series divider for antenna arrays with arbitraryelement spacing based on a composite right/left-handed transmission line.2005Proc.35th Eur.Microw. Conf.,1-4
    [40] E. E.Altshuler. The traveling-wave linear antenna. IRE Trans.Ant. Prop.,1961,9:324-329
    [41] B. D. Popovic, M. B. Dragovic. Cylindrical antennas with constant capacitive loading. Electron.Lett.,1972,8:396-398
    [42] B. D. Popovic. Theory of cylindrical antennas with lumped impedance loadings. Rad. Electron.Eng.,1973,43:243-248
    [43] B. D. Popovic. Analysis and Synthesis of Wire Antennas. England: Research Studies Press,1982
    [44] R. S. Abramo. Broadband, high power,2-30MHz, twin whip antenna. San Diego: NavalOcean Systems Center,1994
    [45] S. Colak, T. F. Wong, A. Hamit Serbest. UWB dipole array with equally spaced elements ofdifferent lengths.2007IEEE Int. Conf. Ultra-Wideband,789-793
    [46] X. H. Wu, A. A. Kishk, Z. N. Chen. A linear antenna array for UWB applications.2005IEEEAnt. Prop. Soc. Int. Symp.,94-597
    [47] D. H. Werner, S. Ganguly. An overview of fractal antenna engineering research. IEEE Ant.Prop. Mag.,2003,45:38-57
    [48] J. S. Petko, D. H. Werner. Reconfigurable miniature three dimensional fractal tree antennas.2003IEEE Ant. Prop. Soc. Int. Symp.,371-374
    [49] G. J. Walker, J. R. James. Fractal volume antennas. IEE Electron. Lett.,1998,34:1536-1537
    [50] Y. Kim, D. L. Jaggard. The fractal random array. Proc. IEEE,1986,74:1278-1280
    [51] J. Romeu, Y. Rahmat-Samii. Fractal FSS: Anovel dual-band frequency selective surface. IEEETrans. Ant. Prop.,2000,48:1097-1105
    [52] J. Romeu, Y. Rahmat-Samiis. Fractal elements and their applications to frequency selectivesurfaces.2000IEEE Aero. Conf. Proc., Vol.5:77-81
    [53] J. H. Zhou, B. Lin, B. Q. You. An antenna with fractal PBG structure designed for modernUWB system.2008IET Int. Conf. Wirel., Mob.&Multi. Net.,98-101
    [54] J. S. Hamel, R. C. Norris, L. P. Yu. Acoustic band gap filter designs as a potential future RFMEMS technology: An introduction to fractal silicon-based ABG filters.2007IEEEMicroelectron. Int. Conf.,197-200
    [55] S. Kubota, F. Miyamaru, M. W. Takeda. Terahertz response of fractal metamaterials.2009Int.Conf. Infrared., Milli.,&THz Waves,1-2
    [56] C. P. Baliarda, J. Romeu, A. Cardama. The Koch monopole: A small fractal antenna. IEEETrans. Ant. Prop.,2000,48:1773-1781
    [57] K. J. Vinoy, J. K. Abraham, V. K. Varadan. On the relationship between fractal dimension andthe performance of multi-resonant dipole antennas using Koch Curves. IEEE Trans. Ant.Prop.,2003,51:2296-2303
    [58] C. Puente, J. Romeu, R. Pous, A. Cardama. On the behavior of the Sierpinski multiband fractalantenna. IEEE Trans. Ant. Prop.,1998,46:517-523
    [59] S. R. Best. Operating band comparison of the perturbed Sierpinski and modified Parany Gasketantennas. IEEE Ant. Wirel. Prop. Lett.,2002,1:35-38
    [60] S. N. Shafie, I. Adam, P. J. Soh. Design and simulation of a modified Minkowski fractalantenna for Tri-Band application.2010Asia Int. Conf. Math./Analytic. Model. Comp. Simul.,2010:560-570
    [61] K. J. Vinoy, K. A. Jose, V. K. Varadan, V. V. Varadan. Resonant frequency of Hilbert curvefractal antennas.2001IEEE Ant. Prop. Soc. Int. Symp., Vol.3:648-651
    [62] J. H. Zhu, H.Ahmad, E. Nader. Peano antenna. IEEEAnt. Wirel. Prop. Lett.,2004,3:71-74
    [63] J. S. Petko, D. H. Werner. Miniature reconfigurable three-dimensional fractal tree antennas.IEEE Ant. Wirel. Prop. Lett.,2004,52:1945-1956
    [64] B. B. Mandelbrot. The Fractal Geometry of Nature. New York: W. H. Freeman and Co.,1982
    [65] Kenneth Falconer. Techniques in Fractal Geometry. New York: John Wiley&Sons,1997
    [66]林澍.小型化分形天线的设计与分析.博士论文,哈尔滨工业大学,2008
    [67]张济忠.分形.清华大学出版社,1995,35-104
    [68]李厚强.分形研究的若干问题及动向.全国第三届分形理论及应用学术会议,中国科技大学,1993,65-68
    [69] G. P. Cherepanov,A. S. Balankin, V. S. Ivanova. Fractal fracture mechanics. Eng. Fract. Mech.,1995,51:997-1033
    [70] J. H. Jeng, V. V. Varadan, V. K. Varadan. Fractal finite element mesh generation for vibrationproblems. J. Acous. Soc. Amer.,1987,82:1829-1833
    [71] A. E. Jacquin. Fractal image coding:Areview. Proc. IEEE,1993,81:1451-1465
    [72] B. Wohlberg, G. DeJager. Review of the fractal image coding literature. IEEE Trans. Image.Proc.,1999,8:1716-1729
    [73] M. F. Barnsley, L. P. Hurd. Fractal Image Compression, Wellesley, MA:A. K. Peters,1993
    [74] A. Lakhtakia, N. S. Holter, V. K.Varadan, V. V. Varadan. Self-similarity in diffraction by aself-similar fractal screen. IEEE Trans. Ant. Prop.,1987,35:236-239
    [75] D. L. Jaggard. Fractal electrodynamics: Wave interactions with discretely self-similarstructures. Symmetry in Electromagnetics,1995:231-280
    [76] D. L. Jaggard. On fractal electrodynamics. Recent Advances in Electromagnetic Theory,Springer Verlag,1990:183-224
    [77] D. L. Jaggard. Fractal electrodynamics: From super antennas to super lattices. Fractals inEnggineering, Springer,1997:204-221
    [78] J. Romeu, Y. Rahmat-Samii. Dual band FSS with fractal elements. Electron. Lett.,1999,35:702-703
    [79] D. H. Werner, D. Lee. Design of dual-polarised multiband frequency selective surfaces usingfractal elements. Electron. Lett.,2000,36:487-488
    [80] E. Troncet, G. Ablart, L. Allam. Microwave characterization and modeling of the surfaceimpedance of fractal structure copper films. IEEE Trans. Ant. Prop.,1998,46:434-441
    [81] D. H. Werner, R. L. Haupt, P. L. Werner. Fractal antenna engineering: The theory and design offractal antenna arrays. IEEE Ant. Prop. Mag.,1999,41:37-59
    [82] D. H. Werner, P. L. Werner. On the synthesis of fractal radiation patterns. Radio Sci.,1995,30:29-45
    [83] K. Goto, S. Yamazaki. Exercise in Electromagnetics. Kyoritsu Shuppan,1970
    [84] J. P. Glanvittorio, Y. Rahmaat-Samii. Fractal element antennas: a compilations ofconfigurations with novel characteristics.2000IEEE Ant. Prop. Soc. Int. Symp.,1688-1691
    [85] K. J. Vinoy, K. A. Jose, V. K. Varadan, V. V. Varadan. Hilbert curve fractal antenna: a smallresonant antenna for VHF/UHF applications. Microw. Opt. Technol. Lett.,2001,29:215-219
    [86] A. Jaume, P. Carles, M. Enrique, R. Edouard. The fractal Hilbert monopole:Atwo-dimensionalwire. Microw. Opt. Technol. Lett.,2003,36:102-104
    [87] J. H. Zhu, H.Ahmad, N. Engheta. Bandwidth, cross-polarization, and feed-point characteristicsof matched Hilbert antennas. IEEE Ant. Wirel. Prop. Lett.,2003,2:2-5
    [88] N. Engheta, R. W. Ziolkowski. Metamaterial: Physics and Engineering Explorations. New York:John Wiley&Sons,2006
    [89] R. W. Ziolkowski,A. D. Kipple.Application of double negative materials to increase the powerradiated by electrically small antennas. IEEE Trans. Ant. Prop.,2003,51:2626-2640
    [90] R. W. Ziolkowski, A. Erentok. Metamaterials based efficient electrically small antennas. IEEETrans. Ant. Prop.,2006,54:2113-2130
    [91] G. K. Karawas, R. E. Collin. Spherical shell of ENG metamaterial surrounding a dipoleantenna. Military Commun. Conf.,2008:1-7
    [92] V. I. Slyusar. Metamaterials on antenna solutions.2009Int. Conf.Ant. Theo. Tech.,19-24
    [93] G. V. Eleftheriades, K. G. Balmain. Negative-Refraction Metamaterials: FundamentalPrinciples and Applications. New York:John Wiley&Sons and IEEE Press,2005
    [94] V. G. Veselago. The electrodynamics of substances with simultaneously negative values ofand. Soviet Phys. Uspekhi,1968,10:509-514
    [95] J. B. Pendry, A. J. Holden, D. J. Robbins, W. J. Stewart. Low frequency plasmons in thin-wirestructures. J. Phys. Condens. Matter,1998,10:4785-4808
    [96] D. R. Smith, D. C. Vier, N. Kroll, S. Schultz. Direct calculation of permeability andpermittivity for a left-handed metamaterial. Appl. Phys. Lett.,2000,77:2246-2248
    [97] R. A. Shelby, D. R. Smith, S. Schultz. Experimental verification of a negative index ofrefraction. Science,2001,292:77-79
    [98] J. A. Kong, B. I. Wu, Y. Zhang. Lateral displacement of a Gaussian beam reflected from agrounded slab with negative permittivity and negative permeability. Appl. Phys. Lett.,2002,80:2084-2086
    [99] C. G. Parazzoli, R. B. Greegor, K. Li, et al. Experimental verification and simulation ofnegative index of refraction using Snell’s law. Phys. Rev. Lett.,2003,90:107401
    [100] A. Grbic, G. V. Eleftherialdes. Growing evanescent waves in negative-refractive-indextransmission-line media. Appl. Phys. Lett.,2003,82:1815-1817
    [101] S. Foteinopoulou, E. N. Economou, C. M. Soukoulis. Refraction in media with a negativerefractive index. Phys. Rev. Lett.,2003,90:107402
    [102] R. W. Ziolkowski. Propagation in and scattering from a matched metamaterial having a zeroindex of refraction. Phys. Rev. Lett.,2004,70:046608
    [103] R. W. Ziolkowski. Antennas and propagation in the presence of metamaterials and othercomplex media: Computational electromagnetic advances and challenges. IEICE Trans.Electron.,2005, E88-B(6):2230-2238
    [104] R. W. Ziolkowski, A. Erentok. At and beyond the Chu limit: passive and active broadbandwidth metamaterial-based efficient electrically small antennas. IET Microw., Ant.&Prop.,2007,1:116-128
    [105] R. W. Ziolkowski. Efficient electrically small antenna facilitated by a near-field resonantparasitic. IEEE Ant. Wirel. Prop. Lett.,2008,7:580-583
    [106] R. W. Ziolkowski, P. Jin, J. A. Nielsen, M. H. Tanielian. Experimental verification of Zantennas at UHF frequencies. IEEE Ant. Wirel. Prop. Lett.,2009,8:1329-1333
    [107] C. C. Lin, R. W. Ziolkowski, J. A. Nielsen, et al. An efficient, low profile, electrically small,three-dimensional, very high frequency magnetic EZ antenna. Appl. Phys. Lett.,2010,96:104102
    [108] G. V. Eleftheriades, R. Islam. Phase-agile branch-line couplers using metamaterial lines. IEEEMicrow. Wirel. Comp. Lett.,2004,14:340-342
    [109] G. V. Eleftheriades, M. A. Antoniades. A broadband series power divider using zero-degreemetamaterial phase-shifting lines. IEEE Microw. Wirel. Comp. Lett.,2005,15:808-810
    [110] G. V. Eleftheriades, R. Islam. Printed high-directivity metamaterial MS/NRI coupled-linecoupler for signal monitoring applications. IEEE Microw. Wirel. Comp. Lett.,2006,16:164-166
    [111] G. V. Eleftheriades, R. Islam. Elliptic-type bandpass filter and bandstop notch filter inspiredby metamaterial NRI-TL topology. Electron. Lett.,2008,44:1470-1472
    [112] G. V. Eleftheriades, M. Studni. A dual-band bandpass filter based on generalizednegative-refractive-index transmission-lines. IEEE Microw. Wirel. Comp. Lett.,2009,19:18-20
    [113] W. Qi, D. H. Werner, Z.Yong. Electrostatic theory for designing lossless negative permittivitymetamaterials. Optics Lett.,2010,35:1431-1433
    [114] J. B. Pendry, A. J. Holden, D. J. Robbins, et al. Magnetism from conductors and enhancednonlinear phenomena. IEEE Trans. Microw. Theo. Tech.,1999,47:2075-2084
    [115] J. D. Baena, R. Marques, M. Francisco. Artificial magnetic metamaterial design by usingspiral resonators. Phys. Rev. B,2004,69:014402
    [116] H. S. Chen, L. X. Ran, T. Jiang, et al. Magnetic properties of S-shaped split-ring resonators.Prog. Electromagn. Res.,2005,51:231
    [117] D. Schurig, J. J. Mock, D. R. Smith. Electric-field-coupled resonators for negativepermittivity metamaterials. Appl. Phys. Lett.,2006,88:041109
    [118] S. Antipov, L. Spentzouris, W. Gai, et al. Double-negative metamaterial research foraccelerator applications. Nucl. Phys. A,2007,579:915-923
    [119] R. W. Ziolkowski. Design, fabrication, and testing of double negative metamaterials. IEEETrans. Ant. Prop.,2003,51:1516-1529
    [120] D. R. Smith, W. J. Padilla, D. C. Vier, et al. Composite medium with simultaneously negativepermeability and permittivity. Phys. Rev. Lett.,2000,84:4184–4187
    [121] S. Enoch, G. Tayeb, S. Pierre, et al. A metamaterial for directive emission. Phys. Rev. Lett.,2002,89:213902
    [122] R. W. Ziolkowski. Propagation in and scattering from a matched metamaterial having a zeroindex of refraction. Phys. Rev. E,2004,70:046608
    [123] M. Silveirinha, N. Engheta. Tunneling of electromagnetic energy through subwavelengthchannels and bends using epsilon-near-zero materials. Phys. Rev. Lett.,2006,97:157403
    [124] R. Liu, Q. Cheng, T. Hand, et al. Experimental demonstration of electromagnetic tunnelingthrough an epsilon-near-zero metamaterial at microwave frequencies. Phys. Rev. Lett.,2008,100:023903
    [125] G. Mário, Silveirinha1, Nader Engheta. Theory of supercoupling, squeezing wave energy andfield confinement in narrow channels and tight bends using epsilon-near-zero metamaterials.Phys. Rev. B,2007,76:245109
    [126] A. Andrea, M. G. Silveirinha, A. Salandrino, et al. Epsilon-near-zero metamaterials andelectromagnetic sources: Tailoring the radiation phase pattern. Phys. Rev. B,2007,75:155410
    [127] M. Silveirinha1, N. Engheta. Design of matched zero-index metamaterials using nonmagneticinclusions in epsilon-near-zero media. Phys. Rev. B,2007,75:075119
    [128] Q. Cheng, R. P. Liu, D. Huang, et al. Circuit verification of tunneling effect in zeropermittivity medium. Appl. Phys. Lett.,2007,91:234105
    [129] R. A. Depine a, M. L. Martínez-Ricci, et al. Zero permeability and zero permittivity bandgaps in1D metamaterial photonic crystals. Phys. Lett. A,2007,364:352–355
    [130] F. L. Zhang, G. Houzet, E. Lheurette, et al. Negative-zero-positive metamaterial withomega-type metal inclusions. J. Appl. Phys.,2008,103:084312
    [131] R. P. Liu, Q. Cheng, T. Hand, et al. Experimental demonstration of electromagnetic tunnelingthrough an epsilon-near-zero metamaterial at microwave frequencies. Phys. Rev. Lett.,2008,100:023903
    [132] B. Edwards, A. Alù, M. E. Young, et al. Experimental verification of epsilon-near-zerometamaterial coupling and energy squeezing using a microwave waveguide. Phys. Rev. Lett.,2008,100:033903
    [133] B. Edwards, A. Alù, M. G. Silveirinha, et al. Reflectionless sharp bends and corners inwaveguides using epsilon-near-zero effects. J. Appl. Phys.,2009,105:044905
    [134] L. Y. Liu, C. G. Hu, Z. Y. Zhao, et al. Multi-passband tunneling effect in multilayeredepsilon-near-zero metamaterials. Opt. Express,2009,17:12133-12188
    [135] C.A. Balanis.Antenna TheoryAnalysis and Design. New York: Wiley,2005
    [136] R. F. Harrington, Time-Harmonic Electromagnetic Fields. New York: McGraw-Hill,1961
    [137] A. K. G. E. Eleftheriades. Negative refractive index metamaterials supporting2-D waves.IEEE Int. Microw. Symp. Dig.,2002,2:1067–1070
    [138] A. A. Oliner. A periodic-structure negative-refractive-index medium without resonantelements. IEEE AP-S/URSI Int. Symp. Dig.,2002
    [139] C. Caloz, I. Lin, T. Itoh. Characteristics and potential applications of nonlinear left-handedtransmission lines. Microw. Opt. Tech. Lett.,2004,40:471-473
    [140] G. V. Eleftheriades, O. Siddiqui, A. K.Iyer. Transmission line models for negative refractiveindex media and associated implementations without excess resonators. IEEE Microw. Wirel.Compon. Letters,2003
    [141] A. Alexion, M.Haardt. Smart antenna technologies for future wireless systems: trends andchallenges. IEEE Commun. Mag.,2010,42:90-97
    [142] P. Fletcher, P. Darwood. Beamforming for circular and semicircular array antennas forlow-cost wireless lan data communications systems. IEE Proc. Microw., Ant. Prop.,1998,145:153–158
    [143] P. Loannides, A. Balanis. Uniform circular array for smart antennas. IEEE Ant. Wirel. Prop.Lett.,2005,47:2796-2799
    [144] K. L. Du. Pattern analysis of uniform circular array. IEEE Trans. Ant. Prop.,2004,52:1125-1129
    [145] T. Keisuke, S. Kyoji, A.Koichi, et al. A metal-to-insulator transition in cut-wire-gridmetamaterials in the terahertz region. J. Appl. Phys.,2010,107:1-6
    [146] J. Mcvay, N. Engheta, A. Hhmad. High impedance metamaterial surfaces using Hilbert-curveinclusions. IEEE Microw. Wirl. Compon. Lett.,2004,14:130-132
    [147] A. Noor, Z. Hu. Metamaterial dual polarised resistive Hilbert curve array radar absorber. IETMicrow., Ant. Prop.,2010,4:667–673
    [148] Fractal Metamaterials enableAntenna Revolution. http://www.fractenna.com.2009
    [149] H. X. Xu, G. M. Wang, H. P. An. Hilbert fractal curves form compact diplexer. Microwes&RF,2010:92-95
    [150]刘学观,魏文元,黄立伟等.相控阵偶极子天线单元互耦的矩量法研究.西安电子科技大学学报,1991,9:87-92
    [151] E. K. Miller, F. J. Dearick. Some Computational Aspects of Thin-Wire Modeling. New York:Springer-Verlag,1975
    [152] D. H. Werner. A method of moments approach for the efficient and accurate modeling ofmoderately thick cylindrical wire antennas. IEEE Trans Ant. Prop.,1998:373-382
    [153] T. W. Barrett, D. M. Grimes.Advanced Electromagnetism: Foundations, Theory,Applications.Singapore: World Scientific,1995:682–762
    [154] Lim, C. Caloz, T. Itoh. Metamaterial based electronically controlled transmission linestructure as a novel leaky-wave antenna with tunable radiation angle andbeamwidth. IEEETrans. Microw. Theo. Tech.,2005,1:161-173

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700