用户名: 密码: 验证码:
GRAPES高分辨率气象数值预报模式并行计算关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
建立高分辨率精细数值天气预报模式是大气科学研究和数值天气预报模式业务发展的主流方向。随着高性能计算机计算能力的提高,高性能计算机规模不断扩大。面对峰值性能达到每秒千万亿次的高性能计算机系统,数值天气预报模式能否充分利用计算平台所提供的计算能力,解决其庞杂的科学计算问题和海量数据处理问题,取决于数值模式的并行计算方案和并行实现方法,特别是其核心算法的计算效率。
     以我国自主研发的新一代研究/业务数值天气预报系统GRAPES(Global/Regional Assimilation and PrEdiction System)的模式系统为基础,本文深入分析了GRAPES模式的科学计算原理,探讨了影响GRAPES模式并行计算效率的主要因素,设计了GRAPES分层软件框架结构和并行计算方案,建立了GRAPES模式的并行计算系统,并针对其中影响并行计算效率的关键问题提出了优化方案,重点研究了针对拉格朗日插值计算的并行实现方法,研究了GRAPES模式关键计算Helmholtz方程的高效求解算法,最后在天河-1A超级计算机上对GRAPES模式并行计算系统进行了一系列的测试分析。本文主要研究成果包括:
     1、深入分析数值天气预报模式科学计算原理,揭示数据并行是数值天气预报模式并行计算的基本策略。由于模式数据流计算是随时间依次完成的,不同时间积分步之间数据流前后依赖,数值模式并行计算只能在一个积分步内进行。而同样由于数据相关性,数值模式并行计算通常采用数据并行方式,即采用将预报区域按照计算核数划分成块进行计算。
     2、针对日益复杂的数值模式系统,分析指出数值天气预报软件系统必须采用软件工程方法进行组织、管理,软件开发必须遵循软件规范要求,并结合高性能计算机体系结构特点,设计了GRAPES分层软件框架结构,建立了符合软件工程规范的并行编程接口函数库PPI,实现了GRAPES模式并行版本基本软件架构。
     3、针对拉格朗日插值计算,分析了影响GRAPES全球模式并行计算实现的极地区域网格变量聚集问题,提出了以―供方‖为中心的并行计算方案(put-scheme),实现了以―需方‖为中心的并行计算方案(get-scheme),改进了任务分配算法。测试结果表明,两种方案均有效解决了极地网格聚集对拉格朗日上游点插值并行计算的影响。但从计算效率而言,―get-scheme‖方案更具优势:1)减少了极地区域的大内存需求;2)减少了极地区域数据通讯的盲目性;3)增加了低纬度地区上游点位移量的允许范围。因此,―get-scheme‖方案具有更好负载平衡性和并行可扩展性能。
     4、针对GRAPES模式中占主要计算开销的Helmholtz方程的求解,实现了基于科学计算可移植扩展工具包(Portable Extensible Toolkit for Scientific Computation,即PETSc)和高层并行预条件函数库(high performance preconditions,即Hypre)的广义极小残量法(GMRES)求解算法。与目前GRAPES模式版本中使用的广义共轭余差法(GCR)方法相比,GMRES方法具有收敛速度快、迭代次数少、求解精度高、并行可扩展性能好等特点。对于高分辨率精细模式,采用GRMES方法求解Helmholtz方程大大减少了GRAPES模式的计算开销,显著提高了GRAPES模式在大规模并行计算机上的运行效率。
     5、通过对不同收敛精度Helmholtz方程求解的理想试验、实际资料绝热模式以及全物理过程多方面测试,揭示了GRAPES模式动力框架计算精度被物理过程计算精度所掩盖的问题。模式计算精度是整个动力框架计算和物理过程计算的综合结果,积分计算中每个过程的计算偏差都会在一定程度上反映到预报结果的偏差上,因此提高模式计算精度必须从模式计算的多个方面入手。
     6、针对GRAPES核心算法,建立了IBM-cluster1600计算机上拉格朗日插值并行计算两种方法的并行通讯分析模型,以及Helmholtz方程两种求解方法的并行计算时间模型;通过IBM-cluster1600计算机上固定规模GRAPES模式可扩展性能测试,验证了GRAPES模式并行计算系统具有良好的并行可扩展性能。GRAPES模式在天河-1A超级计算机上的测试分析表明:1)GRAPES模式积分计算部分并行效率较高,并行计算保持了高可扩展性能,10天预报在2048个计算核上的计算效率接近90%;2)目前影响GRAPES模式并行可扩展性能的瓶颈一个是I/O操作,另一个就是如何将GRAPES模式更好应用于分层设计的计算机体系结构。
     通过本文的研究,实现了具有良好可扩展性能的GRAPES模式并行计算系统。目前GRAPES并行模式系统已在国家气象中心业务运行(GRAPES区域模式业务运行,全球模式准业务运行),计算正确稳定,满足实时性业务要求。GRAPES模式并行计算系统的建立为GRAPES资料同化系统并行积累了经验,为GRAPES数值预报系统发展奠定了基础。
The development of high resolution precise numerical weather prediction (NWP) model is one of the mainstreams in atmospheric science and weather prediction model research. Nowadays the scale of high performance computer is steadily extended in company with the improvement of computing capability. However, whether the capability of super computer system with peak performance more than one PetaFlops can be fully utilized by numerical weather prediction model to solve its numerous scientific computing and massive data processing problems, depends heavily upon the parallel computing scheme and parallel implementation method of given numerical model, especially the computational efficiency of its core algorithm. The background of this dissertation is the Global/Regional Assimilation and
     PrEdiction System (GRAPES), a new generation research and operation numerical weather forecasting system developed independently by China. The scientific computing principle of GRAPES model is analyzed. After a comprehensive study on the main factors which will affect model’s parallel computing design and implementation, the parallel computing scheme of GRAPES model is proposed and corresponding parallel computing system is developed. Moreover, several improved solutions are implemented for problems which are crucial to parallel computational efficiency, which included the methods for parallelization of semi-lagrangian scheme and the algorithm for solving Helmholtz equation. Followings are the main works and results included in this dissertation.
     1. Through a comprehensive analysis for the computing principle of NWP model, it is revealed that data parallelism is the suitable parallel computing strategy for numerical model. Since NWP model’s data flow is computed in turn, there are data dependences between different integration time steps. Therefore, parallel computing of numerical model is only possible in the same integration step. By the same token, data parallelism strategy is usually adopted in the parallel computing of NWP model, i.e., the prediction region is divided into certain blocks according to the number of computing cores and computed separately.
     2. Since the complexity of numerical model system grows increasingly, software engineering approach should be introduced into the organizing and management of NWP software system. There are some software specifications which should be kept in software developing process. In this dissertation, a layered software framework for GRAPES is designed according to the architecture of high performance computer used in this model. A parallel programming interface (PPI) function library which complies with software engineering specification is developed, and consequently, the basic software framework of GRAPES is established.
     3. The variable aggregation problem in the parallel computing of Lagrangian interpolation for the pole region of GRAPES global model is discussed. The“put-scheme”for parallel computing is proposed which is based on“supply as center”, then the“get-scheme”is also implemented which is based on“demand as center”, and the task dispatch algorithm is improved. It is shown by test results that both these two schemes can reduce the pole’s grid aggregation effect on the Lagrangian interpolation parallel computing of upstream grids. However, the“get-scheme”is superior to“put-scheme”in computing efficiency: 1) the“get-scheme”reduces the memory requirement for pole area; 2) the“get-scheme”gets rid of the blindness of data communication in pole region; 3) the“get-scheme”extends the admissible displacement range of upstream points in low latitude region. Therefore, the“get-scheme”has better performance in load balance and parallel scalability.
     4. Solving Helmholtz equation is a crucial calculation and time expansive step in GRAPES model. In this dissertation, a generalized minimal residual (GMRES) algorithm based on PETSc scientific computing toolkit and Hypre parallel preconditioning function library is implemented. Compared with generalized conjugate residual (GCR) method currently used in GRAPES model, GMRES needs less iteration while has higher precision and better parallel scalability. In high resolution precise model, if the convergence precision of Helmholtz equation is improved, GMRES method will greatly promote model’s calculation rate and operation efficiency in massively parallel computer.
     5. Through the tests with different convergence precision for solutions of Helmholtz equation, which were for the ideal running, practical material adiabatic model running and fully physical process running, the results show that the computing precision of framework is often shaded by that of physical process. However, the precision of whole model is the combination of precisions in both dynamic framework computing and physical process computing. Errors in any step of integration will have certain extent influence on prediction results. Therefore, in order to improve the computing precision of NWP model, each computing process of the model should be examined carefully.
     6. Lagrangian interpolation and solving Helmholtz equation are core algorithms in GRAPES. In this dissertation, parallel communication analysis models for two parallel Lagrangian interpolation methods and parallel computing time models for two solving methods of Helmholtz equation are designed on IBM-cluster1600. Through the tests which using same grid size for each processor, the parallel scalability of GRAPES model is also taken on IBM-cluster1600. Some conclusions can be drawn from the tests of GRAPES model running on Galaxy-1A super computer: 1) The parallel efficiency and scalability of integration calculations in GRAPES model is quite high. The efficiency of 10-days prediction performed in 2048 cores can reach 90%. 2) One bottleneck for the parallel scalability of GRAPES model is I/O. How to apply GRAPES model into layered computer architecture properly is another challenge.
     This dissertation develops a parallel system with high scalability for GRAPES model. Such parallel computing model system had been put into operation in National Weather Center of China (regional model is operational and global model is quasi-operational). It operates precisely and stably and can meet the requirements for real time operation. In the developing process of parallel computing system for GRAPES model, we also gained some experience for the parallel implementation of GRAPES data assimilation system. These works are important foundations for the development of GRAPES numerical prediction system.
引文
[1] Geerd-R Hoffmann.Maretis,D.,eds.The Dawn of Massively Parallel Processing in Meteorology[C]: Proceedings of the Third ECMWF Workshop on the Use of Parallel Processors in Meteorology, Berlin, Springer-Verlag, 1990:3~20.
    [2] Geerd-R Hoffmann,Tuomo Kauranne.Parallel Supercomputing in Atmospheric Science[C]. Proceedings of the Seventh ECMWF Workshop on the Use of Parallel Processors in Meteorology, London, World Scientific Publishing, 1992:1~25.
    [3] John Drake, Ian Foster, Introduction to the special issue on parallel computing in climate and weather modeling[J]. Parallel Compting, 1995(21):1539~1544.
    [4] Sela J G. Weather forecasting on parallel architectures[J]. Parallel Computing, 1995, 21(10): 1639~1654.
    [5] Hammond S W, Loft R D, Dennis J M, Sato R K. Implementation and performance issues of a massively parallel atmospheric model[J]. Parallel Computing, 1995, 21(10): 1593~1619.
    [6] Drake J, Foster I, Michalakes J, Toonen B, Worley P. Design and performance of a scalable parallel community climate model[J]. Parallel Computing, 1995, 21(10): 1571~1591. [7[王宗浩,郭庆雪.大气科学问题并行计算方法.数值天气预报中的新技术[M].北京,气象出版社,1995:307~333.
    [8] Krizanc R,Saarimaki A.Bulk Synchronous Parallel:Practical Experience with a Model for Parallel Comuting. Parallel Architectures and Compilation Techniques[M]. In:Proc.of the 1996 Conf,1996.208~217.
    [9] Swarztrauber P.N , MPP: What Went Wrong? Can It Be Made Right? Making Its Mark[C]. Proceedings of the Seventh ECMWF Workshop on the Use of Parallel Processors in Meteorology, London, World Scientific Publishing, 1996:1~15.
    [10] Walter Zwieflhofer, Norbert Kreitz. Towards Teracomputing[C]. Proceedings of the Seventh ECMWF Workshop on the Use of Parallel Processors in Meteorology, London, World Scientific Publishing, 1998:1~33.
    [11] Thole C A, Stuben K.Industrial simulation on parallel computers[J]. Parallel Computing, 1999, 25(13-14): 2015~2037.
    [12]张理论.面向气象数值预报模式的高效并行计算研究[D].长沙:国防科技大学计算机科学与技术, 2002:66-80.
    [13]金之雁.异构系统动态负载平衡技术研究[D] .北京:清华大学计算机系统结构2002.
    [14]张卫民.气象资料变分同化的研究与并行计算实现[D].长沙:国防科技大学计算机科学与技术, 2005:1~9.
    [15]赵军.数值天气预报资料同化关键技术及并行计算研究[D].长沙:国防科技大学计算机科学与技术, 2007:1~6.
    [16] David A. Bader著,都志辉等译.面向千万亿次计算的算法与应用[M],北京,清华大学出版社,2008:1~356.
    [17]张宇,陈德辉.谈谈高性能计算机对数值天气预报发展的重要技术支撑作用[J].科研信息化技术与应用,2010,1(4):8~19.
    [18] Xie J, Yang C, Zhou B, Huang Q. High-performance computing for the simulation of dust storms[J]. Computers, Environment and Urban Systems, 2010, 34 (4): 278~290.
    [19] Gicquel L Y M, Gourdaina N, Boussuge J F, Deniau H, Staffelbacha G, Wolfa P, Poinsot T. High performance parallel computing of flows in complex geometries[J]. Comptes Rendus Mécanique, 2011, 339(2-3): 104~124.
    [20] Gruber R, Ahusborde E, Azaiez M, Keller V, Latt J. High performance computing for partial differential equations[J]. Computers & Fluids, 2011, in press.
    [21]颜宏.大规模并行计算-21世纪气象数值模拟与预报的未来.数值天气预报中的新技术[M].北京,气象出版社,1995:295~306.
    [22]周秀骥,吴国雄,郑国光.中国气象科学技术发展战略研究[J].地球科学进展,2005,20(3):261~267.
    [23]―面向21世纪中国气象数值预报‖创新技术工程体系与研究课题组:面向21世纪的中国气象数值预报[R].北京,2001.
    [24]薛纪善,陈德辉.数值预报系统GRAPES的科学设计和应用[M].北京,科学出版社,2008.
    [25]张人禾,沈学顺.中国国家及新一代业务数值预报系统GRAPES的发展[J].科学通报,2008,53(20):2393~2395.
    [26]薛纪善.新世纪初我国数值天气预报的科技创新研究[J].应用气象学报,17 (5):602~610.
    [27] Bjerkens V. Das Problem der Wettervorhersage, betrachter vom Stanpunkt der Mechanik und der Physik[J]. Metror Zeits, 1904 ,21:1~7.
    [28] Richardson L F. Weather Prediction by Numerical Process[M]. London: Cambrige University Press, 1922, reprinted Dover, New York, 1965.
    [29]曾庆存.我国大气动力学和数值天气预报研究工作的进展[J].大气科学,1979,3(3):256~269.
    [30]淘诗言,赵思雄,周晓平等.天气学和天气预报的研究进展[J].大气科学,2003,27(4):451~467.
    [31]穆穆,季仲贞,王斌等.地球流体力学的研究与进展[J].大气科学,2003, 27(4):689~711.
    [32]纪立人,陈嘉滨,张道民等.数值预报模式动力框架发展的若干问题综述[J].大气科学,2005,29(1):120~130.
    [33] R.A.Pielke and R.C. Weather impacts, forecast, and policy[J]. Bull. Amer. Meteor. Soc., 2002:393~403.
    [34] Thuburn J. Some conservation issues for the dynamical cores of NWP and climate models[J]. Journal of Computational Physics, 2008, 227(7): 3715~3730.
    [35] Laprise R. Regional climate modeling[J]. Journal of Computational Physics, 2008, 227(7): 3641~3666.
    [36] Leutbecher M, Palmer T N. Ensemble forecasting[J]. Journal of Computational Physics, 2008, 227(7): 3515~3539.
    [37] Prusa J M, Smolarkiewicz P K, Wyszogrodzki A A. EULAG, a computational model for multiscale flows[J]. Computers & Fluids, 2008, 37(9): 1193~1207.
    [38]丑纪范.天气数值预报中使用过去资料的问题[J].中国科学, 1974(6):635~644.
    [39] Lorenc A. Analysis method for numerical weather prediction[J]. Quart. J. Roy. Meteor. Soc. 1986(112):1177~1194.
    [40] Kalany. E著,蒲朝霞,杨福全,邓北胜等译.大气模式、资料同化和可预报性[M].北京,气象出版社,2005:1~102.
    [41]薛纪善,庄世宇,朱国富等. GRAPES新一代全球/区域变分同化系统研究[J].科学通报, 2008, 53(20):2408~2414.
    [42]朱国富,薛纪善,张华等. GRAPES变分同化系统中卫星辐射率资料的直接同化[J].科学通报, 2008, 53(20):2424~2427.
    [43] ECMWF technical report, 2000. Numerical Prediction Model in high resolution[R]. Workshop Procedings of European Centre for Medium-Range Weather Forecasts, June 2000.
    [44] G.H.Bryan, J.C. Wyngaard, and J.M.Fritsch. Resolution requirements for the simulation of deep moist convection[J]. Mon. Wea. Rev., 2003:2394~2416.
    [45]中国气象局.数值天气预报发展规划(2011-2015)[R], 2010-12.
    [46] Courant, R., Friedrichs, K.-O. and Lewy, H.: U ber die partielle differenzengleichungen der mathematischen physic[J]. Math. Annalen 1928 (100):32~74.
    [47] J.R.霍尔顿.中国人民解放军空军气象学院训练部译.动力气象学引论[M].北京,科学出版社,1980.
    [48]廖洞贤,王两铭.数值天气预报原理及其应用[M].北京,气象出版社, 1986.
    [49]沈桐立,田永祥,葛孝贞等.数值天气预报(修订版)[M].北京,气象出版社,2003.
    [50]曾庆存.大气运动的特征参数和动力学方程[J].气象学报, 1963, 33(4):472~483.
    [51] Gal-Chen T, Somerville R C J. On the use of a coordinate transformation for the solution of the Navier-Stokes equations[J]. J Comput Phys,1975(17):209~228.
    [52]曾庆存,袁重光.求解天气预报方程组的分解算法[J].科学通报, 1980(18):842~845.
    [53]郭秉荣,丑纪范,杜形远.大气科学中的数学方法的应用[M].北京,气象出版社,1986.
    [54]丑纪范.大气科学中的非线性与复杂性[M].北京,气象出版社,2002:1~33.
    [55] WMO. Report of 25rd Session of the CAS/JSC Working Group on Numerical Experimentation[R]. 2009 , WMO Technical Document. WMO/TD-NO. 1524, CAS/JSC WGNE Report No.25(Offenbach, Germany, 2-6 November 2009).
    [56] WMO. Report of 24rd Session of the CAS/JSC Working Group on Numerical Experimentation[R]. 2008 , WMO Technical Document. WMO/TD-NO. 1486, CAS/JSC WGNE Report No.24(Montreal, Canada, 3-7 November 2008).
    [57] http://www.top500.org/
    [58] Edward Anderson, Z. Bai, C. Bischof, et al. LANPACK User’s Guide. Society for Industrial and Applied Mathematics, Philadephia, PA, Third edition, 1999.
    [59] http://www.top500.org/lists/2010/11/press-release
    [60]李晓梅.从TOP500座次表看高性能计算环境的发展变化[J].装备指挥技术学院学报,2002,13(5):50~53.
    [61] http://www.top500.org/lists/2010/11/performance_development
    [62]胡守仁.现代超级计算机系统[J].计算机学报,1991(1):47~56.
    [63] Strohmaier E, Dongarra J J, Meuer H W, Simon H D. Recent trends in the marketplace of high performance computing[J]. Parallel Computing, 2005, 31(3-4): 261~273.
    [64]金之雁,颜宏.并行计算数值天气预报模式[C].南京,第四届全国并行算法学术会议论文集,1993.
    [65]宋君强,张卫民.YH-2中期数值天气预报模式的并行计算[C].南京,第四届全国并行算法学术会议论文集, 1993.
    [66] Wehner M F, Mirin A A, Eltgroth P G, Dannevik W P, Mechoso C R, Farrara J D, Spahr J A. Performance of a distributed memory finite difference atmospheric general circulation model[J]. Parallel Computing, 1995, 21(10): 1655~1675.
    [67] Baillie C, Michalakes J, Skalin R. Regional weather modeling on parallel computers[J]. Parallel Computing, 1997, 23(14): 2135~2142.
    [68] Rantakokko J. Strategies for parallel variational data assimilation[J]. Parallel Computing, 1997, 23(13): 2017~2039.
    [69] Sathye A, Xue M, Bassett G, Droegemeier K. Parallel weather modeling with the advanced regional prediction system[J]. Parallel Computing, 1997, 23(14): 2243~2256.
    [70] Radi B, Estrade J F. Adaptive parallelization techniques in global weather models[J]. Parallel Computing, 1998, 24(8): 1167~1175.
    [71] Bouchaib Radi, Jean-Francois Estrade: Adaptive parallelization techniques in global weather models[J]. Parallel Computing, 1998(24): 1167~1175.
    [72] Mierendor H, Joppich W. Empirical performance modeling for parallel weather prediction codes[J]. Parallel Computing, 1999, 25(13-14): 2135~2148.
    [73]王业桂,宋君强.全球中期数值天气预报模式的并行计算[C].杭州,中国科协首届学术年会论文集,1999.
    [74] Govett M, Hart L, Henderson T, Middlecoff J, Schaffer D. The Scalable Modeling System: directive-based code parallelization for distributed and shared memory computers[J]. Parallel Computing, 2003, 29(8): 995~1020.
    [75] Yanagawa T, Suehiro K. Software system of the Earth Simulator[J]. Parallel Computing, 2004, 30(12): 1315~1327.
    [76] Habata S, Umezawa K, Yokokawa M, Kitawaki S. Hardware system of the Earth Simulator[J]. Parallel Computing, 2004, 30(12): 1287~1313.
    [77] Ishizaki H, Ishikawa I. High parallelization efficiency in barotropic-mode computation of ocean models based on multi-grid boundary ghost area[J]. Ocean Modelling, 2006, 13 (3-4):238~254.
    [78] Vrugt J A, Nuallain B O, Robinson B A, Bouten W, Dekker S C, Sloot P M A. Application of parallel computing to stochastic parameter estimation in environmental models[J]. Computers & Geosciences, 2006, 32(8): 1139~1155.
    [79] Bastian P, Blatt M, Dedner A, Engwer C, Kl?fkorn R, Ohlberger M, Sander O. A generic grid interface for parallel and adaptive scientific computing. part I: abstract framework[J]. Computing, 2008, 82(2-3): 103~119.
    [80] Bastian P, Blatt M, Dedner A, Engwer C, Kl?fkorn R, Ohlberger M, Sander O. A generic grid interface for parallel and adaptive scientific computing. part II: implementation and tests in DUNE. Computing[J]. 2008, 82(2-3): 121~138.
    [81] L?scher A, Retscher C, Fusco L, Goncalves P, Brito F, Kirchengast G. Variational optimization for global climate analysis on ESA's high performance computing grid[J]. Remote Sensing of Environment, 2008, 112 (4): 1450~1463.
    [82] Peter Lynch: The origins of computer weather prediction and climate modeling[J]. Journal of Computational Physics, 2008(227):3431~3444.
    [83] Raba N, Stankova E, Ampilova N. On Investigation of Parallelization Effectiveness with the Help of Multi-core Processors[J]. Procedia Computer Science, 2010(1): 2763~2768.
    [84] Wolters L, Cats G, Gustafsson N, Wilhelmsson T. Data-parallel numerical methods in a weather forecast model[J]. Applied Numerical Mathematics, 1995(19): 159~171.
    [85] Hack J J, Rosinski J M, Williamson D L, Boville B A, Truesdale J E. Computational design of the NCAR community climate model[J]. Parallel Computing, 1995, 21(10): 1545~1569.
    [86] Jones P W, Kerr C L, Hemler R S. Practical considerations in development of a parallel SKYHI general circulation model[J]. Parallel Computing, 1995, 21(10): 1677~1694.
    [87] Bleck R, Dean S, O’Keefe M, Sawdey A. A comparison of data-parallel and message-passing versions of the Miami Isopycnic Coordinate Ocean Model (MICOM) [J]. Parallel Computing, 1995, 21(10): 1695~1720.
    [88] Michalakes J. MM90: A scalable parallel implementation of the Penn State/NCAR Mesoscale Model (MM5) [J]. Parallel Computing, 1997, 23(14): 2173~2186.
    [89] Skilin R, Bjgrge D. Implementation and performance of a parallel version of the HIRLAM limited area atmospheric model[J]. Parallel Computing, 1997, 23(14): 2161~2172.
    [90] E.A.H Vollebregt, M.R.T Roest, J.W.M.Lander : Large scale computing at Rijkswaterstaat[J]. Parallel Computing, 2003(29): 1~20.
    [91]解以扬,庞璐,孟冬梅.数值天气预报与并行计算[J].天津师范大学学报(自然科学版),2001, 21(4):65~69.
    [92] S.R.M. Barros, D.Dent, L.Isaksen, et al: The IFS model: A parallel production weather code[J]. Parallel Compting, 1995(21): 1621~1638.
    [93] JOHN HaGUE,―Optimisation OF ecmwf’s Integrated forecast system(IFS) for the IBM p690‖[C]. Proceedings of the Tenth ECMWF Workshop on the Use of Parallel Processors in Meteorology. World Scientific, 2002:294~303.
    [94] Deborah Salmond, Sami Saarinen,―Early Experiences with the IBM p690+ at ECMWF‖[C]. Proceedings of the Eleventh ECMWF Workshop on the Use of Parallel Processors in Meteorology. World Scientific, 2004:1~12.
    [95] Mats Hamrud : Report from IFS scalability project[R]. ECMWF technical memorandum(616), 2010.
    [96]李金才,龚西平,赵文涛.数值天气预报全球谱模式并行计算研究[J].计算机工程与科学,2004,26(11):71~74.
    [97] John G. Michalakes, Michael McAtee, Jerry Wegiel. Software infrastructure for the Weather Research and Forecast model[R]. http://www.wrf-model.org.
    [98] Michalakes J, Dudhia J, Gill D, et al. Design of a next-generation regional weather research and forcast model[C]. Proceedings of the Eighh ECMWF Workshopon the Use of Parallel Processors in Meteorology. World Scientific, River Edge, New Jersey, 1999:177~123.
    [99] Michalakes J, Dudhia J, Gill D, et al. The Weather Research and Forecast Model: Software Architecture and Performance[C]. Proceedings of the Eleventh ECMWF Workshop on the Use of Parallel Processors in Meteorology. World Scientific, 2004:156~168.
    [100]朱小谦,张卫民,宋君强.天气预报有限差分格式并行计算研究[J].计算机工程与科学,2004,26(4):48~50.
    [101]李晓梅,蒋增容.并行算法[M].长沙,湖南科学技术出版社,1992.
    [102] Huang Kai, Xu Zhiwei. Scalable Parallel Computing: Technolory, Architecture, Programing[M]. Beijing, China Machine Press, 1999.
    [103] Ananth Grama, Anshul Gupta,George Karypis,Vipin Kumar. Introduction to Parallel Computing,Second Edition[M].北京,机械工业出版社,2003(影印版).
    [104] Calvin Lin, Lawrence Snyder:Principles of Parallel Programing[M]. Beijing, China Machine Press, 2008:61~85.
    [105]李晓梅,吴建平.数值并行算法与软件[M].北京,科学出版社,2007.
    [106]陈永然.面向高性能计算的性能评价模型技术研究[D].长沙:国防科技大学计算机科学与技术, 2007:1~10.
    [107]金之雁,王鼎兴.异构系统动态负载平衡的扩散算法[J].计算机学报,2003, 26(11):1487~1493.
    [108]金之雁,王鼎兴.异构系统中负载平衡扩散算法的加速比较[J].软件学报,2003,14(5):904~910.
    [109]张理论、叶红、吴建平.基于最大负载偏移率的并行负载平衡性能分析[J].计算机研究与发展,2010,47(6):1125~1131.
    [110]莫则尧,刘兴平,廖振民.应用程序并行与优化关键技术研究[J].数值计算与计算机应用,2002(1):31~40.
    [111]张云泉.面向高性能数值计算的并行计算模型DRAM(h)[J].计算机学报, 2003,26(12):1660~1670.
    [112] Phillips, N. A., A coordinate system having some special advantages for numerical forecasting[J]. J. Meteor.,1957(14):184~185.
    [113] Gal-Chen, T., and R. C. J. Somerville.On the Use of a Coordinate Transformation For the Solution of the Navier-Stockes Equations[J]. J. Comput. Phys , 1975(17): 209~228.
    [114] Met Office Report. Joy of U.M.5.3-Model Fomulation[R]. 2002:15.1~15.15 and Appendix J.
    [115] NWPP Report series No. 26. 2000. Numerical Weather Prediction Progress Report for 1999[R], Technical Document WMO/TD-No.1018.
    [116]李庆扬,易大义,王能超.现代数值分析[M].北京,高等教育出版社,1995.
    [117] Steven C. Chapra and Raymond P. Canale. Numerical Methods for engineers-Third Edition(影印版)[M].北京,科学出版社,2002.
    [118]李庆扬,王能超,易大义.数值分析[M].北京,清华大学出版社,2001.
    [119]余德浩,汤华中.微分方程数值解法[M].北京,科学出版社,2003:1~90.
    [120]张文生.科学计算中的偏微分方程有限差分法[M].北京,高等教育出版社, 2006: 67~109+172~231.
    [121]陈德辉,薛纪善,杨学胜. GRAPES新一代全球/区域多尺度统一数值预报模式总体设计研究[J].科学通报, 2008,53(20):2396~2407.
    [122]陈德辉,沈学顺.新一代数值预报系统GRAPES研究进展[J].应用气象学报, 2006,17(6):773~777.
    [123]徐国强,陈德辉,薛纪善. GRAPES物理过程的优化试验及程序结构设计[J].科学通报, 2008,53(20):2428~243.
    [124]杨学胜,陈嘉滨,胡江林.全球非静力半隐式半拉格朗日模式及其极区离散处理[J].中国科学D辑,2007, 37(9):1267~1272.
    [125]胡江林.高分辨率数值模式气压梯度力算法研究[D].南京:南京信息工程大学, 2007:1~8.
    [126] Robert A. A semi-lagrangian and semi-implicit numerical integration scheme for the primitive meteorological equations[J]. J Meteorol Soc Japan, 1982(60):319~325.
    [127] Staniforth, A. and J. Cote.Semi-Lagrangian integration scheme for atmospheric models– A review. Mon[J]. Wea. Rev. 1991(119):2206~2223.
    [128] Semazzi, F.H.M., J.-H. Qian, and J.S. Scroggs. A global nonhydrostatic, semi-Lagrangian, atmospheric model orography[J]. Mon. Wea. Rev., 1995(123): 2534~2550.
    [129] ECMWF technical report, 1995: Semi-Lagrangian Methods[R], Workshop Proceedings of European Centre for Medium-Range Weather Forecasts, 6– 8 November 1995.
    [130] Bates J R, Semazzi F H, Higgins R W, et al. Integration of the shallow water equation on th sphere using a vector semi-lagrangian scheme with a multigrid solver[J]. Mon Weather Rev, 1990(118):615~627.
    [131] Qian J H, Semazzi F H M, Scroggs J S. A global non-hydrostatic semi-Lagrangian atmospheric model with orography[J]. Mon Weather Rev, 1998(126): 747~770.
    [132] Arakawa A., and V. R. Lamb. Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model[J]. Methods in Computational Physics, General Circulation Models of the Atmosphere, Academic Press, New York, 1977(17) :102~110.
    [133] Cullen, M. J. P. A Test of a Semi-Implicit Integration Technique for a Fully Compressible Non-Hydrostatic Model[J]. Quart. J. Roy. Meteor. Soc., 1990(116): 1253~1258.
    [134] Eric J. Braude. Software Engineering An Object-Oriented Perspective[M]. Beijing, Publishing House of Electronics Industry,2003:237~283.
    [135]张晨曦,王志英,张春元.计算机体系结构[M].北京,高等教育出版社,2000:308~318.
    [136] Gerard Tel著,霍红卫译.分布式算法导论[M].北京,机械工业出版社,2005:1~21.
    [137] Michael J. Quinn. Parallel Programming in C with MPI and OpenMP(影印版)[M].北京,清华大学出版社,2005:93~111+404~514.
    [138] http://www.earthsystemmodeling.org/
    [139] Hill C., Deluca C., Balaji, et al. The architecture of the earth system modeling framework[J]. Computing in science & engineering, 2004, 6(1):18~28.
    [140]郑重,宋君强,吴建平.地球科学应用软件框架的研究与发展[J].计算机工程2007,33(10):44~45.
    [141] Chen Z, Dongarra J, Luszczek P, Roche K. Self-adapting software for numerical linear algebra and LAPACK for clusters[J]. Parallel Computing, 2003, 29(11-12): 1723~1743.
    [142]付镝.基于Itanium2平台的数值模拟气象软件的优化方法与实现[硕士论文].北京大学,2006.
    [143] Ritche H, Beaudoin C. Approximation and sensitivity experiments with a baroclinic semi-Lagrangian spectral model[J]. Mon. Wea. Rev., 1994(122):2391~2399.
    [144] Richard S. Varga.矩阵迭代分析:第2版=Matrix Iterative Analysis(Second Edition)—影印版[M].北京,科学出版社,2006:1~358.
    [145] Yousef Saad.稀疏线性系统的迭代方法:第2版=Iterative Methods for Sparse Linear Systems(Second Edition)—影印版[M].北京,科学出版社,2009.
    [146] Saad Y, Schultz M H, A generalized minimal residual algorithm for solving nonsymmetric linear systems[J]. Sci Stat Comput, 1986 (7):856-869.
    [147]蒋尔雄.矩阵计算[M].北京,科学出版社,2008:1~121.
    [148] Skamarock W. C., P. K. Wmolarkiewicz and J. B. Klemp. Preconditioned Conjugate-Residual Solvers for Helmholtz Equations in Non-Hydrostatic Models[J]. Mon. Wea. Rev., 1997(125):587~599.
    [149]吴建平.稀疏线性代数方程组迭代法中的预处理技术研究[D].国防科学技术大学博士论文,2002.
    [150] Jia-Chang Sun, Jian-Wen Cao, Chao Yang: Parallel preconditioners for largescale partial difference equation systems[J]. Journal of Computational and Applied Mathematics, 2009(226): 125~135.
    [151]洛志刚,仲妍,吴枫:稀疏线性方程组求解中的预处理技术综述[J].计算机工程与科学,2010,32(12):89~93.
    [152]刘宇,曹建文.适用于GRAPES数值天气预报软件的ILU预条件子[J].计算机工程与设计,2008,29 (3):731~734.
    [153] http://www.mcs.anl.gov/petsc/petsc-as/
    [154] S.Balay, K. Buschelman, V. Eijkhout,etc., PETSc Users Manual- Revision 3.0.0[R], ARGONNE NATIONAL LABORATORY, December, 2008.
    [155] HYPRE: high performance preconditioners; Scalable Algorithms Group, Center for Applied Scientific Computing, http://www.llnl.gov/CASC/hypre.
    [156]张理论,宋君强,赵文涛.基于PETSc并行求解GRAPES全球非静力亥姆霍兹问题[J].气象学报,待发表.
    [157]高茂森.PETSc高性能线性解法器的开发与应用[硕士论文].长沙:国防科技大学计算机科学与技术, 2006:4~24.
    [158] Christiane Jablonowski, Peter H. Lauritzen, Mark Taylor and Ramachandran D. Nair, 2008: Idealized test cases for the dynamical cores of Atmospheric General Circulation Models: A proposal for the NCAR ASP 2008 summer colloquium [R].
    [159]左瑞婷,张铭,张东凌:21层大气环流模式IAP AGCM-Ⅲ的设计及气候数值模拟—动力框架[J].大气科学,2004,28(5):659~674.
    [160]张贺,林朝晖,曾庆存.IAP AGCM-4动力框架的积分方案及模式检验[J].大气科学,2009,33(6):1267~1285.
    [161]李晓梅,莫则尧,胡庆丰等.可扩展并行算法的设计与分析[M].北京,国防工业出版社,2001.
    [162]陈军,莫则尧,李晓梅等.大规模并行应用程序的可扩展性研究[J].计算机研究与发展,2000,37(11):1382~1388.
    [163]张云泉,孙家昶,唐志敏.数值计算程序的存储复杂性分析[J].计算机学报,2000,23(4):365~373.
    [164] Juraj Hromkovic. Communication Complexity and Parallel Computing(影印版)[M].北京,世界图书出版社,2005:7~150.
    [165] Gustafson J. Reevaluation Amdal’s Law[J]. Communication of ACM, 1988,31(5):532~533.
    [166] A Grama, A. Gupta, U. Kumar. Isoefficiency function: A scalability metric for parallel algorithm and architectures[J]. IEEE Trans. Parallel and Distributed System, 1993,1(3):12~21.
    [167] X. Sun, D. Rover. Scalability of Parallel algorithm machine combination[J].IEEE Trans. Parallel and Distributed System, 1994,5(6):599~613.
    [168] A Grama, A. Gupta, E. Han, et al. Parallel algorithm scalability issues in petaflops architectures[R]. University of Minnesota Supercomputing Institute Research Report UMSI 2000/252.
    [169]莫则尧.实用的并行程序性能分析方法[J].数值计算与计算机应用,2000,21(4):266~275.
    [170]陈军,李晓梅.近优可扩展性:一种实用的可扩展性度量[J].计算机学报,2001,24(2):179~182.
    [171]迟利华,刘杰,胡庆丰.数值并行计算可扩展性评价与测试[J].计算机研究与发展,2005,42(6):1073~1078.
    [172]徐小文,莫则尧.并行代数多重网格算法可扩展性能分析[J].计算物理,2007,24(4):387~394.
    [173]徐小文,莫则尧,曹小林.HYPRE中多重网格界发起的并行可扩展性能分析[J].软件学报,2009,20(12):8~14.
    [174] Sanjay H A, Vadhiyar S. Performance modeling of parallel applications for grid scheduling[J]. Journal of Parallel and Distributed Computing, 2008, 68(8): 1135~1145.
    [175] http://www.gov.cn/jrzg/2010-11/15/content_1745540.htm

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700