用户名: 密码: 验证码:
气候变化对流域水循环和水资源影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气候变化是当今国际社会普遍关注的全球性问题。水循环作为气候系统的重要组成部分,首当其冲受到气候变化的影响。研究气候变化对流域水循环及水资源的影响,对维护河流健康生命,保障水资源可持续利用,保证流域社会经济可持续发展具有重要的现实意义。论文在综述国内外研究现状和进展的基础上,结合国家自然科学基金等课题,开展气候变化对流域水循环及水资源的影响研究。论文的主要工作及成果如下:
     (1)比较分析了ANN、SSVM、SDSM、ASD和LARS-WG五种统计降尺度方法以及全球气候模式CGCM2对降水和气温的模拟结果。结果表明统计降尺度法能够明显改善全球气候模式降水和气温输出结果;SSVM法对降水量的模拟最好,SDSM和ASD法对降水的变化过程模拟较好;五种统计降尺度法对气温模拟的结果要优于对降水的模拟,并且它们的模拟值基本一致,其中SDSM和ASD法的模拟效果较好。
     (2)应用SSVM、SDSM和ASD统计降尺度方法预测汉江流域未来降水、气温变化。在CGCM2和HadCM3模式和未来A2情景下,三种降尺度方法模拟汉江流域降水结果存在一定差异,但是可以看出它们预测未来3个时期(2020s(2011~2040),2050s(2041~2070),2080s(2071~2100))汉江流域降水长期将存在增加的趋势。气温预测的一致性较好于降水,预测结果表明:2020s时期气温将比基准年(1961~2000)降低,2050s时期气温和基准年基本一样,2080s时期将比基准年升高,并且未来3个时期汉江流域气温存在上升趋势。
     (3)通过Bay-LSSVM统计降尺度方法对GCM的输出进行尺度降解,以及分别采用两参数月水量平衡模型和VIC分布式水文模型与GCM进行耦合,预测未来丹江口水库及整个汉江流域径流量情况。结果显示,虽然模拟情况不尽相同,但未来3个时期汉江流域的径流量有增加趋势。
     (4)预测汉江流域社会经济发展、人口增长及水资源的需求。采用GCM输出和SSVM法模拟在A2情景下,汉江流域未来径流量的变化情况,分析了汉江流域水资源系统对气候变化的脆弱性反应。结果表明汉江流域水资源系统的调节能力较强,不会出现水资源系统恶化的“阈值”。
     (5)把经过ASD尺度降解的CGCM2输出作为HBV水文模型的输入,分析气候变化情景下,汉江上游径流极值事件的变化情况。在A2情景下,未来汉江上游同一量级的洪水重现期将缩短,同一重现期的枯水历时将增加,这可能增加丹江口水库的防洪风险,同时给中线调水工程及整个流域水资源利用带来不利影响;在B2情景下,未来汉江上游洪水和枯水极值事件都趋于平缓,比较有利于汉江流域的水资源综合利用。
     (6)应用ASD降尺度方法降解全球气候模式HadCM3的输出,得到未来长江流域的降水情况;利用Mann-Kendall检验分析未来长江流域降水极值事件的时空变化情况。结果显示:未来在A2和B2情景下,长江流域年降水有上升的趋势,降水增加显著的区域主要位于长江流域上游东部和中游中南部;未来90年(2010-2099)长江流域的年/夏季降水极值事件明显增加的站点,主要位于长江上游西北部和中游区域;长江流域上游西北部和中游区域未来遭受洪涝灾害的可能性将有所增加;未来长江流域上、中、下游降水极值事件可能在2050年后有所增加。
Climate change is a global issue that is greatly concerned by the international community. As one of the important components of the climatic system, hydrological cycle has to bear the brunt of climate change. Therefore, the study of climate change impacts on hydrological cycle and water resources can play an important role in maintaining river health, protecting water resources sustainable utilization and ensuring sustainable socio-economic development of the watershed. The present situation and advancement of related research were concisely reviewed. Supported by the National Natural Science Foundation of China, this thesis was mainly focused on coupling the general circulation model (GCM) and hydrological model by statistical downscaling to investigate climate change impact on spatial-temporal distribution of water resources, discuss and analyze the vulnerability of hydrological cycle and the extreme hydrological evens to climate change. The main works and innovations were summarized as follows:
     (1) The simulated results of precipitation and temperature by five statistical downscaling methods, including Artificial Neural Network (ANN), Smooth Support Vector Machine (SSVM), Statistical Downscaling Model (SDSM), Automated Statistical Downscaling model (ASD) and Long Ashton Research Station Weather Generator (LARS-WG), were compared with the output of CGCM2. The results show that statistical downscaling can significantly improve the precipitation and temperature output of general circulation model. It is found that SSVM is the best at simulating amount of precipitation in the five methods, while SDSM and ASD are better at simulating variability of precipitation and temperature. Furthermore, the comparison results also show that the simulation of temperature by the five downscaling methods are basically the same, and better than the simulation of precipitation.
     (2) Under A2 climatic scenario, the change of precipitation and temperature in the Hangjiang Basin during 2020s (2011~2040),2050s (2041~2070) and 2080s (2071~2100) were predicted by SSVM, SDSM and ASD, respectively. In spite of the predicted trends of precipitation corresponding to CGCM2 and HadCM3 by the three downscaling methods are rather different, it is shown that the precipitation will increase during these three periods compared with baseline value. For predicting the trend of temperature, the results are more consistent than precipitation, and it is shown that the temperature will decrease during 2020s, no significantly change during 2050s, and, increase during 2080s. Throughout these three periods, there is increase temperature trend in the Hanjiang Basin.
     (3) The future runoffs of the Danjiangkou Reservoir and whole Hanjiang Basin were predicted by Bay-LSSVM to downscale the output of GCM, and then coupled with two parameter monthly water balance model and the distributed VIC model, respectively. The results show that the runoff will increase in these three periods in future.
     (4) The socio-economic development, population growth and water demand in the Hanjiang Basin were predicted. By taking account of the prediction runoff under A2 climatic scenario downscaled by SSVM, the vulnerability response of water resource system in the basin to the climate change was analyzed. The results indicate that the regulation ability of water resources system in the Hanjiang Basin is strong, and it is not found the threshold of deteriorating the system.
     (5) Under A2 and B2 climatic scenarios, the runoff of the upstream Hanjiang Basin were predicted by coupling CGCM2 with HBV hydrologic model by means of ASD downscaling method. The study results show that the intensity and frequency of flood and drought events, measured by peak discharge and low flow duration, respectively, will increase significantly in the period of 2011 to 2100 compared to the period of 1961 to 2000 under A2 climatic scenarios, which give the adverse effects to flood control in the Danjiangkou Reservoir, implement of the middle route of South-to-North Water Diversion Project and utilization of water resources in the whole basin. However, under B2 climatic scenarios, both flood and drought events will moderate, which is beneficial to comprehensive utilization of water resources in the basin.
     (6) An automated statistical downscaling method (ASD) was first presented to downscale the output of HadCM3 and predict the precipitation of the Yangtze Basin under A2 and B2 climatic scenarios. The Mann-Kendall test was applied to investigate spatial and temporal changes of precipitation extremes over the Yangtze Basin at 95% confidence level under the climate change conditions. It was revealed that the annual precipitation has an increasing tendency during in the period of 2010 to 2099, and the significant increasing trend would mostly dominate in the eastern part of the upper region and the southern and central parts of the middle region. The results also show that the significant increasing trend of precipitation maxima are mainly occurred in the northwest upper part and the middle part of the Yangtze Basin for the whole year and summer under the both climate change scenarios, and the starting point for pattern change of precipitation maxima will appear about 2050. Therefore, it can be concluded that the northwest upper and middle Yangtze Basin might encounter higher risk of flood hazards after about 2050.
引文
[1]Arnell N.W., Reynard N.S. Estimating impacts of climatic change on river flows:Some examples from Britain [C]. Proc. Conference on Climate and Water,1989, Helsinki,1:413-425.
    [2]Arnell N.W. Factors controlling the effects of climate change on river flow regimes in a humid temperature environment [J]. Journal of Hydrology,1992,132:321-342.
    [3]Arnell N.W. A simple water balance model for the simulation of streamflow over a large geophysical domain [J]. Journal of Hydrology,1999,217:314-355.
    [4]Bate B.C., Kundzewicz Z.W., Wu S., Palutikof J., Eds. Climate Change and Water. Technical Paper of the Intergovernmental Panel on Climate Change [M].2008, IPCC Secretariat, Geneva,210pp.
    [5]Bardossy A., Stehlik J., Caspary H.J. Automated objective classification of daily circulation patterns for precipitation and temperature downscaling based on optimized fuzzy rules [J]. Climate Research,2002,23:11-22.
    [6]Becker S., Gemmer M., Jiang T. Observed and interpolated precipitation trends and variability in the Yangtze River catchments area [J]. Journal of Lake Sciences,2003,15 (Supplement):38-48.
    [7]Bergant K., Kajfez-Bogataj J., Crep insek Z. Statistical downscaling of general circulation model simulated average monthly air temperature to the beginning of flowering of the dandelion (Taraxacum officinale) in Slovenia [J]. International Journal of Biology,2001,46:22-32.
    [8]Bergstrom S. Development of a conceptual deterministic rainfall-runoff model [J]. Nodic hydrology,1973,4:147-170.
    [9]Bergstrom S., Carlsson B., Gardelin M., Lindstrom G., Pettersson A., Rummukainen M. Climate change impacts on runoff in Sweden-assessments by global climate models, dynamical downscaling and hydrological modeling [J]. Climate Research,2001,16:101-112.
    [10]Bishop C.M. Neural Networks for Pattern Recognition [M]. New York:Oxford University Press, 1995.
    [11]Blenkinsop S., Fowler H.J. Changes in drought frequency, severity and duration for the British Isles projected by the PRUDENCE regional climate models [J]. Journal of Hydrology,2007,342: 50-71.
    [12]Busuioc A., Chen D., Hellstrom C. Performance of statistical downscaling models in GCM validation and regional climate change estimate:Application for Swedish precipitation [J]. International Journal of Climatology,1999,21:557-578.
    [13]Carter T.R., Parry M.L., Nishioka S. Climate Change:Preliminary Guidelines for Assessing Impacts of Climate Change [R]. ECU/CGER,1992.
    [14]Chen D., Hellstrom C., Chen Y. Preliminary Analysis and Statistical Downscaling of Monthly Temperature in Sweden [C]. Department of Physical Geography, Goteborg,1999.
    [15]Chen D. A monthly circulation climatology for Sweden and its application to a winter temperature case study [J]. International Journal of Climatology,2000,20:1067-1076.
    [16]Chen H., Guo S.L., Xu C.-Y., Singh V.P. Historical temporal trends of hydro-climatic variables and runoff response to climate variability and their relevance in water resource management in the Hanjiang basin [J]. Journal of Hydrology,2007,344:171-184.
    [17]Chen H., Xiong W., Guo J. Application of Relevance Vector Machine to downscale GCMs to runoff in hydrology [C]. Fifth International Conference on Fuzzy Systems and Knowledge Discovery,2008,598-601.
    [18]Chen H., Guo J., Xiong W., Guo S.L., Xu C.-Y. Downscaling GCMs using the Smooth Support Vector Machine Method to predict daily precipitation in the Hanjiang Basin [J]. Advance Atmospheric Science,2010,27(2):274-284.
    [19]Chen Y.D., Chen X., Xu C.Y., Shao Q. Downscaling of daily precipitation with a stochastic weather generator for the subtropical region in South China [J]. Hydrology and Earth System Sciences Discussions,2006,3:1-39.
    [20]Christensen Ole B., Christensen Jens H., Bennert Machenhauer, Michael Botzet. Very high-resolution regional climate simulations over Scandinavia-present climate [J]. Journal of Climate,1998,11:3204-3229.
    [21]Chu J.T., Xia J., Xu C.-Y., Singh V.P. Statistical downscaling of daily mean temperature, pan evaporation and precipitation for climate change scenarios in Haihe River of China. Theoretical and Applied Climatology,2010,99:149-161.
    [22]Coulibaly P., Dibike Y.B., Anctil F. Downscaling Precipitation and Temperature with Temporal Neural Network [J]. Journal of Hydrometeorology,2005,6(4):483-496.
    [23]Dankers R., Christensen O.B., Feyen L., Kalas M., Roo A.D. Evaluation of very high-resolution climate model data for simulating flood hazards in the Upper Danube Basin [J]. Journal of Hydrology,2007,347:319-331.
    [24]Dibike Y.B., Coulibaly P. Hydrologic impact of climate change in the Saguenay watershed: comparison of downscaling methods and hydrologic models [J].Journal of Hydrology,2005,307: 145-163.
    [25]Dickinson R.E., Errico R.M., Giorgi F and Bates G.T. A regional climate model for the western United States [J]. Climatic Change,1989,15:383-422.
    [26]Fan L. Statistically Downscaled Temperature Scenarios over China [J]. Atmospheric and Oceanic Science Letters,2009,2(4),208-213.
    [27]Fontaine T.A., Klassen J.F. Hydrological response to climate change in the black hills of South Dakota, USA [J]. Hydrological sciences Journal,2001,46 (1):27-41.
    [28]Fowler H.J., Blenkinsopa S., Tebaldib C. Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modeling [J]. International Journal of Climatology,2007,27,1547-1578.
    [29]Gemmer M., Becker S., Jiang T. Observed monthly precipitation trends in China 1951-2002[J]. Theoretical and Applied Climatology.2004,77:39-45.
    [30]Ghosh S., Mujumdar P.P. Nonparametric methods for modeling GCM and scenario uncertainty in drought assessment [J]. Water Resources Research,2007,43, W07405, doi:10.1029/2006WR005351.
    [31]Ghosh S., Mujumdar P.P. Statistical downscaling of GCM simulations to streamflow using relevance vector machine [J]. Advances in Water Resources,2008,31:132-146.
    [32]Ghosh S., Mujumdar P.P. Climate change impact assessment:Uncertainty modeling with imprecise probability [J]. Geophysical Research Letters,2009,114, D18113, doi:10.1029/2008JD011648.
    [33]Giorgi F., Bates G.T. The climatological skill of regional model over complex terrain [J]. Monthly Weather Review,1989,117(11):2325-2347.
    [34]Giorgi F. Simulation of regional climate using a limited-area model nested in a general circulation model [J]. Journal of Climate,1990,3(8):941-963.
    [35]Giorgi F., Bates G.T., Nieman S. The multi-year surface cimatology of a regional atmospheric model over the western United States [J]. Journal of Climate,1993,6(1):75-95.
    [36]Giorgi F., Mearns L.O. Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the“Reliability Ensemble Averaging”(REA) method [J]. Journal of Climate,2002,5,1141-1158.
    [37]Giorgi F., Mearns L.O. Probability of regional climate change calculated using the reliability ensemble averaging (REA) method [J]. Geophysical Research Letters,2003,30(12),1629, doi:10.1029/2003GL017130.
    [38]Gleick P.H. The development and testing of a water balance model for climate impact assessment: modeling the Sacramento basin [J]. Water Resources Research,1987,23 (6):1049-1061.
    [39]Graham P., Andreasson J., Carlsson B. Assessing climate change impacts on hydrology from an ensemble of regional climate models, model scales and linking methods-a case study on the Lule River basin [J]. Climatic Change,2007,81:293-307.
    [40]Guo S.L. Impact of climate change on hydrological balance and water resource systems in the Dongjiang Basin, China [M]. Modeling and Management of Sustainable Basin-Scale Water Resource (Proceedings of Boulder Symposium,1995), IAHS Publication No.231.
    [41]Guo S.L., Wang J.X., Xiong L.H., Ying A.W. A macro-scale and semi-distributed monthly water balance model to project climate change impacts in China [J]. Journal of Hydrology,2002,268: 1-15.
    [42]Guo S.L., Guo J., Zhang J., Chen H. VIC distributed hydrological model to predict climate change impact in the Hanjiang Basin [J]. Science in China Series E:Technological Sciences,2009,52(11): 3234-3239.
    [43]Habets F., Noilhan J., Golaz C., Goutorbe J.P. The ISBA surface scheme in a mcroscale hydrological model applied to the Hapex-Mobilhy area part Ⅰ:Model and database [J]. Journal of Hydrology,1999,217:75-96.
    [44]Habets F., Noilhan J., Golaz C, Goutorbe J.P. The ISBA surface scheme in a macroscale hydrological model applied to the Hapex-Mobilhy area:Part Ⅱ:Simulation of streamflows and annual water budget [J]. Journal of Hydrology,1999,217:97-118.
    [45]Hall J., Fu G., Lawry J. Imprecise probabilities of climate change:aggregation of fuzzy scenarios and model uncertainties [J]. Climatic Change,81,265-281.
    [46]Hanson C.L., Cumming K.A.,Woolhiser D.A. Microcomputer program for daily weather simulations in the contiguous United States [M].USDA-ARS, Publ. ARS-114,Washington D C, 1994.
    [47]Hans T. The influence of climate change on stream flow in Danish rivers [J]. Journal of Hydrology, 2007,333:226-238.
    [48]Harpham C., Wilby R.L. Multi-site downscaling of heavy daily precipitation occurrence and amounts [J].Journal of Hydrology,2005,312:235-255.
    [49]Hay L.E., Wilby R.L., Leavesley G.H. A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States [J]. Journal of the American Water Resource Association,2000,36(2):387-397.
    [50]Hellstrom C., Chen D., Christine A. Comparison of climate change scenarios for Sweden based on statistical and dynamical downscaling of monthly precipitation [J]. Climate Research,2001,19: 45-55.
    [51]Hellstrom C., Chen D. Statistical downscaling based on dynamically downscaled predictors: Application to monthly precipitation in Sweden [J]. Advances in Atmospheric Sciences,2003,20: 951-958.
    [52]Hessami M., Gachon P., Ouarda T.B.M.J., St-Hilaire A. Automated regression-based Statistical Downscaling tool[J]. Environmental Modelling and Software,2008,23,813-834.
    [53]Hewitson B.C., Crane R.G. Climate downscaling:techniques and applications [J]. Climate Research,1996,7(2):85-95.
    [54]Hughes J., Guttorp P. A class of stochastic models for relating synoptic atmospheric patterns to regional hydrologic phenomena [J]. Water Resources Research,1994:1535-1546.
    [55]Huth R. Statistical Downscaling of Daily Temperature in Central Europe. Journal of Climate,2002, 15:1731-1742.
    [56]IPCC. Climate change1995:A Report of the Intergovernmental Panel on Climate Change [M]. 1995, IPCC, Geneva, Switzerland. pp 64.
    [57]IPCC. Emissions scenarios, Special Report of the Intergovernmental Panel on Climate Change [M]. Cambridge:Cambridge University Press,2000.
    [58]IPCC. Climate Change Synthesis Report. A Contribution of Working Groups Ⅰ,Ⅱ, and Ⅲ to the Third Assessment Report of the Intergovernmental Panel on Climate Change [M]. Watson R T and the Core Writing Team, eds., Cambridge University Press, Cambridge, UK, and New York,2001a.
    [59]IPCC. Cliamte Change 2001, Imapact, Adaptation, and Vulnerability, Summary for Policymaker, Contribution of Working Group Ⅱ to the Third Assessment Report of the Intergovermental Panal on Climate Change [M].2001b, Cambradge:Cambirdge University Press.
    [60]IPCC. Climate Change 2007:Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri R K and Reisinger A (eds.)] [M].2007, IPCC, Geneva, Switzerland,104 pp.
    [61]Jacob D., Podzun R. Sensitivity studies with the regional climate model REMO [J]. Meteorology and Atmospheric Physics,1997,63:119-129.
    [62]Jenkins G., Lowe J. Handling uncertainties in the UKCIP02 scenarios of climate change [C]. Hadley Cent. Tech.,2003, Note 44, Met Off., Exeter, UK.
    [63]Joachims T. Making large-scale support vector machine learning practical [M]. Cambridge, MA: MIT Press,1999:325-332.
    [64]Jones R.G., Murphy J.M. Noguer M. Simulation of climate change over Europe using a nested regional climate model. Part Ⅰ:Assessment of control climate including sensitivity to location of lateral boundaries [J]. Quarterly Journal of the Royal Meteorological Society,1995,121: 1413-1449.
    [65]Jones R.G., Mruphy J.M., Noguer M. Simulation of climate change over Europe using a nested regional climate mode Ⅱ:Comparison of driving and regional model responses to doubling of carbon dioxide [J]. Quarterly Journal of the Royal Meteorological Society,1996,122 (529): 265-292.
    [66]Kendall M.G. Rank Correlation Methods. Charles Griffin[M]. London,1975.
    [67]Karl T.R., Reibsmae W. The impact of decadal fluctuation in mean precipitation and temperature on runoff:a sensitivity study over the United State [J]. Climate Change,1989,15(3):423-447.
    [68]Karl T.R. et al. A method of relating general circulation model simulated climate to the observed local climate. Part Ⅰ:Seasonal statistics [J]. Journal of Climate,1990,3:1053-1079.
    [69]Khan M.S.,,Dibike Y. Uncertainty analysis of statistical downscaling methods [J]. Journal of Hydrology,2006,319 357-382.
    [70]Kim J.M. et al. The statistical problem of climate inversion:Determination of the relationship between local and large-scale climate [J]. Monthly Weather Review,1984,112:2069-2077.
    [71]Kite G.W., Dalton A., Dion K. Simulation of streamflow in a macroscale watershed using general circulation model data [J]. Water Resources. Research,1994,30(5),1547-1559.
    [72]Kite G.W., Haberlandt U., et al. Atmospheric model data for macroscale hydrology [J]. Journal of Hydrology,1999,217:303-313.
    [73]Langbein W.B. Annual Runoff in the United States [M]. US Geological Survey Circular 5, US Depart. Of the Interior, Washington D C,1949.
    [74]Leander R., Buishand T.A. Resampling of regional climate model output for the simulation of extreme river flows [J]. Journal of Hydrology,2007,332:487-496.
    [75]Leavesley, G.H., Branson, M.D., Hay, L.E. Using coupled atmospheric and hydrologic models to investigate the effects of climate change in mountainous regions [M]. Managing water resources during global change,1992,691-700.
    [76]Lee Y., Mangarasian O.L. SSVM:A smooth support vector machine for classification [J]. Computational Optimization and Applications.1999:5-21.
    [77]Lee Y., Hsieh W., Huang C. SSVR:A smooth sopport vector machine for insensitive regression [J]. IEEE Transactions on Knowledge and Data Engineering.2005:678-685.
    [78]Leggett J., Pepper W.J., Swart R.J. Emission Scenarios for IPCC:an update [R]. In Climate 1992: the Supplementary Report to the IPCC Scientific Assessment,1992, J.T Houghton, B. A. Callabdar abd S.K. Varney (eds.), Cambridge University Press, Cambridge.
    [79]Leung L.R., Qian Y., Bian X.D., et al. Mid-Century ensemble regional climate change scenarios for the western United States [J].Climatic Change,2004,62 (1):75-113.
    [80]Liang X., Lettenmaier D.P., Wood E.F., et al. A simple hydrologically based model of land surface water and energy fluxes for general circulation models [J]. Journal of Geophysical Research,1994, 99(D7):14415-14428.
    [81]Liang X., Xie Z. A new surface runoff parameterization with subgrid-scale soil heterogeneity for land surface models [J]. Advances in Water Resources,2001,24:1173-1193.
    [82]Mangasarian O.L., Musicant D.R. Successive overrelaxation for support vector machines [J]. IEEE Transactions on Neural Networks.1999:1032-1037.
    [83]Mann H.B. Non-parametric test against trend [J]. Econometrica,1945(13):245-259.
    [84]Mccabe. Effects of climate change on the Thornthwaite moisture index [J]. Water Resources Bull, 1990,26(4).
    [85]Michaelides S.C., Pattichis C.S., Kleovoulou G. Classification of rainfall variability by using artificial neural networks [J]. International Journal of Climatology,2001,21:1401-1414.
    [86]Mimikou M.A., BalSats E.A. Climate change impacts on the reliability of hydroelectric energy production [J]. Hydrological Sciences,1997,42(5):661-678.
    [87]Mpelasoka F.S., Mullan A.B., Heerdegen R.G. New Zealand Climate Change Information Derived by Multivariate Statistical and Artificial Neural Net works Approaches [J]. International Journal of Climatology,2001,21:1415-1433.
    [88]Mujumdar P.P, Ghosh S. Modeling GCM and scenario uncertainty using a possibilistic approach: Application to the Mahanadi River, India [J]. Water Resources Research,2008,44, W06407, doi:10.1029/2007WR006137.
    [89]Murphy J. Prediction of climate change over Europe using statistical and dynamical downscaling techniques [J]. International Journal of Climatology,2000,20 (5):489-501.
    [90]Murphy J.M., et al. Quantification of modelling uncertainties in a large ensemble of climate change simulations [J]. Nature,2004,430,768-772.
    [91]Nash. Sensitivity of stream flow in the Colorado Basin to Climate Change. Journal of Hydrology, 1990,125:221-241.
    [92]Nicks A.D, Gander G.A. CLIGEN:A weather generator for climate inputs to water resources and other models [C]. In Computers in Agriculture 1994:Proceedings of Fifth International Conference of Computers in Agriculture, Watson DG, Zazueta F S, and Harrison T V eds.,903-909
    [93]Nemec J., Schaake J. Sensitivity of water resource systems to climate variation [J]. Hydrology Science,1982,27 (3):327-343.
    [94]Nijssen B., O'Donnell G.M., Hamlet A.F., Lettenmaier D.P. Climate Change [M].2000.
    [95]Oshima N., Kato H., Kadokura S. An application of statistical downscaling to estimate surface air temperature in Japan [J]. Journal of Geophysics Research,2002,107 (D10):1421-14210.
    [96]Panagoulia D., Dimou G. Linking space-time scale in hydrological modeling with respect to global climate change:Part 2. Hydrological response for alternative climates [J]. Journal of Hydrology, 1997,194:38-63.
    [97]Pepper W.J., Leggett J., Swart R.J., Wasson J., Edmonds J., Mintzer I. Emission Scenarios for IPCC:an update:assumption, methodology, and results [R]. Support document for Chapter A3. Im Climate Change 1992:the Supplementary Repot to the IPCC Scientific Assessment,1992, J.T Houghton, B. A. Callabdar abd S.K. Varney (eds.), Cambridge University Press, Cambridge.
    [98]Platt J. Sequential minimal optimization:A fast algorithm for training support vector machines [M]. Cambridge, MA:MIT Press,1999:185-208.
    [99]Raisanen J., Palmer T.N. A probability and decision-model analysis of a multimodel ensemble of climate change simulations [J], Journal of Climate,2001,14(15),3212-3226.
    [100]Revelle R.R., Waggoner P.E. Effects of a Carbon Dioxide-Induced Climatic Change on Water Supplies in the Western United States, in Changing Climate [M]. National Academy of Sciences, National Academy Press,1983, Washington D C.
    [101]Richardson C.W., Wright D.A. WGEN:A model for generating daily weather variables [J]. U.S. Dept. of Agriculture, Agricultureal Res. Service,1984, ARS-8, pp88.
    [102]Robertson A.W., Kirshner S., Smyth P. Downscaling of daily rainfall occurrence over Northeast Brazil using a hidden Markov mode [J]l. Journal of Climate,2004,17(22):4407-4424.
    [103]Ruping M., David M.S. Statistical-Dynamical Seasonal Prediction Based on Principal Component Regression of GCM Ensemble Integrations [J]. Monthly Weather Review,2002,130(9): 2167-2187.
    [104]Salas J.D, Markus M., Tokar A.A. Chapter on“Streamflow forecasting based on artificial neural networks”in Artificial Neural Networks”in Hydrology [M]. Edited by Gaovindraju.R S and Rao.A R, Kluwer Academic Publishers,2000, pp.23-51.
    [105]Schaake J.C., Liu C. Development and applications of simple water-balance models to understand the relationship between climate and water resources, In New directions for surface water modelling (proceedings of the Baltimore Symposium, May 1989) [C]. IAHS Publication 1989,181, Wallingford:IAHS,343-52.
    [106]Semenov M.A., Barrow E.M. Use of stochastic weather generator in the development of climate change scenarios [J]. Climatic Change,1997,35:397-414.
    [107]Semenov, M.A., Barrow, E M. LARS-WG:a stochastic weather generator for use in climate impact studies, Version 3.0, user manual [R],2002.
    [108]Seth A., Rauscher S.A., Camargo S.J., Qian J.H., Pal J.S. RegCM3 regional climatologies for South America using reanalysis and ECHAM global model driving fields [J]. Climate Dynamics, 2007,28:461-480.
    [109]Singh V.P. Computer Models Of Watershed Hydrology[M].1995, Water Resources Publications.
    [110]Stockton C.W., Boggess W.R. Geohydrological implication of climate change on water resource, development [M]. Fort Belvoir, Va:U S Army coastal Engineering Research Center,1979.
    [111]Su B.D., Jiang T., Shi Y.F., Becker S., Gemmer M. Observed precipitation trends in the Yangtze catchment from 1951 to 2002 [J]. Journal of Geographical Sciences,2004,2(14):204-218.
    [112]Su B.D., Kundzewicz Z.W.,. Jiang T. Simulation of extreme precipitation over the YangtzeRiver Basin using Wakeby distribution [J]. Theoretical and Applied Climatology,2009,96:209-219.
    [113]Suykens J.A.K., Van Gestel T., De Moor B., et al. Least Squares Support Vector Machines [M]. Singapore:World Scientific,2002.
    [114]Tebaldi C., Smith R., Nychka D., Mearns L.O. Quantifying uncertainty in projections of regional climate change:A Bayesian approach to the analysis of multi-model ensembles [J]. Jounaral of Climate,2005,18,1524-1540.
    [115]Thornthwaite C.W., Mather J.R. The water balance [M]. Publications in Climatology, Drexel Institute of Technology,1955, Laboratory of Climatology 8:1-104.
    [116]Tolika K., Maheras P., Vafiadis M., Flocasc H.A., Arseni-Papadimitriou A. Simulation of seasonal precipitation and raindays over Greece:a statistical downscaling technique based on artificial neural networks (ANNs) [J]. International Journal of Climatology,.2007,27:861-881.
    [117]Tripathi S., Srinivas V.V., Nanjundiah R.S. Downscaling of precipitation for climate change scenarios:a support vector machine approach [J]. Journal of Hydrology,2006,330:621-640.
    [118]Van G T. Predicting financial time series using least squares support vector machines with evidence framework [J].IEEE Transactions on Neural Network,2001,12(4):809-821.
    [119]Vapnik V.N. Statistical learning theory [M]. New York:Wiley,1998.
    [120]Vidal J.P., Wade S.D. Multimodel projections of catchment-scale precipitation regime [J]. Journal of Hydrology,2008,353 (1-2):143-158.
    [121]Wetterhall F., Halldin S., Xu C.-Y. Statistical precipitation downscaling in central Sweden with the analogue method [J]. Journal of Hydrology.2005,306(1-4):174-190.
    [122]Wetterhall F., Bardossy A., Chen D., Halldin S., Xu C.-Y. Daily precipitation-downscaling techniques in three Chinese regions. Water Resources Research,2006,42, W11423, doi:10.1029 /2005WR004573.
    [123]Wetterhall F., Halldin S., Xu C.-Y. Seasonality properties of four statistical-downscaling methods in central Sweden. Theoretical and Applied Climatology,2007,87:123-137.
    [124]Wigley T.M.L., Jones P.D., Briffa K.R., Smith G. Obtaining sub-grid-scale information from coarse-resolution general circulation model output [J]. Journal of Geophysical Research,1990, 95(D2):1943-1953.
    [125]Wilby R.L., Wigley T.M.L. Downscaling general circulation model output:A review of methods and limitations [J]. Progress in Physical Geography,1997,21:530-548.
    [126]Wilby R.L. Statistical downscaling of daily precipitation using daily airflow and seasonal teleconnection indices [J]. Climate Research,1998,10:163-178.
    [127]Wilby R.L., Wigley T.M.L., Conway D., Jones P.D., Hewitson B.C., Main J., Wilks D.S. Statistical downscaling of general circulation model out put:A comparison methods [J]. Water Resources Research,1998,34(11):2995-3008.
    [128]Wilby R.L., Hay L.E., Leavesley G.H. A comparison of downscaled and raw GCM output: implications for climate change scenarios in the San Juan River basin, Colorado [J]. Journal of Hydrology.1999,225(1-2):67-91.
    [129]Wilby R.L., Dawson C.W., Barrow E.M. SDSM-a decision support tool for the assessment of regional climate change impacts [J]. Environmental and Modelling Software,2002a,17:147-159.
    [130]Wilby R.L., Harris I. A framework for assessing uncertainties in climate change impacts:low-flow scenarios [J]. Water Resource Research,2002b,42:W02419, doi:10.1029/2005WR004065.
    [131]Wilby R.L., Tomlinson O.J., Dawson C.W. Multi-site simulation of precipitation by conditional resampling [J]. Climate Research,2003,23:183-194.
    [132]Wilby R.L.Uncertainty in water resource model parameters used for climate change impact assessment [J]. Hydrologycal Processes,2005,19,3201-3219.
    [133]Wilby R.L., Whitehead P.G., Wade A.J., Butterfield D., Davis R.J., Watts G. Integrated modelling of climate change impacts on water resources and quality in a lowland catchment:River Kennet, UK [J]. Journal of Hydrology,2006,330,204-220.
    [134]Wilks D.S. Interannual variability and extreme value characteristics of several stochastic daily precipitation models [J]. Agriculture Forest Meteorology,1999,93:153-169.
    [135]Wilson L.L., Lettenmaier D.P., Skyllingstad E. A hierarchical stochastic model of large atmospheric circulation patterns and multiple station daily rainfall [J]. Journal of Geophysics Research,1992,97(3):2791-2809.
    [136]Wood E.F., Lettenmaier D.P., Zaitarian V.G. A land-surface hydrology parameterization with subgrid variability for general circulation models [J]. Journal of Geophysical Research,1992, 97(D3):2717-2728.
    [137]Working Group Ⅱ of IPCC. Technical Guidelines for Assessing Climate Impacts and Adapting [R],1994.
    [138]Xu C.-Y., Seibert J., Halldin S. Regional water-balance modelling in the NOPEX area: development and application of monthly water-balance models [J]. Journal of Hydrology,1996, 180:211-236.
    [139]Xu C.-Y., Halldin S. The effect of climate change on river flow and snow cover in the NOPEX area simulated by a simple waterbalance model [J]. Nordic Hydrology,1997,28:273-82.
    [140]Xu C.-Y. Hydrological responses to climate changes in central Sweden, In Proceedings of the Second International Conference on Climate and Water [C].1998, Vol.1, Espoo, Finland,188-97.
    [141]Xu C.-Y. From GCMs to river flow:a review of downscaling methods and hydrologic modelling approaches [J]. Progress in Physical Geography,1999,23,229-249.
    [142]Xu Y., Xu C., Gao X., Luo Y. Projected changes in temperature and precipitation extremes over the Yangtze River Basin of China in the 21st century [J]. Quaternary International,2009,208:44-52.
    [143]Xu Y., Gao X.J., Giorgi F. Upgrades to the REA method for producing probabilistic climate change predictions [J]. Climate Research,2010,41:61-81.
    [144]Xu Z.X., Chen Y.N., Li J.Y. Impact of Climate Change on Water Resources in the Tarim River Basin [J]. Water Resources Management,2004,18:439-458.
    [145]Zhang Q., Jiang T., Gemmer M., Becker S. Precipitation, Temperature and Discharge Analysis from 1951 to 2002 in the Yangtze Catchment, China [J]. Hydrological Sciences Journal,2005, 50(1):65-80.
    [146]Zhang Q., Xu C.-Y., Zhang Z., Chen D.Y., Liu C., Lin H. Spatial and temporal variability of precipitation maxima during 1960-2005 in the Yangtze River basin and possible association with large-scale circulation [J]. Journal of Hydrology,2008,353,215-227.
    [147]Zorita E., Hughes J., Lettenmaier D., et al. Stochastic characterization of regional circulation patterns for climate model diagnosis and estimation of local precipitation [J]. Journal of Climate, 1995,8:1023-1042.
    [148]Zorita E., HansVon Storch. The Analog Method as a simple Statistical Downscaling Technique: Comparison with More Complicated Methods [J]. Journal of Climate,1999,12:2474-2489.
    [149]陈华,郭靖,郭生练,陈桂亚,张俊.应用统计学降尺度方法预测汉江流域降水变化[J].人民长江,2008a,39(14):51-55.
    [150]陈华,郭靖,熊伟,郭生练,许崇育.应用光滑支持向量机预测汉江流域降水变化[J].长江科学院院报,2008b,25(6):1-5.
    [151]陈楠,许吟隆,陈晓光,杨侃,张勇.PRECIS模式对宁夏气候变化情景的模拟分析[J].第四纪研究,2007,27(3):332-338.
    [152]陈喜,陈永勤.日降雨随机解集模式研究[J].水利学报,2001,4:47-52.
    [153]陈英,刘新仁.淮河流域气候变化对水资源的影响[J].河海大学学报,1996,24(5):111-114.
    [154]邓慧平,唐来华.沱江流域水文对全球气候变化的响应[J].地理学报,1998,53(1):42-48.
    [155]丁一汇.中国西部环境演变评估[M].2002,北京:科技出版社.
    [156]范丽军,符淙斌,陈德亮.统计降尺度法对未来区域气候变化情景预估的研究进展[J].地球科学进展,2005,20(3):320-329.
    [157]范丽军.统计降尺度方法的研究及其对中国未来区域气候情景的预估[D].中国科学院研究院博十论文,2006.
    [158]傅国斌,刘昌明.全球变暖对区域水资源影响的计算分析[J].地理学报,1991,46(3):277-288.
    [159]高歌,李维京,张强.华北地区气候变化对水资源的影响及2003年水资源预评估[J].气象,2003,29(8):26-30.
    [160]高学杰,林一骅,赵宗慈等.CO2增加引起的温室效应对我国沿海台风影响的数值模拟试验[J].热带海洋学报,2003a,22(4):257-266.
    [161]高学杰,赵宗慈,丁一汇,黄荣辉,Giorgi F.温室效应引起的中国区域气候变化的数值模拟Ⅰ:模式对中国气候模拟能力的检验[J].气象学报,2003b,61(1):20-28.
    [162]高学杰,赵宗慈,丁一汇,黄荣辉,Giorgi F.温室效应引起的中国区域气候变化的数值模拟Ⅱ:中国区域气候的可能变化[J].气象学报,2003c,61(1):29-38.
    [163]龚道溢,王绍武,朱锦红.1990年代长江中下游地区多雨的机制分析[J].地理学报,2000,55(5):567-575.
    [164]郭靖,郭生练,陈华,闫宝伟,张俊.丹江口水库未来径流变化趋势预测研究[J].南水北调与水利科技,2008,6(4):78-82.
    [165]郭靖,郭生练,张俊,陈华,陈桂亚.汉江流域未来降水径流预测分析研究[J].水文,2009,29(5):19-23.
    [166]郭靖,郭生练,陈华,闫宝伟,张俊,张洪刚.基于ANN统计降尺度法对汉江流域降水变化研究[J].武汉大学学报(工学版),2010,42(2):148-152.
    [167]郭生练.气候变化对东江流域的水文的影响[A].全国博士后首届学术大会论文集,1993,北京:国防出版社.
    [168]郭生练,王国庆.半干旱地区月水量平衡模型[J].人民黄河,1994,(12):13-16.
    [169]郭生练.气候变化对洪水频率和洪峰流量的影响[J].水科学进展,1995,6(3):224-230.
    [170]郭生练,李兰,曾光明.气候变化对水文水资源评价的不确定性分析[J].水文,1995(6):1-5.
    [171]郭生练,刘春蓁.大尺度水文模型与气候模型的联结耦合研究[J].水利学报,1997,7:37-41.
    [172]郭生练,杨井,王金星.赣江和汉江流域水资源的模拟预测研究[J].水科学进展,2000,11(增刊):44-50.
    [173]郭生练,张俊,郭靖,陈桂亚,陈华.基于气象模式的汉江流域洪水预报系统[J].水利水电科技进展,2009,29(3):1-5.
    [174]韩力群.人工神经网络教程[M].北京:北京邮电大学出版社,2006:58-64.
    [175]郝振纯,苏凤阁.分布式月水文模型研究及其在淮河流域的应用[J].水科学进展,2000a,11(增刊):36-43.
    [176]郝振纯,苏凤阁.新安江网格化月水文模型的改进[J].水科学进展,2000b,11(增刊):80-85.
    [177]郝振纯,李丽,王加虎,王振华,史学丽.气候变化对地表水资源的影响[J].地球科学,2007, 32(3):425-432.
    [178]郝振纯,李丽,徐毅,鞠琴,严杰,罗键,王加虎,郝洁.区域气候情景Delta-DCSI降尺度方法[J].四川大学学报(工程科学版),2009,41(5):1-7.
    [179]何新林,郭生练.气候变化对新疆玛纳斯河流域水文水资源的影响[J].水科学进展,1998,9(1):77-83.
    [180]何慧,金龙,覃志年,袁丽军.基于BP神经网络模型的广西月降水量降尺度预报[J].热带气象学报,2007,23(1):72-77.
    [181]江涛,陈永勤,陈俊合,陈喜.未来气候变化对我国水文水资源影响的研究[J].中山大学学报(自然科学版)[J],2000,39:151-157.
    [182]李维亮,龚威.中国区域气候模式对中国地区的区域性气候变化情景的模拟[C].气候变化规律及其数值模拟研究论文第二集.北京:气象出版社,1996:255-272.
    [183]廖要明,张强,陈德亮.中国天气发生器的降水模拟[J].地理学报,2004,59(5):689-698.
    [184]刘吉峰,李世杰,丁裕国.基于气候模式统计降尺度技术的未来青海湖水位变化预估[J].水科学进展,2008,19(2),184-191.
    [185]刘春蓁.气候变异与气候变化对水循环影响研究综述[J].水文.2003,23(4):1-7.
    [186]刘春蓁.气候变化对陆地水循环影响研究的问题[J].地理科学进展,2004,19(1):115-119.
    [187]刘九夫,郭方,周冰清,陈志明,黄国标,韩国宏.气候异常对海河流域水资源影响评估模型研究[J].水科学进展,2000,11(增刊):27-35.
    [188]《气候变化国家评估报告》编写委员会.气候变化国家评估报告[M].2007,北京:科学出版社.
    [189]施雅风主编.中国气候与海面变化及其趋势和影响,气候变化对西北华北水资源的影响[M].济南:山东科学技术出版社,1995.
    [190]水利部水文局.国家“十五”国家科技攻关计划(2001-BA611B-02-04)“气候变化对我国淡水资源的影响阀值及综合评价”技术报告[R].2005.
    [191]苏凤阁,谢正辉.气候变化对中国径流影响评估模型研究[J].自然科学进展,2003,13(5):502-507.
    [192]王国庆,王云璋.气候变化对黄河中上游水量的影响[J].人民黄河,1994,(12):10-13.
    [193]王国庆,李健,王云璋.气候异常对黄河中游水资源影响评估模型研究[J].水科学进展,2000,11(增刊):22-26.
    [194]王国庆.气候变化对黄河中游水文水资源影响的关键问题研究[D].河海大学博士论文,2006.
    [195]汪美华,谢强,王红亚.未来气候变化对淮河流域径流深的影响[J].地理研究,2003,22(1): 79-88.
    [196]王绍武,伍荣生,杨修群等.中国气候与环境演变——气候与环境的演变与预测:中国气候变化[M].北京:2005,科学出版社,88-96.
    [197]王守荣,黄荣辉,丁一汇,Leung L.R, Wigmosta M.S., Vail L.W.分布式水文-土壤-植被模式的改进及气候水文Off-line模拟试验[J].气象学报,2002,60(3):390-300.
    [198]吴金栋,王馥棠.利用随机天气模式及多种插值方法生成逐日气候变化情景的研究[J].应用气象学报,2000,11(2):129-136.
    [199]熊立华,郭生练,付小平,王渺林.两参数月水量平衡模型的研制和应用[J].水科学进展,1996,7(增刊):80-86.
    [200]许小峰,王守荣,任国玉等.气候变化应对战略研究[M].2005,北京:气象出版社.
    [201]许吟隆,张勇,林一骅等.利用PRECIS分析SRES B2情景下中国区域的气候变化响应[J].科学通报,2006,51(17):2608-2674.
    [202]杨井.气候变化对赣江和汉江流域水资源影响评估系统研究[D].武汉大学硕十论文,2001.
    [203]杨井,郭生练,王金星,彭定志.基于GIS的分布式月水量平衡模型及其应用[J].武汉大学学报(工学版),2002,35(4):22-26.
    [204]英爱文,姜广斌.辽河流域水资源对气候变化的影响[J].水科学进展,1996,7(增刊):67-72.
    [205]苑希民,李鸿雁,刘树坤,崔广涛.神经网络和遗传算法在水科学领域的应用[M].北京:中国水利水电出版社,2002.
    [206]袁飞,谢正辉,任立良,黄琼.气候变化对海河流域水文特性的影响[J].水利学报,2005,36(3):274-279.
    [207]张建云,王国庆主编.气候变化对水文水资源影响研究[M].2007,北京:科学技术出版社.
    [208]张俊.基于气象模式的洪水预报系统研制与应用[D].武汉大学博十论文,2009.
    [209]朱利,张万昌.基于径流模拟的汉江上游区水资源对气候变化响应的研究[J].资源科学,2005,27(2):16-22.
    [210]赵芳芳,徐宗学.统计降尺度方法和Delta方法建立黄河源区气候情景的比较分析[J].气象学报,2007,65(4):653-662.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700