用户名: 密码: 验证码:
气候变化对极端径流影响评估中的不确定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近百年来,人口剧增、温室气体排放量显著增高,全球平均温度普遍升高,气候变化以及对人类的影响已受到社会各界的普遍关注。水循环作为气候系统中的重要部分,也受到气候变化的影响。近年来,一些地区的极端气候事件,如暴雨、干旱等灾害发生越来越频繁,且强度越来越大。有的极端事件的降雨量和径流量甚至是历史上罕见的。研究气候变化对极端事件的影响对防灾减灾和水资源管理有着极其重要的意义。
     目前研究气候变化对水文过程的影响主要工具有GCM、RCM、水文模型等。一般的步骤是首先通过GCM得到未来不同情景模式下全球气候变量的变化情况。但通常GCM的输出数据精度太低,不能满足流域尺度的水文研究的较高分辨率的输入要求。如果直接使用会产生较大误差。因此,通过降尺度的方法,包括统计降尺度和动力降尺度(RCM),来得到更加精细的气候变量数据。然后将气候变量数据输入到水文模型中,对未来该地区的径流做出预估。但是在这个过程中,每个环节都有不确定性,而且这种不确定性是无法完全消除的。因此,如果水资源管理者和决策者想要做出全面稳健的决策,量化气候变化各环节要素对径流的不确定性是必须的。
     本文首先分析了浙江省历史极端降雨的变化趋势,并分析其成因,按照其降雨成因划分为了梅雨季和台风季。随后选取了浙江省金华江流域为研究区域,构建了气候变化下极端水文事件预测的不确定性分析框架,分析了未来多重不确定因素影响下气候变化对极端径流的影响,包括排放情景不确定性、GCM不确定性、水文模型结构的不确定性和水文参数的不确定性。论文的主要工作和成果如下:
     (1)用Mann-Kendall法研究了浙江省内18个气象站的七个降雨有关的极端气候指标的历史变化趋势,并分析其成因,按照其降雨成因划分为了梅雨季和台风季,比较了降雨较集中两季的变化趋势及其空间分布。结果显示,浙江省的降雨趋势变化具有自东向西变化的空间分布特点。东部降雨呈上升趋势而西部呈下降趋势。浙江省大部分地区的大雨雨量呈上升趋势。尽管极端雨城的上升情况不是很普遍,但是一些地区的极端雨量上升趋势很明显。降雨强度在大部分地区呈上升趋势,在沿海地区梅雨季和台风季的降雨强度上升显著。
     (2)研究降雨与极端径流的关系,构建了三个水文模型,利用GLUE法,对水文模型的参数进行不确定性分析,量化水文模型参数对极端径流的影响。同时,评价水文模型结构的不确定性。研究结果表明极端最大径流的不确定性随着径流量增大而增大。本文所用的三个模型中,HBV模型模拟的极端最大径流的不确定性最大,新安江模型模拟的极端最大径流不确定性最小。水文模型对极端最小径流的模拟值比实测值偏低,其中新安江模型对实测值低估最多。水文模型参数的不确定性大于水文模型结构的不确定性。
     (3)在水文模型结构和水文模型参数不确定性的基础上,本文考虑了全球气候变化下不同情景对极端径流的影响不确定性。采用全球气候模式HadCM3在IPCC第四次报告的A1B、A2和B2三种未来排放情景模式下的输出,并用区域气候模式PRECIS将其降尺度到分辨率为50km×50km的网格中。用DBS法和线性偏差纠正法对PRECIS模型2011-2040年的输出进行了偏差纠正,然后用偏差纠正后的气象数据驱动水文模型。研究结果表明在使用区域气候模式的数据之前进行偏差纠正能使结果与实际更加吻合。A1B、A2和B2情景下极端最大径流有所减小。极端径流的不确定性最主要来源于模型参数,然后是模型结构,最后是排放的情景模式。
     (4)最后,本文引入了最新的IPCC第五次报告中发布的典型浓度路径RCP2.6、RCP4.5、RCP6.0和RCP8.5作为未来的情景模式,并且考虑了三个不同的大气环流模式BCC_CSM1_1、HadG EM2-ES和GISS_E2_R对极端最大径流的影响,采用LARS-WG天气发生器生成更长的时间序列,利用GR4J、HBV和新安江模型计算了预测期和基基准期的极端最大径流。研究结果表明,未来四种浓度路径下日最低温的上升幅度要大于日最高温的上升幅度。三个GCM中,HADGEM2-ES模型中不同浓度路径的对极端最大径流影响的不确定性最大,其次是GISS_E2_R模型,BCC_CSM1_1模型下不同的浓度路径对未来极端径流的不确定性影响较弱。HADGEM2-ES模型中RCP4.5和RCP2.6浓度路径下极端最大径流有上升的迹象,RCP6.0和RCP8.5下呈下降的趋势。GISS E2R模型中RCP4.5浓度路径下的极端最大径流有下降的迹象。同一浓度路径下不同GCM引起的极端最大径流的不确定性最大的为RCP4.5。本研究中各不确定性来源对极端最大径流的影响由大到小依次为:水文模型参数不确定性>GCM不确定性>浓度路径的不确定性>水文模型结构不确定性。
The recent century has witnessed the enormous increase of population, greenhouse gas emission and global mean temperature. The global climate change and its impact on human beings have drawn wide attention from all walks of life. Water cycle as a part of the climate system has been affected by the climate change as well. In recent years, the extreme climate events like rainstorm and drought have taken place with a higher intensity and frequency in some regions. Some extreme precipitation and discharges could be scarcely found even in the historical record. The research on the impact of the climate change on extreme events is crucial for the damage prevention and water resources management.
     Up to now, the commonly used tools to study the impact of the climate changes on the hydrological processes are GCMs, RCMs, hydrobgical models and so on. There are several steps in assessing the impact. Firstly the climate changes under different scenarios are obtained by the GCMs. Then, the output from the GCMs are downscaled through downscaling methods, including the statistical downscaling and dynamic downscaling, to satisfy the requirement of the resolution for the river basin studies. After that, the outputs from the GCMs are used as the input for the hydrological models to make the estimation of the river discharges. However, the uncertainties are involved in every step above and they could not be eliminated thoroughly. Therefore how to quantify the uncertainties in every step of climate change impact analysis and deal with the uncertainties in the river discharges are the basis for policy makers to make the robust decisions.
     In the thesis, the trend of the historical precipitation is calculated and the rainfall period is divided into two seasons, the plum season and the typhoon season based on the cause of rainfall. In order to study the impact of climate change on the discharges, the Jinhua river basin was chosen as the study area and the uncertainty resources like emission scenarios, GCMs, parameters and structure of hydrological models are considered. The major work and conclusion of the thesis are like follows:
     (1) a selection of seven extreme indices is used to analyze the trend of precipitation extremes of18meteorological stations located in Zhejiang Province, east China using the Mann-Kendall test. Then the precipitation trends in the plum season (from May to July) and typhoon season (from August to October) are studied separately. The results show that the precipitation trend varies from east to west. There is a positive trend in the east and a negative one in the west. The largest part of Zhejiang Province shows a positive trend in heavy precipitation. Although the upward trend of extreme precipitation is not prevailing, the range of increase in specific areas is apparent. Precipitation intensity exhibits an upward trend in most areas. Precipitation intensity in both plum and typhoon seasons has increased too, especially for the coastal stations.
     (2) three different rainfall-runoff models, namely GR4J, HBV and Xinanjiang, are applied to Jinhua River basin, eastern China. The Generalised Likelihood Uncertainty Estimation (GLUE) approach is used for estimating the uncertainty of the three models due to parameter values. Uncertainty in simulated extreme flows is evaluated by means of the annual maximum discharge (MHQ) and mean annual7-day minimum discharge (MAM7). The results show that the uncertainty in high flows increases with the discharge magnitude. The parameter uncertainty in high flows is the largest in the HBV model and smallest in the Xinanjiang model. Low flows are mostly underestimated by all models with optimum parameter sets. The uncertainty originating from parameters is larger than uncertainty due to model structure.
     (3) uncertainties in extreme high flows originating from greenhouse gas emission scenarios, hydrological model structures and their parameters for the Jinhua River basin, China are assessed. The baseline (1961-1990) climate and future (2011-2040) climate for A1B, A2and B2scenarios were downscaled from the General Circulation Model (GCM) using the PRECIS Regional Climate Model with a spatial resolution of50km×50km. Bias correction methods are applied to the temperature and precipitation of PRECIS. The bias corrected precipitation and temperature are used as input for three hydrological models (GR4J, HBV and Xinanjiang) to simulate extreme high flows. It is found that bias correction before the use of the RCM Data for assessment study could improve the results, which are of a higher degree of consistency with the observation. Under scenario A1B, A2and B2the extreme high flows decreased in the future. The order of the uncertainty range from high to low are hydro togical model parameters, hydro logical model structure and the emission scenarios.
     (4) the representative concentration projection (RCP)2.6, RCP4.5, RCP6.0and RCP8.5in the5th IPCC report are used as the future emission scenarios. Meanwhile the impacts of the GCMs on the extreme flows are considered. The weather generator LARS-WG is used for the output of three GCMs namely BCC_CSM1_1, HadGEM2-ES and GISS_E2_R to generate a longer series. Hydro logical models GR4J, HBV and Xinanjiang are applied to simulate the river discharges in the past and the future. The results show that there are increase in the temperature, the range of the increase is larger for the daily lowest temperature than that for the daily highest temperature. Among the three GCMs, the uncertainty of the extreme flows from the emission scenarios is largest for the HADGEM2-ES, followed by the GISS_E2_Rand the smallest is for the BCC_CSM1_1. The extreme high flows would increase under the RCP4.5and RCP6.0by HADGEM2-ES. However, it would decrease under the RCP6.0and RCP8.5. The extreme high flows would decrease as well under RCP4.5by GISS_E2_R. the uncertainty of the extreme flows from the GCMs is the largest for the RCP4.5. the extent of the impact of uncertainty resources on the extreme flows from high to low are:hydrological parameters, GCMs, RCPs and hydrological model structures.
引文
1. IPCC, Climate Change 2007:Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Core Writing Team, R.K. Pachauri, and A. Reisinger, Editors.2007, IPCC:Geneva, Switzerland.
    2. Bartholy, J. and R. Pongracz, Regional analysis of extreme temperature and precipitation indices for the Carpathian Basin from 1946 to 2001. Global and Planetary change,2007.57(1): p.83-95.
    3. Khon, V.C., et al.. Regional changes of precipitation characteristics in Northern Eurasia from simulations with global climate model. Global and Planetary change,2007.57(1):p.118-123.
    4. Moberg, A., et al., Indices for daily temperature and precipitation extremes in Europe analyzed for the period 1901-2000. Journal of Geophysical Research,2006.111(D22):p. D22106.
    5. Tebaldi, C., et al., Going to the extremes. Climatic Change,2006.79(3):p.185-211.
    6. Groisman, P.Y., et al., Contemporary changes of the hydrological cycle over the contiguous United States:Trends derived from in situ observations. Journal of hydrometeorology,2004. 5(1):p.64-85.
    7. Kunkel, K.E., et al., Temporal variations of extreme precipitation events in the United States: 1895-2000. Geophysical Research Letters,2003.30(17):p.1900.
    8. Hobbins, M.T., J.A. Ramirez, and T.C. Brown, Trends in pan evaporation and actual evapotranspiration across the conterminous US:Paradoxical or complementary? Geophysical Research Letters,2004.31(13):p. L13503.
    9. Speranskaya, N.A., S.A. Zhuravin, and M.J. Mennel, Evaporation changes over the contiguous United States and the former USSR:A reassessment. Geophysical Research Letters,2001. 28(13):p.2665-2668.
    10. Lins, H.F. and J.R. Slack, Streamflow trends in the United States. Geophysical Research Letters, 1999.26:p.227-230.
    11. Zhang, X., et al., Trends in Canadian streamflow. Water Resources Research,2001.37(4):p. 987-998.
    12. IPCC, Emission Scenarios, in A Special Report of IPCC Working Group Ⅲ, N. Nakicenovic and R. Swart, Editors.2000:Geneva, Switzerland.
    13. IPCC, Climate Change 2001:Synthesis Report. A Contribution of Working Groups I, II, and III to the Third Assessment Report of the Intergovernmental Panel on Climate Change, R.T.a.t.C.W.T. Watson, Editor 2001:Cambridge University Press, Cambridge,United Kingdom, and New York, NY, USA.
    14. IPCC, Climate Change 2007:The Physical Science Basis. Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, et al., Editors.2007:Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,.
    15. Wigley, T, et al., Obtaining sub-grid-scale information from coarse-resolution general circulation model output. Journal of Geophysical Research,1990.95(D2):p.1943-1953.
    16. Wilson, S.S., et al., Installing and using the Hadley Centre regional climate modelling system PRECIS (Version 1.0).2004:Met Office Hadley Centre, Exeter, UK.
    17. Barthelet, P., L Terray, and S. Valcke, ARPEGE/OPAICE non flux corrected coupled model. Geophysical Research Letters,1998.25(13):p.2277-2280.
    18. Boer, G., G. Flato, and D. Ramsden, A transient climate change simulation with greenhouse gas and aerosol forcing:projected climate to the twenty-first century. Climate Dynamics,2000. 16(6):p.427-450.
    19. Collins, M., S. Tett, and C. Cooper, The internal climate variability of HadCM3, a version of the Hadley Centre coupled model without flux adjustments. Climate Dynamics,2001.17(1):p. 61-81.
    20. Colman, R. and B. McAvaney, Sensitivity of the climate response of an atmospheric general circulation model to changes in convective parameterization and horizontal resolution. Journal of Geophysical Research,1995.100(D2):p.3155-3172.
    21. Emori, S., et al., Coupled ocean-atmosphere model experiments of future climate change with an explicit representation of sulfate aerosol scattering. Journal of the Meteorological Society of Japan,1999.77(6):p.1299-1307.
    22. Flato, G.M., et al., The Canadian Centre for Climate Modelling and Analysis global coupled model and its climate. Climate Dynamics,2000.16(6):p.451-467.
    23. Gordon, C., et al., The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dynamics,2000.16(2): p.147-168.
    24. Pope, V.D., et al., The impact of new physical parameterizations in the Hadley Centre climate model-HadAM3. Climate Dynamics 2000.16(2):p.123-146.
    25. Roeckner, E., et al., Transient climate change simulations with a coupled atmosphere-ocean GCM including the tropospheric sulfur cycle. Journal of Climate,1999.12(10):p.3004-3032.
    26. Stendel, M., et al., The climate of the 21st century. Transient simulations with a coupled atmoshere-ocean general circulation model.2000.
    27. Wilby, R.L., H. Hassan, and K. Hanaki, Statistical downscaling of hydrometeorological variables using general circulation model output. Journal of Hydrology,1998.205(1-2):p. 1-19.
    28. Wilby, R.L., L.E. Hay, and G.H. Leavesley, A comparison of downscaled and raw GCM output: implications for climate change scenarios in the San Juan River basin, Colorado. Journal of Hydrology,1999.225(1):p.67-91.
    29. Samuel sson, P., et al., The Rossby Centre Regional Climate model RCA3:model description and performance. Tellus Series a-Dynamic Meteorology and Oceanography,2011.63(1):p.4-23.
    30. Pal, J.S., et al., Regional climate modeling for the developing world-The ICTP RegCM3 and RegCNET. Bulletin of the American Meteorological Society,2007.88(9):p.1395-+.
    31. Senatore, A., et al., Regional climate change projections and hydrological impact analysis for a Mediterranean basin in Southern Italy. Journal of Hydrology,2011.399(1-2):p.70-92.
    32. Arnell, N., D. Hudson, and R. Jones, Climate change scenarios from a regional climate model: Estimating change in runoff in southern Africa. Journal of Geophysical Research,2003. 108(D16):p.4519.
    33. Wilby, R.L and T. Wigley, Downscaling general circulation model output:a review of methods and limitations. Progress in Physical Geography,1997.21(4):p.530.
    34. Raje, D. and P. Mujumdar, Constraining uncertainty in regional hydrologic impacts of climate change:Nonstationarity in downscaling. Water Resources Research,2010.46(7):p. W07543.
    35. Wilby, R.L, C.W. Dawson, and E.M. Barrow, SDSM-a decision support tool for the assessment of regional climate change impacts. Environmental Modelling & Software,2002.17(2):p. 147-159.
    36. 刘永和,et al.,气象资料的统计降尺度方法综述.地球科学进展,2011.26(08):p.837-847.
    37. Bardossy, A. and E.J. Plate, Space-time model for daily rainfall using atmospheric circulation patterns. Water Resources Research,1992.28(5):p.1247-1259.
    38. Hay, L, et al., Simulation of precipitation by weather type analysis. Water Resources Research, 1991.27:p.493-501.
    39. Wilby, R.L, C.W. Dawson, and E.M. Barrow, SDSM-a decision support tool for the assessment of regional climate change impacts. Environmental Modelling & Software,2001.17(2):p. 147-159.
    40. Wilks, D.S., Multisite downscaling of daily precipitation with a stochastic weather generator. Climate Research,1999.11:p.125-136.
    41. Richardson, C.W. and D.A. Wright, WGEN:A model for generating daily weather variables. Report ARS-8 August 1984.83 p,3 Fig,12 Tab,13 Ref,4 App.,1984.
    42. Semenov, M.A. and E.M. Barrow, Use of a stochastic weather generator in the development of climate change scenarios. Climatic Change,1997.35(4):p.397-414.
    43. Semenov, M.A., et al., Comparison of the WGEN and LARS-WG stochastic weather generators for diverse climates. Climate Research,1998.10:p.95-107.
    44. Chen, J., F. Brissette, and R. Leconte, WeaGETS-a Matlab-based daily scale weather generator for generating precipitation and temperature. Procedia Environmental Sciences,2012.13:p. 2222-2235.
    45. Chen, J., F.P. Brissette, and R. Leconte, A daily stochastic weather generator for preserving low-frequency of climate variability. Journal of Hydrology,2010.388(3):p.480-490.
    46. Conway, D., R. Wilby, and P. Jones, Precipitation and air flow indices over the British Isles. Climate Research,1996.7:p.169-183.
    47. Crane, R.G. and B.C. Hewitson, Doubled co2 precipitation changes for the susquehanna basin: down-scaling from the genesis general circulation model. International Journal of Climatology,1998.18(1):p.65-76.
    48. Liston, G. and R. Pielke, A climate version of the regional atmospheric modeling system. Theoretical and applied climatology,2001.68(3):p.155-173.
    49. Rummukainen, M., et a I., A regional climate model for northern Europe:model description and results from the downscaling of two GCM control simulations. Climate Dynamics,2001. 17(5):p.339-359.
    50. Christensen, O.B., et al., Very high-resolution regional climate simulations over Scandinavia-Present climate. Journal of Climate,1998.11(12):p.3204-3229.
    51. La prise, R., et al., Climate and climate change in western Canada as simulated by the Canadian Regional Climate Model. Atmosphere-Ocean,1998.36(2):p.119-167.
    52. Christensen, J.H. and O.B. Christensen, A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Climatic Change,2007.81:p.7-30.
    53. Kanamitsu, M. and H. Kanamaru, Fifty-seven-year California Reanalysis Downscaling at 10 km (CaRD10). Part Ⅰ:System detail and validation with observations. Journal of Climate,2007. 20(22):p.5553-5571.
    54. Suklitsch, M., et al., High resolution sensitivity studies with the regional climate model CCLM in the Alpine Region. MeteorologischeZeitschrift,2008.17(4):p.467-476.
    55. Leung, L.R. and S.J. Ghan, Parameterizing subgrid orographic precipitation and surface cover in climate models. Monthly weather review,1998.126(12):p.3271-3291.
    56. 包为民,水文预报.包为民2009:中国水利水电出版社.
    57. Beven, K.J. and K. Beven, Rainfall-runoff modelling2001:Wiley Online Library.
    58. Thiemann, M., et al., Bayesian recursive parameter estimation for hydrologic models. Water Resources Research,2001.37(10):p.2521-2535.
    59. Duan, Q.Y., S. Sorooshian, and V.K. Gupta, Optimal use of the SCE-UA global optimization method for calibrating watershed models. Journal of Hydrology,1994.158(3):p.265-284.
    60. Duan, Q.Y., V.K. Gupta, and S. Sorooshian, Shuffled complex evolution approach for effective and efficient global minimization. Journal of optimization theory and applications,1993. 76(3):p.501-521.
    61. Beven, K. and A. Binley, The future of distributed models:model calibration and uncertainty prediction. Hydrological processes,2006.6(3):p.279-298.
    62. Ingber, L, Simulated annealing:Practice versus theory. Mathematical and computer modelling,1993.18(11):p.29-57.
    63. Reed, P.M. and B.S. Minsker, Striking the balance:long-term groundwater monitoring design for conflicting objectives. Journal of Water Resources Planning and Management,2004. 130(2):p.140-149.
    64. Reed, P.M., B.S. Minsker, and D. Goldberg, A multiobjective approach to cost effective long-term groundwater monitoring using an elitist nondominated sorted genetic algorithm with historical data. Journal of Hydroinformatics,2001.3:p.71-89.
    65. Ritzel, B.J., J.W. Eheart, and S. Ranjithan, Using genetic algorithms to solve a multiple objective groundwater pollution containment problem. Water Resources Research,1994. 30(5):p.1589-1603.
    66. Refsgaard, J.C., Parameterisation, calibration and validation of distributed hydrological models. Journal of Hydrology,1997.198(1-4):p.69-97.
    67. Beven, K., A manifesto for the equifinality thesis. Journal of Hydrology,2006.320(1):p.18-36.
    68. Chang, C., J. Yang, and Y. Tung, Sensitivity and uncertainty analysis of a sediment transport model:a global approach. Stochastic Hydrology and Hydraulics,1993.7(4):p.299-314.
    69. Schneider, S.H., B. Turner, and H.M. Garriga, Imaginable surprise in global change science. Journal of Risk Research,1998.1(2):p.165-185.
    70. Romanowicz, R., H. Higson, and I. Teasdale, Bayesian uncertainty estimation methodology applied to air pollution modelling. Environmetrics,2000.11(3):p.351-371.
    71. Beven, K. and A. Binley, The future of distributed models:Model calibration and uncertainty prediction. Hydrological Processes,1992.6(3):p.279-298.
    72. New, M. and M. Hulme, Representing uncertainty in climate change scenarios:a Monte-Carlo approach. Integrated Assessment,2000.1(3):p.203-213.
    73. Wynne, B., Uncertainty and environmental learning. Global Environmental Change,1992.2(2): p.111-127.
    74. Funtowicz, S.O. and J.R. Ravetz, Uncertainty and quality in science for policy. Vol.15.1990: Springer.
    75. Shafer, G.,A Mathematical Theory of Evidencel976, Princeton:Princeton University Press.
    76. Walker, W.E., et al., Defining uncertainty:a conceptual basis for uncertainty management in model-based decision support. Integrated Assessment,2003.4(1):p.5-17.
    77. Klauer, B. and J. Brown, Conceptualising imperfect knowledge in public decision making: ignorance, uncertainty, error and risk situations. Environmental Research, Engineering and Management,2004.1(27):p.124-128.
    78. Refsgaard, J.C., et al., Uncertainty in the environmental modelling process-a framework and guidance. Environmental Modelling & Software,2007.22(11):p.1543-1556.
    79. Warmink, J., et al., Identification and classification of uncertainties in the application of environmental models. Environmental Modelling & Software,2010.25(12):p.1518-1527.
    80. Rowe, W.D., Understanding uncertainty. Risk analysis,2006.14(5):p.743-750.
    81. Van Der Sluijs, J.P., et al., Combining quantitative and qualitative measures of uncertainty in model-based environmental assessment:The NUSAP system. Risk Analysis,2005.25(2):p. 481-492.
    82. 金菊良,吴开亚,李如忠,水环境风险评价的随机模拟与三角模糊数耦合模型,水利学报,2008(11):p.1257-1261,1266.
    83.苏小康,et al.,湘江水质随机模拟与风险分析.湖南大学学报:自然科学版,2006(2):p.106-109.
    84. 崔秀,吴飞,解地下水流的Monte-Carlo随机法与积分插会下琺.计算物理,1997(4):p.597-599.
    85.赵宇,陈松涛,钱健,Monte-Carlo法在测量不确定度评定中的应用,仪器仪表学报,2004(4):p.501-504.
    86.王春峰,万海辉,等,基于MCMC的金融市场风险VaR的估计:管理科学学报,2000(2):p.54-61,89.
    87. Gasparini, M., Markov Chain Monte Carlo in Practice. Technometrics,1997.39(3):p.338-338.
    88. Gilks, W.R., Markov chain monte carlo. Encyclopedia of Biostatistics,2005.
    89. Geyer, C.J., Practical markov chain monte carlo. Statistical Science,1992.7(4):p.473-483.
    90. Hastings, W.K., Monte Carlo sampling methods using Markov chains and their applications. Biometrika,1970.57(1):p.97-109.
    91. 刘忠,茆诗松,分组数据的Bayes分析-Gibbs抽样方法.应用概率统计,1997(2):p.211-216.
    92. 陈小驽,基于切片抽样MCMC方法的比较分析,in 四川大学数学学院2007,四川大学p.15-20.
    93. 邢贞相,等.基于am-Mcmc算法的贝叶斯概率洪水预报模型.水利学报,2007(12):p.1500-1506.
    94.陈海洋,等,基于Bayesian-MCMC方法的水体污染识别反问题.湖南大学学报:自然科学版,2012(6):p.74-78.
    95. Wood, E.F., I. Rodriguez-lturbe, and J.C. Schaake, The methodology of Bayesian inference and decision making applied to extreme hydrologic events.1974.
    96. Yang, J., et al., Hydrological modelling of the Chaohe Basin in China:Statistical model formulation and Bayesian inference. Journal of Hydrology,2007.340(3):p.167-182.
    97. Krzysztofowicz, R., Bayesian theory of probabilistic forecasting via deterministic hydrologic model. Water Resources Research,1999.35(9):p.2739-2750.
    98. Kavetski, D., G. Kuczera, and S.W. Franks, Bayesian analysis of input uncertainty in hydrological modeling:1. Theory. Water Resources Research,2006.42(3):p. W03407.
    99. 梁忠民,戴荣,李彬权,基于贝叶斯理论的水文不确定定性分析研究进展.水科学进展,2010.21(2):p.274-281.
    100. Butts, M.B., et al.. An evaluation of the impact of model structure on hydrological modelling uncertainty for streamflow simulation. Journal of Hydrology,2004.298(1):p.242-266.
    101. Wilby, R.L and I. Harris, A framework for assessing uncertainties in climate change impacts: Low-flow scenarios for the River Thames, UK. Water Resources Research,2006.42(2):p. W02419.
    102. Driessen, T., et al., The hydrological response of the Ourthe catchment to climate change as modelled by the HBV model. Hydrology and Earth System Sciences,2010.14(4):p.651-665.
    103. Prudhomme, C, D. Jakob, and C. Svensson, Uncertainty and climate change impact on the flood regime of small UK catchments. Journal of Hydrology,2003.277(1):p.1-23.
    104. Murphy, J.M., et al., Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature,2004.430(7001):p.768-772.
    105. Giorgi, F. and L. Mearns, Probability of regional climate change based on the Reliability Ensemble Averaging (REA) method. Geophysical Research Letters,2003.30(12):p.1629.
    106. Khan, M.S., P. Coulibaly, and Y. Dibike, Uncertainty analysis of statistical downscaling methods. Journal of Hydrology,2006.319(1):p.357-382.
    107. Refsgaard, J.C., et al., A framework for dealing with uncertainty due to model structure error. Advances in Water Resources,2006.29(11):p.1586-1597.
    108. Karl, T.R. and D.R. Easterling, Climate extremes:Selected review and future research directions. Climatic Change,1999.42(1):p.309-325.
    109. Goubanova, K. and L Li, Extremes in temperature and precipitation around the Mediterranean basin in an ensemble of future climate scenario simulations. Global and Planetary change,2007.57(1):p.27-42.
    110. Vincent, L.A. and E. Mekis, Changes in daily and extreme temperature and precipitation indices for Canada over the twentieth century. Atmosphere-Ocean,2006.44(2):p.177-193.
    111. Zhai, P., et al., Changes of climate extremes in China. Climatic Change,1999.42(1):p. 203-218.
    112. Zhang, Q., et al., Precipitation extremes in a karst region:a case study in the Guizhou province, southwest China. Theoretical and applied climatology,2010.101(1):p.53-65.
    113. Chen, Y., et al., Regional climate change and its effects on river runoff in the Tarim Basin, China. Hydrological processes,2006.20(10):p.2207-2216.
    114. Li, Z., et al.. Spatial distribution and temporal trends of extreme temperature and precipitation events on the Loess Plateau of China during 1961-2007. Quaternary International,2010.226(1):p.92-100.
    115. Su, B., M. Gemmer, and T. Jiang, Spatial and temporal variation of extreme precipitation over the Yangtze River Basin. Quaternary International,2008.186(1):p.22-31.
    116. 席国耀,徐文宁,中国气象灾害大典.浙江卷.温克刚2006,北京:气象出版社.45-104.
    117. Wang, X.L., Comments on "Detection of undocumented changepoints:A revision of the two-phase regression model", tc,2003.2:p.2.
    118. Yue, S., P. Pilon, and G. Cavadias, Power of the Mann-Kendall and Spearman's rho tests for detecting monotonic trends in hydrological series. Journal of Hydrology,2002.259(1):p. 254-271.
    119. Edijatno, et al., GR3J:a daily watershed model with three free parameters. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques,1999.44(2):p.263-277.
    120. Perrin, C., C. Michel, and V. Andreassian, Improvement of a parsimonious model for streamflow simulation. Journal of Hydrology,2003.279(1-4):p.275-289.
    121. Perrin, C., C. Michel, and V. Andreassian, Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catch ments. Journal of Hydrology,2001.242(3):p.275-301.
    122. Harlan, D., M. Wangsadipura, and C.M. Munajat. Rainfall-Runoff Modeling of Citarum Hulu River Basin by Using GR4J. in World Congress on Engineering.2010. London, U.K.: International Association of Engineers.
    123. Aubert, D., C. Loumagne, and L Oudin, Sequential assimilation of soil moisture and streamflow data in a conceptual rainfall-runoff model. Journal of Hydrology,2003.280(1):p. 145-161.
    124. Le Moine, N., V. Andreassian, and T. Mathevet, Confronting surface-and groundwater balances on the La Rochefoucauld-Touvre karstic system (Charente, France). Water Resources Research,2008.44(3):p. W03403.
    125. Oudin, L., et al., Spatial proximity, physical similarity, regression and ungaged catchments:A comparison of regionalization approaches based on 913 French catchments (DOI 10.1029/2007WR006240). Water Resources Research,2008.44(3):p.3413.
    126. Bergstrom, S., Development and application of a conceptual runoff model for Scandinavian catchments,1976,SMHI Report RHO NO.7:Norrkoping, Sweden, p.133.
    127. Seibert, J., Multi-criteria calibration of a conceptual runoff model using a genetic algorithm, 2000, HAL-CCSD.
    128. Akhtar, M., N.Ahmad, and M.J. Booij, The impact of climate change on the water resources of Hindukush-Karakorum-Himalaya region under different glacier coverage scenarios. Journal of Hydrology,2008.355(1-4):p.148-163.
    129. Engeland, K., et al., Evaluation of statistical models for forecast errors from the HBV model. Journal of Hydrology,2010.384(1-2):p.142-155.
    130. Lindstrom, G., et al., Development and test of the distributed HBV-96 hydrological model. Journal of Hydrology,1997.201(1-4):p.272-288.
    131. Smakhtin, V., Low flow hydrology:a review. Journal of Hydrology,2001.240(3):p.147-186.
    132. Mishra, A.K. and V.P. Singh, A review of drought concepts. Journal of Hydrology,2010. 391(1-2):p.202-216.
    133. Monteith, J. Evaporation and environment.1965.
    134. Booij, M.J. and M.S. Krol, Balance between calibration objectives in a conceptual hydrological model. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques,2010.55(6):p. 1017-1032.
    135. Cheng, C.-T., X.-Y. Wu, and K.W. Chau, Multiple criteria rainfall-runoff model calibration using a parallel genetic algorithm in a cluster of computers/Calage multi-criteres en mode'lisation pluie-debit par un algorithme genetique parallele mis en ceuvre par une grappe d'ordinateurs. Hydrological Sciences Journal,2005.50(6):p.1087.
    136. Viola, F., et al., Daily streamflow prediction with uncertainty in ephemeral catchments using the GLUE methodology. Physics and Chemistry of the Earth, Parts A/B/C,2009.34(10):p. 701-706.
    137. Bastola, S., C. Murphy, and J. Sweeney, The role of hydrological modelling uncertainties in climate change impact assessments of Irish river catchments. Advances in Water Resources, 2011.
    138. Boorman, D.B. and C. Sefton, Recognising the uncertainty in the quantification of the effects of climate change on hydrological response. Climatic Change,1997.35(4):p.415-434.
    139. Arnell, N.W., Effects of IPCC SRES* emissions scenarios on river runoff:a global perspective. Hydrologyand Earth System Sciences Discussions,2003.7(5):p.619-641.
    140. Driessen, T., et al., The hydrological response of the Ourthe catchment to climate change as modelled by the HBV model. Hydrology and Earth System Sciences,2010.14(4):p.651.
    141. Jones, R.N., et al.. Estimating the sensitivity of mean annual runoff to climate change using selected hydrological models. Advances in Water Resources,2006.29(10):p.1419-1429.
    142. Najafi, M., H. Moradkhani, and I. Jung, Assessing the uncertainties of hydrologic model selection in climate change impact studies. Hydrological processes,2011.25(18):p. 2814-2826.
    143. Gordon, C., et al., The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dynamics,2000.16(2): p.147-168.
    144.许吟降,RichardJones,利用ecmwf再分析数据验证precis对中国区域气候的模拟能力中国农业气象,2004.25(1):p.5-9.
    145. Xu, Y.L, et al., Statistical analyses of climate change scenarios over China in the 21st century. Advances in Climate Change Research,2006.2(Suppl. 1):p.50-53.
    146. Xu, Y.L, et al., Analyses on the climate change responses over China under SRES B2 scenario using PRECIS. Chinese Science Bulletin,2006.51(18):p.2260-2267.
    147. Wood, A.W., et al., Long-range experimental hydrologic forecasting for the eastern United States. Journal of Geophysical Research-Atmospheres,2002.107(D20).
    148. Hay, LE., et al., Use of regional climate model output for hydrologic simulations. Journal of Hydrometeorology,2002.3(5):p.571-590.
    149. Lenderink, G., A. Buishand, and W. van Deursen, Estimates of future discharges of the river Rhine using two scenario methodologies:direct versus delta approach. Hydrology and Earth System Sciences,2007.11(3):p.1143-1159.
    150. Leander, R. and T.A. Buishand, Resampling of regional climate model output for the simulation of extreme river flows. Journal of Hydrology,2007.332(3-4):p.487-496.
    151. Ueyama, H., S. Adachi, and F. Kimura, Compilation method for 1 km grid data of monthly mean air temperature for quantitative assessments of climate change impacts. Theoretical and Applied Climatology,2010.101(3-4):p.421-431.
    152. Payne, J.T., et al., Mitigating the effects of climate change on the water resources of the Columbia River Basin. Climatic Change,2004.62(1-3):p.233-256.
    153. Li, H.B., J. Sheffield, and E.F. Wood, Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching. Journal of Geophysical Research-Atmospheres,2010.115.
    154. Ines, A.V.M. and J.W. Hansen, Bias correction of daily GCM rainfall for crop simulation studies. Agricultural and Forest Meteorology,2006.138(1-4):p.44-53.
    155. Hargreaves, G.H. and Z.A. Samani, Estimating potential evapotranspiration. Journal of the Irrigation and Drainage Division,1983.108(3):p.225-230.
    156. Li, Z., et al., Analysis of parameter uncertainty in semi-distributed hydrological models using bootstrap method:A case study of SWAT model applied to Yingluoxia watershed in northwest China. Journal of Hydrology,2010.385(1-4):p.76-83.
    157. IPCC, Climate Change 2007:Synthesis Report, Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, C.W. Team, R.K. Pachauri,and A. Reisinger, Editors.2007:Geneva, Switzerland.
    158. Wilby, R.L. and I. Harris, A framework for assessing uncertainties in climate change impacts: Low-flow scenarios for the River Thames, UK. Water Resources Research,2006.42(2).
    159. Moss, R.H., et al.. Towards new scenarios for analysis of emissions, climate change, impacts, and response strategies,2008, Pacific Northwest National Laboratory (PNNL), Richland, WA (US).
    160. Van Vuuren, D.P., et al., The representative concentration pathways:an overview. Climatic Change,2011.109(1-2):p.5-31.
    161. Wu, T., A mass-flux cumulus parameterization scheme for large-scale models:description and test with observations. Climate Dynamics,2012.38(3-4):p.725-744.
    162. Ji, Z. and S. Kang, Projection of snow cover changes over China under RCP scenarios. Climate Dynamics,2012:p.1-12.
    163. Chou, C., et al., Increase in the range between wet and dry season precipitation. Nature Geoscience,2013.
    164. Slater, A.G. and D.M. Lawrence, Diagnosing present and future permafrost from climate models. J.Clim,2013.
    165. Collins, W., et al., Development and evaluation of an Earth-system model-HadGEM2. Geosci Model Dev Discuss,2011.4(2):p.997-1062.
    166. Jones, C., et al., The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci. Model Dev,2011.4(3):p.543-570.
    167. Johns, T., et al., The new Hadley Centre climate model (HadGEMl):Evaluation of coupled simulations. Journal of Climate,2006.19(7):p.1327-1353.
    168. Cox, P.M., et al., Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature,2000.408(6809):p.184-187.
    169. Cox, P.M., Description of the TRIFFID dynamic global vegetation model. Hadley Centre Technical Note,2001.24:p.1-16.
    170. Palmer, J. and I. Totterdell, Production and export in a global ocean ecosystem model. Deep Sea Research Part I:Oceanographic Research Papers,2001.48(5):p.1169-1198.
    171. Morgenstern, O., et al.. Evaluation of the new UKCA climate-composition model. Part 1:The stratosphere. Geosci. Model Dev,2009.2(1):p.43-57.
    172. Oki, T. and Y. Sud, Design of Total Runoff Integrating Pathways (TRIP)-A global river channel network. Earth Interactions,1998.2(1):p.1-37.
    173. Holmes, C.D., et al.. Future methane, hydroxyl, and their uncertainties:key climate and emission parameters for future predictions. Atmos. Chem. Phys. Discuss,2012.12:p. 20931-20974.
    174. Cattiaux, J., H. Douville, and Y. Peings, European temperatures in CMIP5:origins of present-day biases and future uncertainties. Climate Dynamics,2012:p.1-19.
    175. Stevenson, D., et al., Multimodel ensemble simulations of present-day and near-future tropospheric ozone. Journal of Geophysical Research:Atmospheres (1984-2012),2006. 111(D8).
    176. Textor, C., et al., Analysis and quantification of the diversities of aerosol life cycles within AeroCom. Atmos. Chem. Phys,2006.6(7):p.1777-1813.
    177. Schmidt, G.A., et a I., Present-day atmospheric simulations using GISS ModelE:Comparison to in situ, satellite, and reanalysis data. Journal of Climate,2006.19(2):p.153-192.
    178. Russell, G.L., J.R. Miller, and D. Rind, A coupled atmosphere-ocean model for transient climate change studies. Atmosphere-Ocean,1995.33(4):p.683-730.
    179. Ahl strom. A., et al., Robustness and uncertainty in terrestrial ecosystem carbon response to CMIP5 climate change projections. Environmental Research Letters,2012.7(4):p.044008.
    180. Dirmeyer, P. A., et al., Trends in land-atmosphere interactions from CMIP5 simulations. J. Hydrometeor,2012.
    181. Wang, K. and R.E. Dickinson, A review of global terrestrial evapotranspiration:Observation, modeling, climatology, and climatic variability. Reviews of Geophysics,2012.50(2).
    182. Gosain, A.K., S. Rao, and A. Arora, Climate change impact assessment of water resources of India. Current Science,2011.101(3):p.356-371.
    183. Kay, A.L., et al., Comparison of uncertainty sources for climate change impacts:flood frequency in England. Climatic Change,2009.92(1-2):p.41-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700