用户名: 密码: 验证码:
大跨空间网壳结构地震响应分析及振动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大跨空间网壳结构具有造型美观、自重轻、布置灵活等优点,从而在大型公共建筑中得到了越来越广泛的应用。然而,由于这类结构是振动周期大、阻尼小的柔性结构,对动力作用比较敏感,在地震时往往会发生较大的振动,产生较大的变形,并且随着网壳结构跨度的增大,地震动的行波效应会导致各支承点的地震激励出现较明显的差异。因此,研究大跨空间网壳结构考虑地震动多点输入下的地震响应和控制方法是十分必要的。
     本文分析了一大跨空间网壳结构在一致输入和多点输入下的地震响应,探讨了一致输入和多点输入下这类结构地震响应的变化规律,同时利用磁控形状记忆合金(Magnetic Shape Memory Alloy-MSMA)特殊的物理力学性能,自主研发了2种MSMA作动器以及相应的主动控制系统,设计制作了2个空间网壳模型结构并对其进行了模拟地震振动台试验,论文的主要研究工作如下:
     (1)以一平面直径为80m的单层球面网壳结构为算例,分析了单层球面网壳结构在一致输入下的水平、竖向运动方程及反应谱求解方法,采用ANSYS有限元软件,建立了该单层球面网壳结构的有限元分析模型,同时利用一致输入反应谱的二次组合法(CQC),研究了该结构在水平和竖向地震作用下的杆件内力和节点位移,探讨了主要影响因素,总结了一致输入下网壳结构的地震响应规律。
     (2)在一致输入分析的基础上,研究了上述算例网壳结构考虑多点输入时的运动方程和多点输入反应谱分析方法,推导了基于虚拟激励原理的加速度反应谱计算公式,并对该网壳结构进行了水平和竖向多点输入下的地震响应分析,同时将一致输入和多点输入的分析结果进行比较,对比分析了水平、竖向多点输入下该网壳结构杆件内力响应和节点位移响应的变化规律,探讨了行波效应和视波速等对网壳结构地震响应的影响,为球面网壳结构考虑多点输入时的抗震设计提供了参考依据。
     (3)采用新型材料制备和实验力学方法,选用Ni-Mn-Ga为MSMA的主要材料成分,经过多次材料制备和材性试验,考虑磁场、温度、预加压力等多种因素的影响和相互耦合作用,分析了Ni-Mn-Ga合金不同化学成分含量对材料物理力学性能的影响,制备了物理力学性能较好的Ni_(53)Mn_(25)Ga_(22)合金材料,并对其进行了相应的磁力学性能试验,建立了Ni_(53)Mn_(25)Ga_(22)合金材料的预加压力-磁场-应变等磁力学本构模型。
     (4)以自主制备的Ni_(53)Mn_(25)Ga_(22)合金材料为核心元件,从磁场、磁路、预压力装置、温控装置等方面系统地分析了MSMA作动器的工作原理和构造方法,重点进行了磁路的优化与分析,经过合理构造和优化设计,自主研发了2种新型MSMA作动器,并进行了相应的磁场-作动性能试验,分析了主要影响因素和一般规律,建立了MSMA作动器的静/动力本构模型。结果表明,文中研发的MSMA作动器的动力响应频率可达200Hz以上,出力较大,能够满足结构地震响应主动控制的需要。
     (5)在自主研发的2种MSMA作动器的基础上,研究了主动控制系统的组成、控制原理和实现方法,设计了合理的控制策略,确定和优化了控制算法,制作了相应的控制器,集成和开发了2种MSMA主动控制系统并进行了相应的控制性能试验。结果表明,文中研发的MSMA作动器及主动控制系统均具有较好的适应性,应用其可进行网壳结构地震响应的主动控制。
     (6)采用不同长细比的杆件,设计制作了1个凯威特型空间网壳结构的试验模型,并利用遗传算法优化了MSMA作动器的位置和数量,进行了未设置MSMA主动控制系统和设置MSMA主动控制系统模型结构的模拟地震振动台试验,试验时分别输入正弦波、EL-Centro地震波和Taft地震波等,试验工况共20余种。结果表明,文中研发的2种MSMA作动器及主动控制系统均能很好地控制模型结构的地震响应,一般情况下其控制效果可达30%左右,说明文中研发的MSMA主动控制系统是可行有效的,具有较好的研究和应用前景。
Large-span space latticed shell structures are used more and more in people’s lives for they are aesthetically appealing with layout flexibility and can satisfy the requirement of large space. However, long-span space structure is very sensitive to seismic response for they belong to the flexible structure, their vibration period is long and damping is small, they sometimes will lead to greater vibration and generate larger deformation, the structures with larger planar size are different from each fulcrum ground motion, the spatial changes of ground motion will have an important influence to seismic responses of structures, so, considering the multi-point ground motion input is very necessary.
     The seismic responses of large-span space latticed shell structures are calculated respectively in consensus input and multi-point input, the changing regularity of seismic responses was obtained. At the same time, with the special physical and mechanical performance, Magnetic Shape Memory Alloy (MSMA) is used to make two kinds of actuators independently, accordingly, the active control systems are exploited, two model structures is designed and made, the simulated seismic shaking table tests are carried on the two model structures. The main research works of the paper are as follows:
     (1) A single-layer reticulated spherical shell structure with planar diameter 80m is as an example, under vertical and horizontal consistent input; equations of motion and response spectrum are analyzed. The finite element analysis model of the single-layer reticulated spherical shell structure is established with ANSYS finite element analysis software, the rods internal force and nodal displacements of model structure under vertical and horizontal consistent input are studied by CQC of consistent input response spectrum, the major effect factors are discussed, the laws of consistent input seismic response are summarized.
     (2) Based on the analysis of the consensus input, equations of motion and response spectrum of multi-point input are studied, the acceleration response spectrum calculation formula is derived based on pseudo excitation method. The horizontal and the vertical seismic response of the model structure under multi-point input is conducted, at the same time, the analysis results of consistent input and multi-point input are compared, The contrastive analysis of horizontal and vertical multi-point input are conducted to reveal the changing rules of the rods internal force response and node displacement response. The influence of the traveling wave effects are discussed, it provides the reference for large-span space latticed shell structures design.
     (3) Using new materials preparation and experimental mechanics methods, Ni-Mn-Ga is selected as the main ingredients of MSMA material. After several times materials preparation and material performance tests, considering coupling of magnetic field, temperature and prestressing etc. factors, Ni-Mn-Ga chemical composition contents influence physical and mechanical properties of MSMA, and the influence law is analyzed. The good performance alloy materials of Ni_(53)Mn_(25)Ga_(22) is prepared, the magnetics performance tests are done, and the magnetics constitutive models of Ni_(53)Mn_(25)Ga_(22) alloys are established in different conditions of magnetic field, prestressing and deformation etc.
     (4) As the self-designed MSMA materials are core elements, the working principle and structural method of the MSMA actuators are systematically analyzed from magnetic field and magnetic circuit, prestressing device, temperature control device, etc. it put the emphasis on the magnetic circuit optimization and analysis. Through the reasonable idea and optimization design, two types of new MSMA actuators are independently researched and produced, and the corresponding field-actuator performance tests are done, the main influence factors and general rules are analyzed, the static/dynamic constitutive models of the MSMA actuators are established. The results show that the dynamic response frequency of the MSMA actuators can reach 200Hz above, and the output force is larger, it can satisfy active control needs of the earthquake response.
     (5) On the basis of two types of new MSMA actuators researched and developmented independently, the compositions of the active control system, control principles and realization methods are studied, the reasonable control strategy is designed, the control algorithm is planed and optimized, then, the corresponding controller is made,the two kinds of MSMA active control system is integrated and exploited, and the corresponding control performance tests are done. The results show that the MSMA actuators and active control system developed in this paper have better adaptabilities, they can actively control seismic response of shell structure.
     (6) Using different slenderness ratios of the rods, two experiment models of Kiah witter space reticulated shell structure are designed and made, the MSMA actuators position and number are optimized by genetic algorithm, the earthquake simulating shaking table tests of the experiment models with the MSMA active control systems and no MSMA active control systems are done, in the tests, the sine waves, EL-centro seismic waves and Taft seismic waves are respectively input, more than 20 kinds of experimental conditions are completed. The results indicate that the two MSMA actuators and active control systems can well control seismic responses of the model structures, usually the control effects can reach 30%, it is shows that the MSMA active control systems are feasible and efficient, they have good researching value and application prospect.
引文
[1]沈世钊.大跨空间结构理论研究和工程实践[J].中国工程科学, 2001, 3(3): 34-41
    [2] Yang Q S, Chen Y J. A practical coherency model for spatially varying ground motions [J]. Earthquake Engineering and mechanics, 2000, 9(2): 141-152
    [3] Liu Feng, Xiao Congzhen, Xu Ziguo, et al. Timehistory analysis of terminal 3 of the Capital Airport undermulti-support and multi-dimension seismic excitation [J]. Journal of Building Structures, 2006, 27( 5) : 56-63
    [4]曹资,张毅刚.单层球面网壳地震反应特征分析[J].建筑结构,1998,43(8) :40-43
    [5] Allam SM, Datta T K. Analysis of cable-stayed bridges undermulti2component random ground motion by response spectrum method [J]. Engineering Structures, 2000, 22(5): 1367-1377
    [6] Lin J H, Zhang Y H, Li Q S, Williams FW. Seismic spatial effects for long-span bridges using the p seudo excitation method [J] EngineeringStructures, 2004, 26 (9) : 1207-1216
    [7]李宏男.结构多维抗震理论与设计方法[M].北京:科学出版社, 1998
    [8]白凤龙,李宏男,王国新.多点输入下大跨结构反应谱分析方法研究进展[J].地震工程与工程振动, 2008, 28(4): 35-42
    [9] F, Ohtori Y, Christenson R E, Spencer Jr B. Benchmark Control Problems forSeismically Excited Nonlinear Buildings [J]. Journal of Engineering Mechanics: Special Issue on Structural Control Benchmark Problems, 2002, 12(6):221-228
    [10] Osamu Yoshida, Shirley J.Dyke .Response Control in Full Scale Irregular Buildings Using MR Dampers [J]. Journal of Structural Engineering, 2003, 15(6):115-119
    [11]欧进萍.结构振动控制—主动、半主动和智能控制[M],北京:科学出版社, 2003
    [12]李忠献,陈海泉,刘建涛.应用SMA复合橡胶支座的桥梁隔震[J].地震工程与工程振动, 2002, 22(2): 43-148
    [13] Higasino.M, Aizawa.S, Clark.P.W, et al.Experimental and analytical studies of structural control system using shape memory alloy[C]. In:Proceedings of the 2st International Workshop on Structural Control.Hong Kong, 1996: 40-50
    [14]颜桂云,孙炳楠,陆鸣. MR阻尼器对建筑结构地震反应的半主动H∞控制[J],工程力学, 2004, 21(2): 95-100
    [15] Fadi Farhat, Shozo Nakamura,Kazuo Takahashi. Application of genetic algorithm to optimization of buckling restrained braces for seismic upgrading of existing structures [J]. Computers & Structures, 2009, 87(1-2):110-119
    [16] Glavatska N. Origin of the time-dependent magneto-plasticity in the Ni-Mn-Ga magnetic shape memory martensites [J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2008, (481-482):73-79
    [17] Barandiaran J M, Chernenko V A, Lazpita P, et al. Effect of martensitic transformation and magnetic field on transport properties of Ni-Mn-Ga and Ni-Fe-Ga Heusler alloys [J]. Physical Review B, 2009, 80(10):104-110
    [18]薛素铎,王雪生,曹资.基于新抗震规范的地震动随机模型参数研究[J].土木工程学报, 2003, 36 (5):5-10
    [19] W. O. Wong, Y. L. Cheung. Optimal design of a damped dynamic vibration absorber for vibration control of structure excited by ground motion [J]. Engineering Structures, 2008, 30(1):282-286
    [20] Alexandros A. Taflanidis,Demos C. Angelides,George C. Manos. Optimal design andperformance of liquid column mass dampers for rotational vibration control of structures under white noise excitation [J]. Engineering Structures, 2005, 27(4):524-534
    [21] M. Basili, M. De Angelis. A reduced order model for optimal design of 2-mdof adjacent structures connected by hysteretic dampers [J]. Journal of Sound and Vibration, 2007, 306(12):297-317
    [22]郑飞,叶继红.空间地震动场的相干性研究[J].振动与冲击, 2009, (28)06:23-28
    [23] Hao H. Arch response to correlated multiple excitations [J]. Earthquake Engineering and Structural Dynamics, 1993, 22(3): 389-404
    [24] Hao H, Duan X N. Multiple excitation effects on response of symmetric building [J]. Engineering Structures, 1996, 18 (9): 732-740
    [25] Harichandran R S, Hawwari A, Sweiden B N. Response of long-span bridges to spatially varying ground motion [J]. Journal of Structural Engineering, ASCE, 1996, 122 (5): 476-484
    [26] TrifunacM D, Gicev V. Response spectra for differential motion of columns, paperⅡ: Out-of-plane response [J]. Soil Dynamics and Earthquake Engineering, 2006, 26: 1149 - 1160
    [27] Su L, Dong S L, Kato S. Seismic design for steel trussed arch to multi-support excitations [J]. Journal of Constructional Steel Research, 2007,63 (6) : 725 - 734
    [28] Li Xin, Liu Yakun, Zhou Jing, et al. Experimental study on free spanning submarine pipeline under dynamic excitation [J]. China Ocean Engineering, 2002, 16(4) : 537- 548
    [29] Duan M L, Sun Z C, et al. Ultimate stress analysis for subsea pipeline design against earthquakes [C]. Proc. of the International Off-shore and Polar Engineering Conference.Toulon, 2004: 77- 81
    [30] Wilson E L. Three dimensional static and dynamic analysis of structures: a physical approach with emphasis on earthquake engineering [M]. Berkley, California: Computers and Structures, Inc., 2002
    [31]董汝博,周晶,冯新.一种考虑局部场地收敛性的多点地震动合成方法[J] .振动与冲击, 2007, 26(4) : 5-9
    [32] Dong K K, Wieland M. Application of response spectrum method to a bridge subjected to multiple support excitation[C]. Proceedings of the 9th world conference on earthquake engineering, Tokyo, 1988, 6: 531–536
    [33] Nakamura Y, Kiureghian A D, David L. Multiple-support response spectrum analysis of the golden gate bridge[R]. Berkeley: Earthquake Engineering Research Center, University ofCalifornia at Berkeley, 1993
    [34] Allam SM, Datta T K. Analysis of cable-stayed bridges under multi-component random ground motion by response spectrum method [J]. Engineering Structures, 2000, 22: 1367-1377
    [35]刘先明,叶继红,李爱群.多点输入反应谱法的理论研究[J].土木工程学报, 2005, 38 (3) : 17- 22
    [36]孙建梅,叶继红,程文.多点输入下大跨空间网格结构的可靠度分析[J].应用力学学报, 2005, 22 (4) : 560-566
    [37] Su L, Dong S L, Kato S. Seismic design for steel trussed arch to multi-support excitations [J]. Journal of Constructional Steel Research, 2007,63 (6) : 725-734
    [38]苏亮,董石麟.多点输入下门式桁架结构的抗震分析[J].浙江大学学报(工学版) , 2007, 41 (1) : 187-192
    [39]林家浩,李建俊,张文首.结构受多点非平稳随机地震激励的响应[J].固体力学学报, 1996, 17(1):65-68
    [40]曹资,薛素铎.空间结构抗震理论与设计[M].北京:科学出版社, 2005
    [41]丁阳,林伟,李忠献.大跨度空间结构多点多维非平稳随机地震反应分析[J].工程力学, 2007, 24(3): 97-103
    [42]周福霖.工程结构减震控制[M].北京:地震出版社,1997
    [43]唐家祥,刘再华.建筑结构基础隔震[M].华中理工大学出版社, 1993
    [44] Makris N, Constantinou M.C. Viscous dampers: testing, modeling, and seismic isolation [C]. Technical Report NCEER-90-0028, National application in vibration Center for Earthquake Engineering Research, Buffalo, New York, 1990:1100-1115
    [45]梁海彤,张毅刚,吴金志.采用阻尼杆件的双层柱面网壳减震控制研究[C].第十届空间结构学术会议论文集,2002:211-218
    [46]张毅刚,梁海彤.替换可控杆件的双层柱面网壳半主动控制策略[J].北京工业大学学报2003,29(3):320-324
    [47]倪莉,张毅刚.可控制杆件在双层柱面网壳结构中的最优布置[J].世界地震程, 2001, 17(3):98-104
    [48]徐闻,孙建恒,姚洪涛等.单层柱面正交异型网壳结构的动力特性研究[[J].河北农业大学学报, 2005, 28 (1): 83-87
    [49] Mamoru Iwata,Manori Fujita, AkioWada.Energy absorbing mechanism for space frame suport. Proeeeding of The Second world Conference on Structural Control[C], Tokyo, 1999:451-455
    [50]周晓峰,陈福江,董石麟.粘弹性阻尼材料支座在网壳结构减震控制中性能研究[J].空间结构, 2000,6(4):21-28
    [51]高博青,董石麟.折板式网壳结构的抗震及减震研究[J].浙江大学学报(理学版), 2002, 29(5): 589-594
    [52]叶继红,陈月明,沈世钊. TMD减震系统在网壳结构中的应用[J].哈尔滨建筑大学学报2000, 33(5): 10-14
    [53] Motohiko Ymada.Vibration control of larges space strueture using TMD system [C]. Proeeeding of 15th Asian-Pacific conference on structural Engineering and construction. Cold Coast, Queensland, Australia, 1995:23-30
    [54]叶继红,陈月明,沈世钊.网壳结构TMD减震系统的优化设计[J].振动工程学报,2000, 13(3): 376-384
    [55]叶继红,陈月明,沈世钊. TMD系统在单层球壳振动控制中的参数分析[J].空间结构, 1999, 5(2): 10-17
    [56]叶继红,陈月明,沈世钊. TMD系统在单层柱壳振动控制中的参数分析[J].工业建筑2000, 30(4): 9-13
    [57]欧进萍,王永富.设置TMD, TLD控制系统的高层建筑风振分析与设计方法[J].地震工程与工程振动,1994, 14(2): 61-75
    [58]瞿伟廉,项海帆. ER智能材料在结构振动控制中应用[J],地震工程与工程振动, 1998 18(3): 49-55
    [59]李山清,刘正兴,杨耀文.压电材料在智能结构形状和振动控制中的应用[J].力学进展,1999, 29(1): 66-76
    [60]崔海涛.压电智能悬臂梁的被动与主动控制研究[D],西安:西北工业大学,2004
    [61] Tegus O, Brück E, Buschow K H J, et al. Transition-metal-based magnetic refrigerants for room-temperature applications [J]. Nature(London), 2002, 415(68): 150-153
    [62] Krenke T, Duman E, Acet M, et al. Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys [J]. Nat Mater, 2005, 4(6):450-454
    [63]王社良,巨生国,苏三庆.形状记忆合金的动力响应特性及振动控制[J].西安建筑科技大学学报, 1993, 31(1): 14-17
    [64]王社良,苏三庆,沈亚鹏.形状记忆合金拉索被动控制结构地震响应分析[J].土木工程学报, 2000, 23(1): 47-51
    [65] Han Zhida, Wang Dunhui, Zhang Chengliang, et al. Large magnetic entropy changes in theNi45.4Mn41.5In13.1 ferromagnetic shape memory alloy [J]. Appl Phys Lett, 2006, 89(18): 182507-182509
    [66] Sutou Y, Imano Y, Koeda N, et al. Magnetic and martensitic transformations of NiMnX(X=In, Sn, Sb) ferromagnetic shape memory alloys [J]. Appl Phys Lett, 2004, 85(19): 4358-4360
    [67] Han Zhida, Wang Dunhui, Zhang Chengliang, et al. Low-field inverse magnetocaloric effect in Ni50-xMn39 + xSn11 Heusler alloys [J].Appl Phys Lett, 2007, 90(4): 042507-042509
    [68] Krenke T, Acet M, Wassermann E F, et al. Martensitic transitions and the nature of ferromagnetism in the austenitic and martensitic states of Ni-Mn-Sn alloys [J]. Phys Rev B, 2005, 72(1): 014412-014417
    [69] Brown P J, PGandy A, Ishida K, et al. The magnetic and structural properties of the magnetic shape memory compound Ni2Mn1.44Sn0.56 [J]. J Phys: Condens Matter, 2006, 18(7): 2249-2255
    [70]潘日敏,杨永才,虞翔.基于DSP的磁致伸缩传感器位移测量研究[J].仪器仪表学报, uced strains in Ni2MnGa single crystals[J].Appllied Physics Letters 1996; M. Magnetostriction of martensite [J]. Philosophical Magazine A, 1998, with giant magnetic-field-induced strain [J]. IEEE Trans. , the 8th International Conference on New Actuators [C]. Bremen ,忆合金研究进展与展望(Ⅰ):材料、力学特性[J].防磁控形状记忆合金执行器工作原理及其应用[J].科学技术与工d magnetization in magnetic shape-memory alloys [J]. 2005,(S1):112-116
    [71] Ullakko K, Huang J K, Kantner C, O’Handley RC, Kokorin VV. Large magnetic-field-ind69(3): 1966-1968
    [72] James R D, Wutting 77(5): 1273-1299
    [73] Sozinov A, Likhachev A A, Ullakko K. Crystal structures and magnetic anisotropy properties of Ni-Mn-Ga martensitic phasesMagn. , 2002 , 38(9): 2814-2820
    [74] Claeyssen F, Lhermet N. Actuators based on giant magnetostrictive materials [A]. Hubert Borgmann. Actuator 2002Germany, 2002:148-153
    [75]李爱群,陈鑫,左晓宝.铁磁形状记灾减灾工程学报, 2011, 31(2):1-14
    [76]王凤翔,张庆新,吴新杰.程, 2003 , 3 (6) : 577-581
    [77] O’Handley RC. Model for strain anAppl Phys, 1998, 86(5):3263-3270
    [78] Wan JF, Lei XL, Chen SP, Hsu TY. Magnon-TA phonon interaction and the specific heat during the premartensitic transformation in ferromagnetic Ni2MnGa [J]. Solid State Commun分布下对施威德勒穹顶稳定性能.多点输入下大跨空间网格结构的可靠度分析[J].应用力学学报,2005,22(4):560-567 2005, 133(8):433-437
    [79]许波,张广泰,孙静.基于ANSYS的荷载非对称的分析[J].水利与建筑工程学报, 2008, 6(2): 106-110
    [80]孙建梅,叶继红,程文瀼
    [1]许波,张广泰,孙静.基于ANSYS的荷载非对称分布下对施威德勒穹顶稳定性能的分析[J].水利与建筑工程学报, 2008, 6(2): 106-110
    [2]孙建梅,叶继红,程文瀼.多点输入下大跨空间网格结构的可靠度分析[J].应用力学学报,2005,22(4):560-567
    [3]中华人民共和国行业标准(JGJ61-2003).网壳结构技术规程[S].北京:中国建筑工业出版社, 2003
    [4]林家浩,张亚辉,赵岩.大跨度结构抗震分析方法及近期进展[J],力学进展, 2001, 31(3): 350-360
    [5] M. Kohl, D. Brugger,M. Ohtsuka, T. Takagi, A novel actuation mechanism on the basis of ferromagnetic SMA thin films[J], Sens. Actuators A114 2004, 25(7): 445-450
    [6]贺拥军,周绪红,王海顺.膜型网壳结构抗震性能研究[J],地震工程与工程振动, 2008, 28(4):43-49
    [7]沈世钊,陈昕著.网壳结构稳定性[M],科学出版社, 1999
    [8]建筑抗震设计规范(GB50011-2010)[S].中国建筑工业出版社, 2002
    [9]陈应波,陈军明,李秀才.单层球面网壳结构的力学性能研究[J],武汉理工大学学报, 2003, 25 (5) :40-49
    [10] Wilson,E.L., Kiuerghina A. D.,ByaoE.P. A replacement for the SRSS method in seismicn ayalsis [J]. Earthquake Engineering & Surtcuter dynamics,1991, 22(9):187-194
    [11]陈道政,刘先明,叶正强等,大跨度空间网格结构多点输入反应谱计算方法的研究[J].应用力学学报, 2005, 22(3): 409-413
    [12] Soyluk K. Comparison of random vibrationmethods for multi-support seismic excitation analysis of long2span bridges [J]. Engineering Structures, 2004, 26: 1573-1583
    [13] Su L, Dong S L, Kato S. A new average response spectrum method for linear response analysis of structures to spatial earthquake ground motions [J]. Engineering Structures, 2006, 28 (13) : 1835-1842
    [14] Su L, Dong S L, Kato S. Seismic design for steel trussed arch to multi-support excitations [J]. Journal of Constructional Steel Research, 2007,63 (6) : 725-734
    [15]刘先明,叶继红,李爱群.多点输入反应谱法的理论研究[J].土木工程学报, 2005, 38 (3) : 17-22
    [1] Ramadan O.,Novak M.,Simulation of spatially incoherent random ground motions[J], Journal of Engineering mechanics, 1993, 119(5): 997-1016
    [2] Hao H..elcitahon .Response of two-way eccentric building to nonunifonn base excitation [J]. Engineering Structures, 1998,20 (8): 677-684
    [3] Haricbandran R. S.,Hawvari A.,Sweidan B.. Response of long-span bridges to spatially varying ground motion [J]. Journal of structural Engineering, ASCE, 1996, 125(5): 476-484
    [4]林家浩,李建俊,张文首.大跨度结构考虑行波效应时非平稳随机地震响应[J].固体力学学报, 1996, 17(1):65-68
    [5]林家浩,李建俊,张文首.结构受多点非平稳随机地震激励的响应[J].力学学报,1995, 27(5): 567-576
    [6]许谋奎.空间变化地震动下变形敏感大跨度结构响应分析[D].上海:同济大学, 2006
    [7]陈道政,刘先明,叶正强,等.大跨度空间网格结构多点输入反应谱计算方法的研究[J].应用力学学报, 2005,22(3): 409-414
    [8] Berrah M., Kausel E.. Response spectrum analysis of structures subjected to spatially varying motions[J]. Earthquake Engineering & Structural Dynamics, 1992, 21(5): 461-470
    [9] Berrab M., Kausel E.. A model combination rule for spatially varying seismic motions [J]. Earthquake Engineering & Structural Dynamics, 1993, 22 (8): 791-800
    [10] Yamamura N., Todorovska. . Response analysis of flexible MDF systems for multiple-support seismic excitation [J]. Earthquake Engineering & Structural Dynamics, 1990, 19(3): 345-357
    [11]王淑波.大型桥梁抗震反应谱分析理论及应用研究[D].上海:同济大学, 1997
    [12]李建俊.随机地震响应的虚拟激励法[D].大连:大连理工大学,1994
    [13]白凤龙,李宏男,王国新.多点输入下大跨结构反应谱分析方法研究进展[J].地震工程与工程振动, 2008, 28(4): 36-42
    [14]夏友柏,王年桥.多点地震激励下基于改进振型位移法的反应谱方法[J].世界地震工程, 2003, 19 (1) : 164-169
    [15]孙建梅,叶继红.快速多点输入反应谱法在大跨空间网格结构中的应用[J].铁道科学与工程学报, 2005, 2 (5) : 85-92
    [16] Berrah M, Kausel E. Response spectrum analysis of structures subjected to spatially varying motions [J]. Earthquake Engng Struct. Dyn, 1992, (21):461-470
    [17] Berrah M, Kausel E.A model combination rule for spatially varying seismic motions [J]. Earthquake Engng Struct. Dyn, 1993, (22):791-800
    [18] Heredia-Zavoni E, Vanmarke E H. Seismic random-vibration analysis of multisupport- structural systems[J]. J Eng Mech, 1994,120 (5):1107-1128
    [19] Der Kiureghian, Armen, Neuenhofer Ansgar. A response spectrum method for multiple-support seismic excitations [C]. Report No. UCB/EERC-91/08, Earthquake Engineering Research Center, University of California at Berkeley,1991
    [20] Kiureghian A D, Neuenhofer A. Response spectrum method for multi-suppport seismic excitations [J]. Earthquake Engineering and Structural Dynamics.1992,(21):713-740
    [21] Der Kiureghian Armen, Keshishian, Petros G, Hakobian Ashot. Multiple support response spectrum analysis of bridges including the site-response effect & the MSR: code [C]. Report No. UCB/EERC-97/02, Earthquake Engineering Research Center, University of California at Berkeley, 1997
    [22] Martins J A C, Pinto da Costa A. Stability of finite-dimensional nonlinear elastic systems withunilateral contact and friction [J]. International Journal of Solids and Structures, 2000, 37(18):124-135
    [23] Der Kiureghian, Armen,Neuenhofer Ansgar. A response spectrum method for multiple- support seismic excitations [C]. Report No. UCB/EERC-91/08, Earthquake Engineering Research Center, University of California at Berkeley,1991
    [24]丁光莹,李杰.多点非一致激励长跨结构抗震可靠度分析[J].世界地震工程, 2000, 16 (3) : 84-89
    [25]李建华,李杰.多点激励下结构抗震可靠度分析的反应谱方法[J].防灾减灾工程学报, 2004, 24 (3) : 242-246
    [26] Su L, Dong S L, Kato S. A new average response spectrum method for linear response analysis of structures to spatial earthquake ground motions [J]. Engineering Structures, 2006, 28 (13) : 1835-1842
    [27] Trifunac M D, Gicev V. Response spectra for differential motion of columns, paperⅡ:Out-of-plane response [J]. Soil Dynamics and Earth-quake Engineering, 2006, (26): 1149-160
    [28]林家浩,张亚辉.随机振动的虚拟激励法[M ].北京:科学出版社, 2004
    [29]李宏男.结构多维抗震理论[M ].北京:科学出版社, 2006
    [30] Hao H, Duan X N. Multiple excitation effects on response of symmetric buildings [J]. Engineering structure, 1996, 18(9): 732-740
    [31]梁嘉庆,叶继红.结构跨度对非一致输入大跨度空间网格结构地震响应的影响[J].空间结构, 2004, l0(3):13-18
    [32]刘文静,李黎,杨德喜等. ANSYS环境下的网壳结构优化设计[J].空间结构, 2008, 12(2):38-41
    [33]牟在根,侯晓武,宁平华等. ANSYS环境下基于离散变量的网架结构优化设计[J].北京科技大学学报, 2006 , 28 (5) : 417-421
    [34]龚曙光,谢桂兰. ANSYS操作命令与参数化编程[M] .北京:机械工业出版社, 2004
    [35] Allam SM, Datta T K. Analysis of cable-stayed bridges undermulti-component random ground motion by response spectrum method [J].Engineering Structures, 2000, (22): 1367-1377
    [36]刘先明.大跨度空间网格结构多点输入反应谱理论的研究与应用[D].南京:东南大学, 2003
    [1]余声明.智能磁性材料及其应用[J].磁性材料及器件, 2004, 35 (5 ): 1-4
    [2]李扩社,徐静等.稀土超磁致伸缩材料发展概况[J].稀土,2004, 25 (4): 51-56
    [3]欧进萍.结构振动控制——主动、半主动和智能控制[M],北京:科学出版社, 2003
    [4] Murray SJ, Marioni M, Allen SM, O’Handley RC, Lograsso TA. 6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni-Mn-Ga [J]. Appl Phys Lett 2000, 77(3) :886-888
    [5] Sozinov A, Likhachev AA, Lanska N, Ullakko K. Giant magneticfield-induced strain in Ni-Mn-Ga seven-layered martensitic phase[J]. Appl Phys Lett 2002, 80(5):1746-1748.
    [6] Martins J A C, Pinto da Costa A. Stability of finite-dimensional nonlinear elastic systems withunilateral contact and friction [J]. International Journal of Solids and Structures, 2000, 37(18):
    [7] Holmes P, Domokos GS Schmitt J, and Szeberenyi I. Constrained Euler buckling: an interplay ofcomputation and analysis [J]. Computer Methods in Applied Mechanics and Engineering, 1999, 21 (2):176-188
    [8] Marioni MA, O’Handley RC, Allen SM. Pulsed magnetic fieldinduced actuation of Ni-Mn-Ga single crystals [J]. Appl Phys Lett , 2003, 83(10):3966-3968
    [9]高智勇,陈枫等.外磁场对Ni-Mn-Ga磁性形状记忆合金相变及显微组织的影响[J].功能材料, 2003,34(3):284-285
    [10] O’Handley RC. Model for strain and magnetization in magnetic shape-memory alloys [J]. J Appl Phys 1998, 86(4) :3263-3270
    [11] Jin XJ, Bono D, O’Handley RC, Allen SM, Hsu TH. Magnetic field effects on strain and resistivity during the martensitic transformation in Ni-Mn-Ga single crystals [J]. J Appl Phys 2003, 95(6):8630-8632
    [12]李宏男,阎石.智能结构振动控制发展综述[J].地震工程与工程振动,1999,19(2): 29-36
    [13] A. Huibin Xu, Jingmin Wang, Chengbao Jiang, et al. Ni-Mn-Ga shape memory alloys development in China[J], Current Opinion in Solid State and Materials Science, 2005 (9):319-325
    [14] HwangW S., and Park H. C. Vibration Control of a Laminated Plate With PiezoelectricSensor/Actuator: Finite Element Formulation and Modal Analysis [J]. J. Intel. Mater. Sys.& Struc.1993,4(4): 317-329
    [15]翁光远,王社良,王占锋.磁控形状记忆合金在结构振动控制中的应用研究[J].西安建筑科技大学学报(自然科学版), 2010, 42(5): 631-636
    [16]张庆新.磁控形状记忆合金特性及其作动器应用基础研究[D].沈阳:沈阳工业大学, 2006
    [17] H.E. Karaca, I. Karaman, B. Basaran, et al. Magnetic field and stress induced martensite reorientation in Ni-Mn-Ga ferromagnetic shape memory alloy single crystals[J], Acta Materialia ,2006(56):233-245
    [18] Suorsa, J. Tellinen, E. Pagounis, I. Aaltio, and K. Ullakko. Applications of magnetic shape memory actuators [C]. In 8th international conference ACTUATOR 2002, Bremen (Germany), 2002
    [19] M. Kohl, D. Brugger, M. Ohtsuka, and T. Takagi. A novel actuation mechanism on the basis of ferromagnetic sma thin films[J], Sensors and Actuators A, 2004,114(6): 445-450
    [20] J. Y. Gauthier, A. Hubert, J. Abadie, Magnetic Shape Memory Alloy and Actuator Design [J]. Proceedings of the 5th International Workshop on Microfactories, IWMF'06,2006
    [21] Gonzalez-Comas,E. Obrado,L. Manosa, A Planes,V.A.Chernenko, Jan Hattink, A. Labarta,Premartensitic and martensitic phase transitions in ferromagnetic Ni2MnGa [J], Phys. Rev. B,1999, 60(7):7085-7090
    [22] Suorsa, E. Pagounis, and K. Ullakko. Magnetic shape memory actuator performance [J]. Journal of Magnetism and Magnetic Materials, 2004,(272-276): 2029-2030
    [23] Chernenko VA, Segui C, Cesari E, Pons J, Kokorin VV. Some aspects of structure behavior ofNi-Mn-Ga alloys [J]. J Phys IV 1997, 24(5):137-141
    [24] Pons J, Chernenko VA, Santamarta R, Cesari E. Crystal structure of martensitic phases in Ni-Mn-Ga shape memory alloys [J] . Acta Mater 2000, 48(3):3027-3308
    [25] Murray SJ, Marioni M, Allen SM, O’Handley RC, Lograsso TA. 6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni-Mn-Ga [J]. Appl Phys Lett 2000, 77(9):886-888
    [26] Sozinov A, Likhachev AA, Lanska N, Ullakko K. Giant magneticfield-induced strain in Ni-Mn-Ga seven-layered martensitic phase [J]. Appl Phys Lett 2002, 80(5):1746-1748
    [27] O’Handley RC. Model for strain and magnetization in magnetic shape-memory alloys [J]. J Appl Phys 1998, 86(4): 3263-3270
    [28] Marioni MA, O’Handley RC, Allen SM. Pulsed magnetic fieldinduced actuation of Ni-Mn-Ga single crystals [J]. Appl Phys Lett 2003, 83(6): 3966-3968
    [29] Jiang CB, Feng G, Gong SK, Xu HB. Effect of Ni excess on phase transformation temperatures of Ni-Mn-Ga [J] alloys. Mater Sci Eng A 2003, 342:231-235
    [30] Jiang CB, Muhammad Y, Deng LF, Wu W, Xu HB. Composition dependence on the martensitic structures of the Mn-rich Ni-Mn-Ga alloys [J]. Acta Mater 2004, 52:2779-2785
    [31] Jiang CB, Feng G, Gong SK, Xu HB. Effect of Ni excess on phase transformation temperatures of Ni-Mn-Ga [J] alloys. Mater Sci Eng A 2003, 342:231-235
    [32] Jiang CB, Muhammad Y, Deng LF, Wu W, Xu HB. Composition dependence on the martensitic structures of the Mn-rich Ni-Mn-Ga alloys [J]. Acta Mater 2004, 52(4):2779-2785
    [33] Feng G, Jiang CB, Liang T, Xu HB. Magnetic and structural transition of Ni50+xMn25-x/2Ga25-x/2(x=2-5) alloys [J]. J Mag Mag Mater 2002, 248(5):312-317
    [34] Wang WH, Hu FX, Chen JL, Li YX, Wang Z, Gao ZY, et al. Magnetic properties and structural phase transformations of Ni-Mn-Ga alloys [J]. IEEE Trans Magn 2001, 37(7):2715-2717
    [35] Wang WH, Wu GH, Chen JL, Gao SX, Zhan WS, Wen GH, et al.Intermartensitic transformation and magnetic-field-induced strain in Ni52Mn24.5Ga23.5 single crystals [J]. Appl Phys Lett 2001,79(3):1148-1150
    [36] Wang WH, Liu ZH, Zhang J, Chen JL, Wu GH, Zhan WS, et al.Thermoelastic intermartensitic transformation and its internal stress dependency in Ni52Mn24Ga24 single crystals [J]. Phys Rev B 2002, 66(7):052411
    [37] Jiang CB, Liang T, Xu HB, Zhang M, Wu GH. Superhigh strains by variant reorientation in the nonmodulated ferromagnetic NiMnGa alloys [J]. Appl Phys Lett 2002;81(8):2818-2820
    [38] Kieer B, Lagoudas D C. Magnetic field-induced martensitic variant reorientation in magnetic shape memory alloys[J].Phil Mag, 2005, 85(3): 4289-4329
    [39] Hirsinger L, Lexcellent C. Modelling detwinning of martensite platelets under magnetic and (or) stress actions on Ni-Mn-Ga alloys [J]. J Magn Magn Mater, 2003,(254-255): 275-277
    [40] Hirsinger L. Lexcellent C. Internal variable model for magneto-mechanical behaviour of ferromagnetic shape memory alloys Ni-Mn-Ga [J]. J Physique IV F'nance, 2003,112(8): 977-980
    [41] Likhachev A A, Ullakko K. Magnetic-field-controlled twin boundaries motion and giant magneto-mechanical effects in Ni-Mn-Ga shape memory alloy [J]. Phys Lett A, 2000, 275(6):142-151
    [42] James R D, Wuttig M. Magnetostriction of martensite [J] , Phalos Mag A, 1998, 77(2):1273-1299
    [43] DeSimone A, James R. A constrained theory of magne-toelasticity [J]. J Mech Phys Solids, 2002, 50(1): 283-320
    [44] O'Handley R C. Model for strain and magnetization in magnetic shape-memory alloys [J]. J Appl Phys, 1998,83(11):3263-3270
    [45] O'Handley R C, Murray S J, Marioni M, et al. Phenomenology of giant magnetic-field-induced strain in ferromagnetic shape-memory materials [J]. J Appl Phys, 2000,87(9): 4712-4717
    [46] J. Y. Gauthier, A. Hubert, J. Abadie, C. Lexcellent, and N. Chaillet. Multistable actuator based on magnetic shape memory alloy [C]. 10th International Conference on New Actuators, ACTUATOR 2006, Bremen, Germany, 2006, 787-790
    [1] Akbay Z. ,Aktan HM. Abating Earthquake Effects on Buildings by Active Slip Brace Devices[J], Shock Vibration, 1995, 2: 133-142
    [2]孙剑平,朱稀.结构控制方法评述[J],力学进展, 2000, 30(4):195-505
    [3] Nagashima I, Shinozaki Y .Variable gain feedback control technique of active mass damper and its application to hybrid structural control [J]. Earthquake Engineering and Structural Dynamics, 1997, 26:815-838
    [4] Loh C H, Lin P Y. Kalman filter approach for the control of seismic-induced building vibration using active mass damper system [J]. The Structural Design of Tall Buildings, 1997, 6:209-224.
    [5]顾明,王晓勇.用主动调谐质量阻尼器控制高层建筑的风致振动[J],地震工程与工程振动, 1998, 18(3):88-95
    [6] B. Chomette, S. Chesne,D. Remond, L. Gaudiller. Damage reduction of on-board structures using piezoelectric components and active modal control-Application to a printed circuit board [J]. Mechanical Systems and Signal Processing, 2010, 24(2): 352-364
    [7] Yang J N, et al. Hybrid control of seismic excited bridge structure [J]. Earth Engineering and Structure Dynamics, 1995, 24: 1437-1451
    [8] Veinini P, Wen Y K. Hybrid vibration control of MDOF hysteretic structures with neural networks[C], Proceeding of First World Conference Structure Control, 1994, 2: 53-62
    [9] Nagashima I, Shinozaki Y. Variable gain feedback control technique of active mass damer and its application to hybrid structural control[J], Earth Engineering and Structure Dynamics, 1997, 26: 815-838
    [10] Kelly J M, Leitmann G, Soldators A G .Robust control of base isolated structures under earthquake excitation[J], Journal of Optimization Theory and Applications, 1987, 53(2): 159-180
    [11] Fu K S, Walts M. A Heuristic Approch to Reinforcement Learning Control System [J]. IEEE Trans, Automat control, 1965, 10(4): 390-398
    [12] M, Mendel J. Application of Artificial Intelligence Techniques to a Spacecraft Control Problem [J]. In Self-Organizating Control Systems, 1996. 5
    [13] N, Saridis G. Knowledge Implementation: Structure of Intelligent Control Systems [J]. IEEE International Symposium on Intelligent Control, 1987 104
    [14]殷青英,翁光远.智能材料在结构振动控制中的应用研究[J].科技导报, 2009, (12):93-97
    [15]孙增沂等.智能控制理论与技术[M],北京:清华大学出版社, 1997
    [16]李宏男,阎石.智能结构振动控制发展综述[J].地震工程与工程振动, 1999, 19(2): 29-36
    [17]翁建生,胡海岩,张庙康.磁流变阻尼器的实验建模[J].振动工程学报, 2000, 13(4): 616-621
    [18] JL Beck, LS Katafygiotis. Updating models and their uncertainties. I: Bayesian statistical framework [J]. Journal of engineering mechanics, 1998, 124 (44): 455-461
    [19] A.W.Smyth, etal.On-line parametric identification of MDOF nonlinear hysteretic systems [J]. Journal of Engineering Mechanics, 1999, 125(2): 133-142
    [20]李江.高层建筑结构振动半主动控制系统研究[D].天津:天津大学, 2003
    [21]徐晓龙.高层建筑结构的智能半主动振动控制研究[D].浙江:浙江大学, 2006
    [22] H uang N E, Shen Z, Long S R, et al. The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis [C] Proc.R. Soc. Lond. , 1998, A454: 903-995
    [23]马乾英.空间网壳结构动力稳定主动控制理论及实验研究[D].西安:西安建筑科技大学, 2010
    [24]郭婷.多态混合控制及遗传算法在结构控制中的应用研究[D].天津:天津大学, 1999
    [25]赵林,张猛.遗传算法在结构振动控制中的应用[J].河南科学, 2008(05):566-570
    [26]欧进萍,张微敬.智能控制算法及其在结构振动控制中的应用[J].世界地震工程, 2002,26 (02): 32-38
    [27]陈海全.应用形状记忆合金的大跨桥梁结构振动控制理论研究与振动台试验[D]:天津大学, 2003
    [28] Jingjun Zhang,Lili He,Ercheng Wang,Ruizhen Gao. A LQR controller design for active vibration control of flexible structures[C]. Proceedings-2008 Pacific-Asia Workshop on Computational Intelligence and Industrial Application, PACIIA 2008.Wuhan, China: Inst. of Elec. and Elec. Eng. Computer Society, 2008, 127-132
    [29] Jen-Chieh Lee, Jish-Chson Chen. Active control of sound radiation from rectangular plates using multiple piezoelectric actuators [J]. Applied Acoustics, 1999, 57(4): 327-343
    [30]施雷,王琦,张文鹏.改进遗传算法在桁架结构优化设计中的应用[J].南昌航空大学学报(自然科学版), 2009(01):32-36
    [1]徐赵东,时本强,巫可益.粘弹性多维隔减震结构竖向振动台试验与研究[J].中国科学(E辑:技术科学), 2009, 25(10): 1709-1715
    [2]马乾瑛,王社良,朱军强.空间结构耦合模态控制及试验研究[J].试验力学,2009, 22(04):276-282
    [3]李东旭著.大型挠性空间桁架结构动力学分析与模糊振动控制[M].北京:科学出版社,2008
    [4]张宏,汤荣伟,赵鹏飞,钱基宏,潘国华,陶勇,郭占一.武汉火车站中央站房整体模型振动台试验研究[J].建筑科学,2010, 23(03): 11-15
    [5]杨树标,马裕超,李旭光.复合隔震结构模型振动台试验研究[J].地震工程与工程振动,2010, 14(01):142-146
    [6] Zanardo G, Hao H, Modena C.Seismic response of multi-span simply supported bridges to a spatially varying earthquake ground motion [J]. Earthquake Engineering and Structural Dynamics, 2002, 31(6): 1325-1345
    [7] Wilson E L.Three dimensional static and dynamic analysis of structures:a physical approach with emphasis on earthquake engineering [M]. Computers and Structures, Inc., Berkley, California, 2002
    [8] Avramidis I E.Concurrent Design Forced in Buildings under Multicompoment Earthquake Exctation: the CQC-Theta-Method [C]. Edited by Ko J M and Xu Y L, Advances in Structural Dynamics, Hong Kong, 2000 :795-800
    [9]何玉敖,郭婷.遗传算法——神经网络结构控制体系研究[J].振动工程学报, 2001, 14(2): 192-195
    [10]何亚东,何玉敖,黄金枝.建筑结构半主动控制振动台试验研究[J].结构工程学报, 2002, 23(4): 10-15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700