用户名: 密码: 验证码:
土石坝地震动输入机制与变形规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土石坝抗震安全问题是已受到高度重视的难点和热点研究课题之一。本文在已有研究成果的基础上,从震害调查、理论分析、模型试验、数值计算和工程应用诸多方面入手,着重就非均匀地震动输入及其对土石坝震动响应与变形规律的影响问题开展了较为系统深入的研究,取得了如下具有创新的研究成果:
     1.基于不规则河谷波动散射虚边界法,建议了一个可考虑非均匀地震动输入的土石坝动力分析方法。该方法将震源发出的地震波转变为一系列坝址场地的入射谐波,在此基础上首先采用虚边界法求解出土石坝建基面上的散射波位移场和入射波位移场进而由求和得到总位移场,然后再将该总位移场在大坝建基面上输入到坝体内从而引起整个坝体震动变形甚至破坏。通过与现有解析解的计算对比,分析论证了上述方法的第一步骤中采用的虚边界法的有效性以及推导的诸多解析公式的正确性。
     2.基于系列化的离心机振动台试验成果,揭示了面板坝与组合坝在地震波和正弦波荷载作用下的动力响应和变形规律,同时采用新动力分析方法对试验成果进行计算对比,初步验证了该方法的第二步骤中通过建基面输入位移场的可行性。试验和数值分析结果均表明:①面板坝和组合坝均存在明显的加速度放大效应和震后残余变形,且两者均随着坝高增加而增大;②同高度和尺寸的组合坝比面板坝的残余变形要小。③震后面板堆石坝面板顺坡向应力在中上部达到最大值,而组合坝面板顺坡向应力随着高程增加而增大。
     3.采用考虑非均匀地震动输入的动力分析方法对紫坪铺高面板堆石坝的地震响应进行了数值模拟,并与均匀一致输入方法的数值计算结果进行了对比分析。表明虚边界法获得的河谷边界不同点的地震响应时程存在明显的加速度峰值差和相位差,与采用均匀输入的情形相比,可能更符合实际地震波的传播规律。采用非均匀与均匀一致输入方法模拟分析得到的坝体动力响应和震动变形的基本规律比较接近,但是前者在数值上偏小,实际大坝建基面边界上的非均匀响应会降低大坝的动力响应水平。
Seismic safety issue of embankment dams is one of the most difficult and hotresearch problems that has attracted considerable attention in the field of civilengineering. On the basis of existing research findings, this thesis presented systematicresearch results on earthquake damage investigation, theoretical analysis, centrifugemodel tests, numerical modeling and engineering application. Special attention has beenpaid to nonuniform seismic input and its influence on the dynamic response anddeformation laws of embankment dams. The new main achievements are as follows:
     1. New dynamic analysis of embankment dams considering nonuniform seismicinput has been developed based on the virtual boundary method of wave scattering in anirregular canyon. Firstly, an actual time history of seismic wave is decomposed into aseries of incident harmonic waves that propagate to a dam base surface. Secondly, thevirtual boundary method is used as the first step to obtain the incident and scattereddisplacement field as well as the total displacement field along the base surface. Finally,the nonuniform total displacement field is input along the base surface as the secondstep, so as to induce seismic response and deformation of the embankment dam. Theeffectiveness of the first-step part of the virtual boundary method and the correctness ofseries of analytical formulas of the waves has been preliminarily confirmed through acomparison with exact solutions calculated by using existing analytical analysis.
     2. Effectiveness of the second-step part of the virtual boundary method has beenconfirmed with a series of dynamic centrifuge model tests on two types of embankmentdams including a CFRD and a combined dam. It is further found from numericalanalysis and dynamic centrifuge model tests that:(1) the acceleration amplificationeffects and permanent deformations of the two dams become more significantly largewith the increasing dam height;(2) the earthquake-induced permanent deformations ofthe combined dam display smaller than those of the CFRD with the same height andsize;(3) the maximum slope-direction stress of the CFRD occurrs on the middle and toppart of the face slabs, but the stress of the combined dam increases with the increasingdam height.
     3. The above-mentioned numerical method considering nonuniform seismic inputhas been applied to dynamic response analysis of the Zipingpu concrete-faced rockfilldam (CFRD), which is the highest embankment dam located in the high seismicintensity region during the2008Wenchuan earthquake and the first CFRD experiencingstrong shallow earthquake of IX-X degrees in the world. A comparison is also madebetween two different methods considering nonuniform and uniform seismic input. It isshown that:(1) the new method of nonuniform seismic input can be used to simulatespacial variations of maximum accelerations and phases, and therefore it may providemore satisfactory results to access to actual earthquake response to a certain extent;(2)seismic responses of the dam calculated by the nonuniform seismic input method,including acceleration amplification and permanent deformation of the dam as well asthe permanent stress and deformation of the face slabs, appear significantly smaller inmagnitude than those obtained by the uniform seismic input method, however both ofthe results display the same patterns; and (3) nonuniform spacial variations of maximumaccelerations and phases on the dam base surface can decrease seismic motion of thedam.
引文
Abascal R, Dominguez J.1985. Vibration of footings on viscoelatic soil. J. Eng. Mech. ASCE,111(2):123-141.
    Abascal R, Dominguez J.1986. Vibration of footings on zoned viscoelatic soil. J. Eng. Mech. ASCE,112(5):433-447.
    Alterman Z, F C Karal.1968. Propagation of elastic waves in layered media by finite differencemethods. Bulletin of the Seismological Society of America,63:615-632.
    Astaneh S M F, Ko H Y, Sture S.1994. Assessment of earthquake effects on soil embankments.Centrifuge94. Singapore: Leung.Lee m Tan(eds):221-226.
    Bernal D, Youseff A.1998. A hybrid time-frequency domain formulation fornonlinear soil-structureinteraction. Earthquake Engineering and Structural Dynamics,27(6):670-685.
    Boore D M.1972. A note on the effect of simple topography on seismic SH waves. Bulletin of theSeismological Society of America,62:275-284.
    Chi-Chang CHAO.1960. Dynamical response of an elastic half-space to tangential surface loadings.Journal of Applied Mechanics:559-567.
    Chopra A K et al.1992. Modelling of dam-foundations interaction in analysis of arch dams.//Proc,10th, WCEE, Madrid,8.
    Clough R W, Chopra A K.1966. Earthquakes stress analysis in earth dams. Journal of theEngineering Mechanics Division,92(2):197-212.
    Clough R W, Pirtz D.1956. Earthquake resistance of rock-fill dams.//Proc. ASCE, Vol.82, No.SM2.
    Dakoulas P, Gazetas G.1985. A class of inhomogeneous shear models for seismic response for damand embankments. Soil Dynamics and Earthquake Engineering,4(4):166-182.
    Dakoulas P, Gazetas G.1986. Seismic shear vibration of embankment dams in semi-cylindriealvalleys. Earthquake Engineering and Structural Dynamics,14(1):19-40.
    Dominguez J et al.1992. Model for the seismic analysis of arch dams including interation effects.//Proc.10th WCEE, Madrid,8.
    Elgamal A W M, Abdel-Ghaffar A M, Prevost J H.1987.2-D Elasto-plastic seismic shear responseof earth dam theory. Journal of Engineering Mechanics, ASCE,113(5):687-701.
    Elgamal A W M, Abdel-Ghaffar A M, Prevost J H.1985. Elasto-plastic earthquake shear response ofone-dimensional earth dam models. Earthquake Engineering and Structural Dynamics,13(5):533-617.
    Francisco J, Sanchez-Sesma.1983. Diffraction of elastic waves by three-dimensional surfaceirregularities. Bulletin of the Seismological Society of America,73(6):1621-1636.
    Gamtanaros A P, Karabalis D L.1988. Dynamic response of3-D flexible foundation by frequencydomain FEM-BEM. Earthquake Engineering and Structural Dynamics,16(5):653-674.
    Gazetas G, Hsu C.1993. Lateral response of earth dams in semi-elliPtieal rigid canyon. SoilDynamics and Earthquake Engineering,12(8):497-507.
    Gazetas G.1981. Longitudinal vibrations of embankment of dams. Journal of the GeotechnicalEngineering Division, ASCE,107(1):21-40.
    Gazetas G.1987. Seismic response of earth dams:some recent developments. Soil Dynamics andEarthquake Engineering,6(1):2-47.
    Hardin B O, Drnevich V P.1972. Shear modulus and damping in soils:Design equations and curves.Journal of Soil Mechanics and Foundations Division,98(7):667-692.
    Heredia-Zavoni E, Vammarake E H.1994. Seismic random vibration analysis of multi-supportstructural systems. Journal of Engineering Mechanics,120(5):1107-1128.
    Hiroshi Kawase, Keiiti Aki.1989. A study on the response of a soft basin for incident S, P, andRayleigh waves with special reference to the long duration observed in Mexico City. Bulletin ofthe Seismological Society of America,79(5):1361-1382.
    H L Wong.1982. Effect of surface topography on the diffraction of P, SV, and Rayleigh waves.Bulletin of the Seismological Society of America,72(4):1167-1183.
    Iwan W D.1967. On a class of models for the yielding behavior of continuous and composite system.ASME,34(3):21-33.
    Karabalis D L, Beskos D E.1985. Dynamic analysis of3-D flexible foundation by the time domainFEM-BEM. Soil Dynamics and Earthquake Engineering,4(2):91-101.
    Kuireghian A D, Neuenhofer A.1992. Response spectrum method of multi-support seismic excitations. Earthquake Engineering and Structural Dyanmics,(21):713-740.
    Law H K, Ko H Y, Scavuzzo R.1994. Simulation of O’Neill Forebay Dam,California,subjected tothe1989Loma Prieta Earthquake. Centrifuge94. Singapore:Leung, Lee m Tan(eds):245-250.
    Lysmer J, Kuhlemeyer R L.1969. Finite dynamic model for infinite media. J Eng Mech Div ASCE,95:859-87.
    Lysmer J,Wass G.1972.Shearwaves in plane infinite structures. Eng.Mech.Div.,ASCE,98(1):85-105.
    M D Trifunac.1973. Scattering of plane SH waves by a semi-cylindrical canyon. EarthquakeEngineering and Structural Dynamics,1:267-281.
    Martin G R, et al.1978. Effects of system compliance on liquefaction tests. Journal of GeotechnicalEngineering Division,104(4):463-480.
    Mononobe H A.1936. Seismic stability of the earth dam.//Proceedings of2nd Congress of LargeDams. Washington D. C.
    Mroz Z, Norris V A, Zienkiewicz O C.1981. An anisotropic critical state model for soils subjectedto cyclic loading. Geotechnique,31(4):451-470.
    Murphy G.1950. Similitude in Engineering. Ronald Press Co., New York.
    N g C W W, Li X-S, Van Laak P A, et al.2004. Centrifuge modeling of loose fill embankmentsubjected to uni-axial and bi-axial earthquakes. Soil Dynamics and Earthquake Engineering,(24):305-318.
    Oner M.1984. Shear vibration of inhomogeneous earth dams in rectangular canyons. Soil Dynamicsand Earthquake Engineering,3(1):19-26.
    Paster M, Zienkiewicz O C, Chen H C.1990. Generalized plasticity and the modeling of soilbehavior. In:Inter T. Numer.Anal Methods in Geo-technics:151-190.
    Provest J H, Catherine M K.1967. Shear stress-strain curve generation from simple materialparameters. Journal of Geotechnical Enigeering,34(3):11-19.
    Provest J H.1985. A simple plastic theory for frictional cohesionless soils. Soil Dynamics andEarthquake Engineering,4(1):9-17.
    Pyke R.1979. Nonlinear Soil Models for Irregular Cyclic Loading. Journal of GeotechnicalEngineering Division,105(6):715-726.
    R W Clough, K T Chang, H Q Chen, Y Ghanaat.1985. Dynamic interaction effects in arch dams,Reserch UCB/EERC, University of California, Berkeley, California, June.
    Seed H B, Lee K L, Idriss I M.1969. Analysis of Sheffield dam failure. Journal of the SoilMechanics and Foundations Division,95(6):1453-1490.
    Seed H B, Clough R W.1963. Earthquake resistance of Sloping core dam.//Proc. ASCE, Vol.89,No.SM1.
    Susumu Iai, Yasuo Matsunaga, Tomohiro Kameka.1993. Strain Space Plasticity Model for CyclicMobility. Soils and Foundations,32(2):1-15.
    Taylor R N.1995. Centrifuges in modeling: principles and scale effects. Geotechnical CentrifugeTechnology. Blackie Academic and Professional, Glasgow:19-33.
    Wang Z L.1990. Bounding surface hypo-plasticity model for granular soils and it’s application[Ph.D dissertation]. Davis:University of California.
    Yamamura N, Tanaka H.1992. Response analysis of flexible MDOF systems for multiple-supportseismic excitation. Earthquake Engineering and Structural Dynamics,(19):345-357.
    Zhang C H, Jin F, Pekau O.1995. Time domain procedure of FE-BE-IBE coupling of seimicinteraction of arch dams and canyons. Earthquake Engineering and Structural Dynamics,24,1651-1666.
    Zhang G, Hu Y, Zhang J-M.2009. New image-analysis-based displacement-measurement system forcentrifuge modeling tests. Measurement,42(1):87-96.
    Zhang J M, Yang Z Y, Gao X Z, Tong ZH X.2010. Lessons from Damages to High EmbankmentDams in the May12,2008Wenchuan Earthquake.//GeoShanghai International2010, KeynoteLecture, ASCE Geotechnical Special Publication, No.2010,1-31.
    Zienkiewicz O C, Newton R E.1969. Coupled vibrations of a structure immersed in a compressiblefluid.//Proc of the Symposium on Finite Element Techniques. Stuttgart.
    Zienkiewicz O C.1982.广义塑性力学和地力学的一些模型.应用数学与力学,3(2):267-280.
    包承钢,饶锡保,李玫.1990.岩土工程中离心模型试验的现状和若干技术问题.土工基础,4(1):22-29.
    蔡新,王德信.1996.清平面板堆石坝抗震分析.工程力学,13(2):86-91.
    陈生水,沈珠江.1995.复杂应力路径下无粘性土的弹塑性数值模拟,岩土工程学报,17(2):20-28.
    迟世春.2002.不同地震输入对混凝土面板堆石坝动力反应的影响.世界地震工程,18(2):69-74.
    迟世春.2002.不同高度面板堆石坝幅频反应的比较分析.世界地震工程,18(3):6-9.
    堤一等.1978.供填筑坝抗震设计用的动力试验.国外工程抗震,科学出版社重庆分社.
    顾淦臣,张振国.1988.钢筋混凝土面板堆石坝三维非线性有限元动力分析.水力发电学报,20(1):26-45.
    郭诚谦.2008.世界首次近距离检验高面板堆石坝的抗震安全性.人民长江,39(14):1-4.
    韩国城,孙宪京.1985.大山口土坝抗震试验研究.高土石填筑坝关键技术间题的研究成果汇编(第一册).
    贾金生,袁玉兰,郑璀莹,马忠丽.2010.中国水库大坝统计和技术进展及关注的问题简论.水力发电,36(1):6-10.
    姜朴,汤书明.1992.土石坝模型动力试验与计算.水利学报,(2):53-57.
    景立平,陈国兴,李永强,汤皓.2009.汶川8.0级地震水坝震害调查.地震工程与工程振动,29(1):14-23.
    久乐胜行等.1978.用大型振动台进行的模型堤坝的振动实验(第二部分).地震工程译文集,地震出版社.
    康红普.1999.回采巷道锚杆支护影响因素的FLAC分析.岩石力学与工程学报,18(5):534-537.
    孔宪京,刘君,韩国城.2003.面板堆石坝模型动力破坏试验与数值仿真分析.岩土工程学报,25(1):26-30.
    孔宪京,邹德高,邓学晶,等.2006.土石坝综合抗震措施及其效果的验算.水利学报,37(12):1489-1495.
    孔宪京,韩国城,张天明.1994.土石坝与地基地震反应分析的波动—剪切楔法.大连理工大学学报,34(2):173-179.
    孔宪京,韩国城.1992.关门山面板堆石坝二维地震反应分析.大连理工大学学报,32(4):434-440.
    孔宪京,刘君,韩国城,等.2000.混凝土面板堆石坝地震反应分析的剪切楔法.水利学报,(7):55-60.
    孔宪京,刘君,韩国城.2003.面板堆石坝模型动力破坏试验与数值仿真分析.岩土工程学报,25(1):26-30.
    孔宪京,邹德高,周扬,等.2009.汶川地震中紫坪铺面板堆石坝震害分析.大连理工大学学报,(05):667-674.
    李国英.1995.覆盖层上面板堆石坝防渗墙和面板应力变形的离心模型模拟技术.江苏力学,(10):47-52.
    李俊杰,韩国城,孔宪京.1994.关门山面板堆石坝三维地震反应分析和研究.水利学报,(2):76-84.
    郦能惠,李国英,赵魁芝,等.2004.强震区高面板堆石坝静力和动力应力变形性状.岩土工程学报,26(2):183-188.
    梁海波,李仲奎,谷兆祺.1996. FLAC程序及其在我国水电工程中的应用.岩石力学与工程学报,15(3):34-39.
    廖振鹏,黄孔亮等.1984.暂态波分析的透射边界条件.中国科学(A类),2(3):38-54.
    廖振鹏.1996.工程波动理论导引.北京:科学出版社.
    林皋,李炳奇,申爱国.1994.半无限弹性空间域内点加振格林函数的计算.力学学报,26(5):583-592.
    林家浩,张亚辉,赵岩.2001.大跨度结构抗震分析方法及近期进展.力学进展,31(3):350-359.
    林家浩.2004.随机振动的虚拟激励法.北京:科学出版社.
    刘小生,刘启旺,王钟宁,等.2007.黑泉水库面板坝大型振动台模型试验.水利规划与设计,(5):30-33.
    刘小生,王钟宁,赵剑明,等.2002.面板堆石坝振动模型试验及动力分析研究.水利学报,(2):29-35.
    刘玉桥,张海,张岳文.2009.三维半空间中竖向集中力与膨胀点源的动力格林函数.世界地震工程,25(3):81-85.
    刘晶波.1996.局部不规则地形对地震地面运动的影响.地震学报,18(2):239-245.
    栾茂田,金崇磐,林皋.1990.非均质土石坝及地基竖向地震反应简化分析.水力发电学报,9(1):48-62.
    栾茂田.1989.非均质堤坝振动特性简化分析.大连理工大学学报,29(4):479-488.
    罗刚.2004.砂土的循环本构模型研究[博士学位论文].北京:清华大学水利水电工程系.
    南京水利科学研究所院土工所.2003.土工试验技术手册.北京:人民交通出版社.
    聂广明,何雷霆,谢霄易,等.2008.碧口水电站大坝“5.12”地震后的应急检查概况.大坝与安全,(3):3-5.
    彭卫军,范金勇.2006.吉林台一级水电站混凝土面板砂砾-堆石坝坝体抗震设计.水力发电,32(6):26-28.
    沈振中,徐志英.2002. V形河谷中土石坝垂直振动的近似解析.河海大学学报,30(2):85-89.
    沈振中,徐志英.1999. V形河谷中土石坝纵向地震反应的简化解析解.水电能源科学,1(4):9-12.
    沈珠江,徐志英.1981.1976年7月28日唐山地震时密云水库白河主坝有效应力动力分析.(3):46-63.
    沈珠江.1999.理论土力学.北京:中国水利水电出版社.
    沈珠江.1994.南水双屈服面模型及其应用.//海峡两岸土力学及基础工程地工技术学术研讨会,中国陕西西安.
    沈珠江.1986.一个计算砂土液化变形的等价粘弹性模型.//第四届全国土力学及基础工程学术会议论文集.北京:建筑工业出版社:199-207.
    苏克忠,张力飞,朱栗武.1996.大坝强震安全监测.北京:中国水利水电出版社.
    水利部水利水电规划设计总院.1999.混凝土面板堆石坝设计规范SL228-98.
    田景元,张志伟.2006.大岗山面板堆石坝加速度放大系数对材料动参数和输入地震动的敏感性分析.水电站设计,22(4):20-22.
    童朝霞.2008.应力主轴循环旋转条件下砂土的变形规律与本构模型研究[博士学位论文].北京:清华大学水利水电工程系.
    王敦吉.1996.唐山大地震时北京市的震害简况.国际地震动态,(9):35-36.
    王刚.2005.砂土液化后大变形的物理机制与本构模型研究[博士学位论文].北京:清华大学水利水电工程系.
    王克成,杨德健.1987.堆石坝三维模型动力性态及抗震稳定性研究.水利学报,(10):60-65.
    王年香,章为民.2003.混凝土面板堆石坝动态离心模型试验研究.岩土工程学报,25(4):504-507.
    王贻荪.1980.半无限体表面在竖向集中谐和力作用下表面竖向位移的精确解,力学学报,(4):386-391.
    王志良,王余庆,韩清宇.1980.不规则循环剪切荷载作用下土的粘弹性模型.岩土工程学报,2(3):10-20.
    温彦锋,赵剑明.2009.土石坝震害及抗震防灾研究设想.防灾博览,(1):34-39.
    吴兴征,栾茂田,周晓光.2004.面板堆石坝动力分析方法比较研究.水利学报,(3):15-21.
    西安交通大学水利系抗震研究组.1960.堆石坝抗地震试验研究(一).
    谢定义等.1981.极限平衡理论在饱和砂土动力失稳过程中的应用.土木工程学报,14(4):17-28.
    薛素铎,王雪生,曹资.2004.空间网格结构多维多点随机地震响应分析的高效算法.世界地震工程,20(3):43-49.
    徐志英.1996.奥罗维尔土坝三维简化动力分析.岩土工程学报,18(2):82-87.
    杨光.2009.复杂应力条件下堆石料的静动力特性与本构模型研究[博士学位论文].北京:清华大学水利水电工程系.
    杨新安,黄宏伟,丁全录.1996. FLAC程序及其在隧道工程中的应用.上海铁道大学学报,17(4):43-48.
    杨正权,刘小生,刘启旺,等.2010.猴子岩高面板堆石坝地震模拟振动台模型试验研究.地震工程与工程振动,30(5):113-119.
    阴吉英,栾茂田,等.2001.面板堆石坝地震反应特性的比较分析.岩石力学与工程学报,20(S01):1158-1162.
    于海英,王栋,杨永强,等.2009.汶川8.0级地震强震动加速度记录的初步分析.地震工程与工程振动,29(1):1-13.
    赵灿晖.2001.大跨度钢管混凝土拱桥的地震响应分析[博士学位论文].成都:西南交通大学土木学院.
    张克绪.1985.土坝等价地震系数和水平剪应力最大幅值简化计算.水利学报,16(9):35-42.
    张建民,于玉贞,濮家骝,等.2004.电液伺服控制离心机振动台系统研制.岩土工程学报,26(6):843-845.
    张嘎,张建民.2005.粗粒土与结构接触面统一本构模型及试验验证.岩土工程学报,27(10):1175-1179.
    张嘎,牟太平,张建民.2007.离心模型试验中基于图像分析的土坡变形场测量.岩土工程学报,29(1):94-97.
    张社荣,何辉.2004.面板堆石坝三维耦合非线性数值计算.天津大学学报:自然科学与工程技术版,37(10):886-890.
    赵剑明,汪闻韶.2000.关于水利工程震害及抗震研究的几点思考.清华大学学报:自然科学版,40(S1):91-95.
    赵剑明,汪闻韶,常亚屏,等.2003.高面板坝三维真非线性地震反应分析方法及模型试验验证.水利学报,(9):12-18.
    赵剑明,王昆耀,汪闻韶.2001.面板坝三维非线性动力分析.中国水利水电科学研究院学报,5(1):72-76.
    赵建锋,杜修力,韩强,等.2007.外源波动问题数值模拟的一种实现方式.工程力学,24(4):52-58.
    中国水力发电工程学会混凝土面板堆石坝专业委员会.2010.混凝土面板堆石坝安全监测技术实践与进展.北京:中国水利水电出版社.
    周扬.2011.汶川地震紫坪铺面板堆石坝震害分析及面板抗震对策研究[博士学位论文].大连:大连理工大学水利工程学院.
    朱建明,徐秉业,朱峰,等.2000. FLAC有限差分程序及其在矿山工程中的应用.中国矿业,9(4):98-102.
    邹德高,尤华芳,孔宪京,等.2009.接缝简化模型及参数对面板堆石坝面板应力及接缝位移的影响研究.岩石力学与工程学报,28(z1):3257-3263.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700