用户名: 密码: 验证码:
不同因素对丹参等药用植物化学成分的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中药在我国的应用有着悠久的历史,在预防及治疗某些常见病、慢性病中有着不可替代的作用。但是近年来随着环境因素的变化,中药退化严重,品质下降,直接影响到临床的治疗效果。中药药效的优劣与其所含的化学成分中的活性物质(药用成分)关系密切,因此考察环境因素对药用植物生长的影响及其与药用成分的相关性分析,有助于我们科学的种植、生产药材,从而为提高中药临床疗效提供理论参考。本课题研究了两种不同环境下的药用植物相关因素对其主要药用成分的影响:有着未来良好发展潜力的黄顶菊(自然环境)中的总黄酮、传统药物丹参(盆栽环境)中的丹参酮和酚酸,主要取得如下成果:
     1、本研究条件下,建立了黄顶菊中主要成分总黄酮的一种提取分离方法,最佳工艺条件为:80%乙醇,料液比1:20(w/v),每次回流75min,回流2次。黄顶菊干粉浸膏收率可达17.62%。色谱分离条件为:色谱柱Apollo C18(150mm×4.6mm),流动相A为甲醇溶液,B为φ=0.05%磷酸水溶液,洗脱梯度(0~8min,φ=65%B→φ=55%B;8~25min,φ=55%B→φ=50%B;25~30min,φ=50%B→φ=45%B;30~50min,φ=45%B;50.01~55.01min,φ=65%B),流速1.0ml/min,检测波长360nm,柱温10℃。
     2、不同产地黄顶菊间的相同成分存在差异。从理论上验证了地道药材讲究地域的说法。这种情况的产生,可能由土壤因子等环境因素差异引起。
     3、黄顶菊样地与空地土壤因子差异明显。其中土壤pH、速效P、碱解N、脲酶增高,而碱性磷酸酶、酸性磷酸酶、有机C降低,提示其抑制其他植物生长的机理有可能是其极强的吸附营养能力使土地变贫瘠。
     4、研究发现土壤因子与黄顶菊主要药用成分黄酮类的相关性。土壤速效P与槲皮素糖苷、异鼠李素硫酸酯和紫云英苷显著正相关,相关系数分别为0.701*、0.670*、0.681*。土壤碱性磷酸酶与万寿菊素糖苷和6-甲氧基山奈酚糖苷显著负相关,相关系数分别为-0.740*、-0.777*。由此可见,土壤速效P和碱性磷酸酶对黄顶菊主要成分积累有显著作用。
     5、研究发现丹参的生长和养分吸收可以通过接种AM真菌来调节,但AM真菌接种效果会受土壤含水量和N含量的影响。综合各方面因素,本试验表明,在70%水分、施N量为0.16g/kg时接种AM真菌丹参可利用价值较高。
     6、相同水分和施N条件下,接种AM能够提高植物K、Ca等元素含量,从而提高丹参生长量。不同水分条件下,接种AM真菌改善了丹参逆境生存能力。施N量会影响丹参药用成分含量,当施N量高于一定数值时,丹参药用成分占植物含量比降低。
     本课题考察了不同因素与黄顶菊黄酮类物质间的关系、不同水分和N肥对接种AM真菌丹参生长量和药用成分的影响,为提高药用植物品质及合理应用提供了依据。
The application of traditional Chinese medicine in china has a long history. It takes anirreplaceable role in the disease prevention and treatment of some common diseases, chronicdiseases. But recent years, with the changes of environmental factors, traditional Chinesemedicine has seriously degraded, the quality of which directly affects the clinical treatment.The merits of the traditional Chinese medicine efficacy has a close related with its chemicalcomposition of the active substances-medicinal ingredients, therefore investigating theinfluence of environmental factors on the growth of medicinal plants and correlation analysisof their medicinal ingredients can help us scientific planting medicinal materials production, itcan provide theoretical reference for improving the clinical curative effect of traditionalChinese medicine. The research of this article focus on the effect of two different conditionsof medicinal plant related factors on the main medicinal ingredients: flavonoids in Flaveriabidentis which has a good future potential development (natural environment)、tanshinone andphenolic acid in traditional medicine Salvia miltiorrhiza plants (Potted plant environment),the main results as follows:
     1、Under the conditions of this study, establishing a method of extraction and separationof flavonoids which is the main components in Flaveria bidentis, the optimum conditions:80%ethanol, Material liquid than1:20(w/v), Backflow75minutes at a time, Back2times. F.bidentis powder extract yield can reach17.62%. Chromatographic conditions: Apollo C18Column (150mm×4.6mm), Methanol solution for mobile phase A, B for φ=0.05%phosphoric acid aqueous solution, A gradient elution (0~8min, φ=65%B→φ=55%B;8~25min, φ=55%B→φ=50%B;25~30min, φ=50%B→φ=45%B;30~50min, φ=45%B;50.01~55.01min, φ=65%B), a flow rate of1.0ml/min, detection wavelength at360nm, column temperature is10℃.
     2、The same composition of Flaveria bidentis are differences among different plots. Ittheoretically verified authentic ingredients attention geographical argument. For this situation,the difference may be caused by environmental factors such as soil factors.
     3、The soil factors of F.bidentis of and the blank plots have significant difference. Wheresoil pH, available P, alkali solution N and urease increased, but soil alkaline phosphatase, acidphosphatase and organic carbon decreased. The results suggest that the mechanism of inhibition of the growth of other plants might be its strong capacity of adsorption which could
     make the land barren.
     4. The study found a correlation between soil factors and F.bidentis’s main medicinalingredient flavonoids. There was a positive correlation among soil available P, quercetinglycosides, isorhamnetin sulfate and AST. The correlation coefficients were0.701*0.670*,0.681*, respectively. The significantly negative correlation was found among soil alkalinephosphatase, marigold glucosides and6-methoxy kaempferol glycosides. The correlationcoefficient were-0.740*,-0.777*, respectively. Thus, soil available P and alkaline phosphatasehad a distinct role in the accumulation of main component of F.bidentis.
     5. The study found that the growth and nutrient absorption of the Salvia miltiorrhizacould be adjusted by arbuscular mycorrhizal fungi, but the effect of arbuscular mycorrhizalfungal inoculation was influenced by soil water and nitrogen fertilizer. Taking into all thesefactors, the growth effect was best under70%of soil water, N0.16g/kg.
     6. AM inoculation can improve the content of K, Ca and other elements, which promotethe growth of Salvia miltiorrhiza under the same soil water and nitrogen fertilizer conditions.AM inoculation can improve the survival ability of Salvia miltiorrhiza adversity underdifferent soil water conditions. The content of medicinal components of Salvia miltiorrhizaare influenced by nitrogen fertilizer. When the amount of nitrogen is higher than a certainvalue, the content of medicinal components of Salvia miltiorrhiza as a proportion of the totalfalls.
     This paper examines the relationship between the different conditions of flavonoids inthe Flaveria bidentis, and the effects of growth and medicinal components of AM inoculationof Salvia miltiorrhiza under different soil water and nitrogen fertilizer conditions It provides atheoretical basis in improving the quality of medicinal plants.
引文
[1]刘全儒.中国菊科植物一新归化属--黄菊属[J].植物分类学报,2005,43(2):178-180.
    [2]邵明昱,王颖,崔新仪.黄顶菊的生物活性及主要化学成分研究进展[J].现代农药,2010,9(4):11-13.
    [3]高贤明,唐廷贵,梁宇,等.外来植物黄顶菊的入侵警报及防控对策[J].生物多样性,2004,12(2):274-279.
    [4]李香菊,王贵启,张朝贤,等.外来植物黄顶菊的分布、特征特性及化学防除[J].杂草科学,2006(4):58-61.
    [5]白艺珍,曹向锋,陈晨,等.黄顶菊在中国的潜在适生区[J].应用生态学报,2009,20(10):2377-2383.
    [6]时翠平,牛树启,王凤茹.外来入侵植物黄顶菊的危害与防控[J].湖北农业科学,2011,50(10):2008-2010.
    [7]任艳萍,江莎,古松,等.外来植物黄顶菊(Flaveria bidentis)的研究进展[J].热带亚热带植物学报,2008,16(4):390-396.
    [8] Xie Q Q, Wei Y, Zhang G L. Separetion of flavonol glycosides from Flaveria bidentis (L.) Kuntze byhigh-speed counter-current chromatography[J]. Sep Purif Technol,2010,72:229-233.
    [9] Wei Y, Xie Q Q, Fisher D, et al. Separation of patuletin-3-O-glucoside, astragalin, quercetin,kaempferol and isorhamnetin from Flaveria bidentis (L.) Kuntze by elution-pump-out high-performance counter-current chromatography[J]. J Chromatogr A,2011,1218(36):6206-6211.
    [10] Wei Y, Gao Y L, Xie Q Q, et al. Isolation of chlorogenic acid from Flaveria bidentis (L.) Kuntze byCCC and synthesis of chlorogenic acid-intercalated layered double hydroxide[J]. Chromatographia,2011,73:97-102.
    [11] Xie Q Q, Yin L, Wei Y, et al. Separation and purification of isorhamnetin-3-sulphate from Flaveriabidentis (L.) Kuntze by counter-current chromatography comparing two kinds of solvent systems[J]. JSep Sci,2012,35:159-165.
    [12] Xie Q Q, Ding L P, Wei Y, et al. Determination of Major Components and Fingerprint Analysis ofFlaveria bidentis (L.) Kuntze[J]. J Chromatogr Sci,2013,20:1-6.
    [13] Wei Y, Yin L, Xie Q Q, et al. An efficient strategy based on macroporous resins and semi-preparetivehigh performance liquid chromatography for rapid separation of five flavonoids components fromFlaveria bidentis (L.) Kuntze.[J]. Sep Sci and Technol,2013,48:140-147.
    [14] Wei Y, Zhang K, Yin L, et al. Isolation of bioactive components from Flaveria bidentis (L.) Kuntzeusing high-speed counter-current chromatography and time-controlled collection method[J]. J Sep Sci,2012,35(7):869-874.
    [15] Rice E L. Allelopathy [M].London, Academic Press,1984:1-50.
    [16]陈艳,刘坤,张国良,等.外来入侵杂草黄顶菊生物活性及化学成分研究进展[J].杂草科学,2007,4:1-3.
    [17] Hudson J B, Towers G H.N. Therapeutic potential of plant photosensitizers[J]. Pharmacol Ther,1991,49:188-222.
    [18] Agnese A M, Montoya S N, Espinar L A, et al. Chemotaxonomic features in Argentinian species[J].Biochem Syst Ecol,1999,27:739-742.
    [19]张囡,杜丽丽,王冬等.中药酚酸类成分的研究进展[J].中国现代中药,2006,8(2):25-28.
    [20] Green W M, Billot M C D, Joffe, et al. Indigenous plants and weeds on the makhathini flats as refugehosts to maintain bollworm population susceptibility to transgenic cotton (BollgardTM)[J]. AfrEntomol,2003,11(1):21-29.
    [21]周文杰.黄顶菊提取物对珊瑚豆蚜和报茎苦荬菜蚜拒食和毒杀活性测定[J].农业科技与装备,2010,2:4-5.
    [22]周文杰.黄顶菊提取物对蚜虫、玉米螟等的生物活性初试[J].江苏农业科学,2010,6:198-199.
    [23]万树青,徐汉虹,赵善欢,等.光活化多炔类化合物对蚊幼虫的毒力[J].昆虫学报,2000,43(3):264-270.
    [24] Bardón A, Borkosky S, Ybarra M I, et al. Bioactive plants from Argentina and Bolivia[J]. Fitoterapia,2007,78(3):227-231.
    [25]芦站根,王倩,赵娟娟,等.衡水湖黄顶菊叶不同溶剂提取液抑菌初步研究[J].食品科技,2011,36(4):167-169.
    [26]闫宏,张国良,付卫东,等.黄顶菊提取物抑菌活性研究[J].山东农业大学学报:自然科学版,2011,42(3):376-378.
    [27] Fan Z C, Bird R C. Development of a reporter bovine viral diarrhea virus and initial evaluation of itsapplication for high throughput antiviral drug screening[J]. J Virol Methods,2012,180(1-2):54-61.
    [28]彭军,马艳,李香菊,等.黄顶菊化感作用研究进展[J].杂草科学,2011,29(1):17-22.
    [29]冯建永,陶晡,庞民好,等.黄顶菊化感物质释放途径的初步研究[J].河北农业大学学报,2009,30(1):72-77.
    [30]许文超,徐娇,陶哺,等.外来入侵植物黄顶菊的化感作用初步研究[J].河北农业大学学报,2007,30(6):63-67.
    [31]张金林,刘颖超,庞民好,等.黄顶菊提取物除草剂乳油及其制备工艺[P].中国专利:CN101120688B,2007-04-30.
    [32] Guglielmone H A, Agnese A M, Montoya S N, et al. Anticoagulant effect and action mechanism ofsulphated flavonoids from Flaveria bidentis [J]. Thromb Res,2002,105(2):183-188.
    [33] Gugliekmone H A, Agnese A M, Montoya S N, et al. Inhibitory effects of sulphated flavonoidsisolated from Flaveria bidentis on platelet aggregation[J]. Thromb Res,2005,115:495-502.
    [34] Guglielmone H A, Montoya S N, Agnese A M, et al. Quercetin3,7,3',4'-tetrasulphated isolated fromFlaveria bidentis inhibits tissue factor expression in human monocyte[J]. Phytomedicine,2012,19(12):1068-1071.
    [35]李丽萍,顾兵,刘建涛等.丹参酮IIA的研究进展[J].时珍国医国药,2010,21(7):1070-1072.
    [36]张霄翔,陈少兵,王艳萍等.总丹参酮提取与纯化工艺研究[J].中药材,2008,31(3):431-434.
    [37]韩晓珂,刘汉清,张明,等. SFE-CO2与渗漉法提取丹参药渣中脂溶性成分比较[J].医药导报,2009,28(2):228-230.
    [38]贺建东,付廷明,郭立玮.丹参脂溶性成分的湿式超微粉碎提取[J].时珍国医国药,2008,19(11):2689-2690.
    [39]张明秀,刘汉清,韩晓珂,等. SFE-CO2和超声法提取丹参药渣的对比研究[J].中国中医药信息杂志,2008,15(12):59-62.
    [40]张源源,田友清.总丹参酮超声提取及其主要成分的HPLC法测定[J].安徽农业科学,2011,39(4):2083-2084.
    [41]陈殿伟,魏庆玲,孙秀利.微波法提取丹参中丹参酮IIA[J].中成药,2008,30(7):1047-1049.
    [42]苏酩,苗建武,田景振.丹参有效成分的提取纯化研究[J].齐鲁药事,2010,9(29):550-553.
    [43]吴婉莹,杨洲,侯晋军,等.总丹参酮不同纯化工艺的比较[J].中草药,2008,39(12):1815-1818.
    [44]刘杨,尹蓉莉,何芳辉,等.用梯度渗漉法比较丹参有效成分的提取工艺研究[J].中成药,2008,30(1):61-63.
    [45]国家药典委员会.中华人民共和国药典[S],一部.北京:化学工业出版社,2010,70-71.
    [46]赵杨,陆茵,郑仕中,等.隐丹参酮的药理作用研究进展[J].中华中医药杂志,2010,25(11):1839-1841.
    [47]张亚中,金斌,黄丽丹. HPLC测定128批丹参舒心胶囊中丹参酮I、隐丹参酮、丹参酮IIA的含量及结果分析[J].中成药,2011,33(1):65-69.
    [48]林肖惠,徐为人,刘鹏,等.二氢丹参酮I的降血脂作用研究[J].中草药,2008,39(9):1378-1380.
    [49]谭生建,王文朋,刘刚,等. HPLC法测定丹参酮滴耳液中二氢丹参酮I、隐丹参酮、丹参酮I和丹参酮IIA含量[J].解放军药学学报,2003,19(4):269-271.
    [50]杨世高,汪维云,张鉴,等.丹参中丹参酮类物质高效液相色谱检测方法研究[J].中医药理论与应用研究----安徽中医药继承与创新博士科技论坛论文集,2008-09-09.
    [51]张鉴,王兰,袁成凌,等.反相高效液相色谱检测丹参药材中4种丹参酮的含量[J].分析化学,2005,33(3):355-358.
    [52]袁淑兰,王修杰,魏于全,等.丹参酮抗肿瘤作用及其机理研究[J].癌症,2003,22(12):1363-1366.
    [53]杨丽萍.丹参酮IIA对人胃癌细胞作用的研究[J].医药产业资讯,2006,3(11):79-80.
    [54]李晓娟,沃兴德.丹参酮的药理作用研究进展[J].现代生物学进展,2008,12(8):2378-2388.
    [55]刘伟,陈昊.丹参酮IIA对人卵巢癌细胞株CAOV3增殖与凋亡的影响[J].医药导报,2007,26(12):1398-1400.
    [56]张文军,包晓峰,王秀凤,等.丹参酮IIA磺酸钠抑制巨噬细胞源性生长因子刺激平滑肌细胞c-myc基因表达[J].中国动脉硬化杂志,1996,4(1):45.
    [57]王昕.丹参酮药理研究及临床应用进展[J].光明中医,2011,26(7):1514-1517.
    [58]王军,邱玉兰.丹参酮对实验性脑梗塞大鼠血液发光学的影响[J].中药药理与临床,1999,15(4):39.
    [59]蔡丽萍,习志刚,杨红.丹参酮的药理作用和临床研究进展[J].广东药学院学报,2008,24(3):321-324.
    [60]唐涛,郭伟强,王珏,等.丹参酮IIA在RAW264.7细胞系中的抗炎症作用机制[J].生物技术通讯,2007,18(1):51-53.
    [61]刘润进,陈应龙.菌根学[M].北京:科学出版社,2007.
    [62]刘延鹏, Sohn B,王淼焱,等. AM真菌遗传多样性研究进展[J].生物多样性,2008,16(3):255-288.
    [63] Smith S E, Read D J. Mycorrhizal Symbiosis[M], Academic Press, London,1997.
    [64] Allen M F, Swenson W, Querejeta J I, et al. Ecology of mycorrhizae: a conceptual framework forcomplex interactions among plants and fungi[J]. Annu Rev Phytopathol,2003,41:271-303.
    [65]刘茵.菌根及从枝菌根概述[J].生物学教学,2010,35(8):8-10.
    [66] Morton J B, Redecker D. Two new families of Glomales, Archaeosporaceae and Paraglomaceae,withtwo new genera Archaeospora and Paraglomus, based on concordant molecular andmorphologicalcharacters[J]. Mycologia,2001,93:181-195.
    [67] Schüβler A, Schwarzott D, Walker C. A new fungal phylum, the Glomeromycota: phylogeny andevolution[J]. Mycol Res,2001,105:1413-1421.
    [68] Redecker D, Morton J B, Bruns T D. Ancestral lineages of arbuscular mycorrhizal fungi(Glomales)[J].Mol Phylogenet Evol,2000,14:276-284
    [69]吴强盛.园艺植物从枝菌根研究与应用[M].科学出版社,北京,2010,28-29.
    [70]刘润进.丛枝菌根及应用[M].北京:科学出版社,2000.
    [71]温莉莉,梁淑娟,宋鸽.从枝菌根(AM)真菌扩繁方法的研究进展[J].东北林业大学学报,2009,6(37):92-96.
    [72]刘静,刘洁,金海如.从枝菌根真菌菌剂的生产及应用概述[J].贵州农业科学,2012,40(2):79-83.
    [73] Biermann B, Linderman R G. Effect of container plant growth medium and fertilizer phosphorus onestablishment and host growth response to vesicular arbuscular mycorrhizae propagules. MSc thesis[J].J Am Soc Hortic Sci,1983,108:962-971.
    [74] Mosse B. The establishment of vesicular-arbuscular mycorrhiza under asetic conditions[J]. J GenMicrobiol,1962,27(3):509-520.
    [75]刘建福,杨道茂,王丽娜,等.丛枝菌根真菌离体培养研究概况[J].亚热带植物科学,2005,34(3):70-73.
    [76] Becard G, Taylor L P, Douds J r D D, et al. Flavonoids are not necessary plant signal compounds inarbuscular mycorrhizal symbioses[J]. Plant Microb Interactions,1995,8(2):252-258.
    [77] Crush J R, Hay M J. A technique for growing mycorrhizal cloverin solution culture[J]. J Agric Res,1981,24:371-372.
    [78] Hung V G, Sylvia D M. Production of vesicular-arbuscular mycorrhizal fungus inoculum in aeroponicculture[J]. Appl Environ Microbiol,1988,54(2):353-357.
    [79]邵菊芳. AM真菌的孢子萌发及双重培养研究[D].武汉:华中农业大学,2004:1-32.
    [80] Mosse B, Hepper C M. Vesicular arbuscular mycorrhizal infectionsin root organ cultures[J]. PhysiolPlant Pathol,1975,5:215-223.
    [81]杨晓红,孙中海,邵菊芳,等.丛枝菌根真菌培养方法研究进展[J].菌物学报,2004,23(3):444-456.
    [82]毕银丽,汪洪钢,李晓林.丛枝菌根真菌对双重培养方法及其菌丝际的建立[J].菌物系统,2000,19(4):517-521.
    [83] Douds J r D D. Increased spore production by Glomus intraradices in the splitplate monoxenic culturesystem by repeated harvest, gelrep lacement, and resupply of glucose to the mycorrhiza[J].Mycorrhiza,2002,12:163-167.
    [84] Liu R J. Recent advances in the study of mycorrhiza in China[J]. KSM News letter,2005,17:104-115.
    [85] Bennett A E, Bever J D, Deane B M. Arbuscular mycorrhizal fungal species suppress inducible plantresponses and alter defensive strategies following herbivory[J]. Oecologia,2009,160:771-779.
    [86] Hause B, Mrosk C, Isayenkov S, et al. Jasmonates in arbuscular mycorrhizal interactions[J].Phytochemistry,2007,68:101-110.
    [87]孔静,裴宗平,杜旼,等.水分胁迫下AM真菌对紫花苜蓿生长及抗旱性的影响[J].北方园艺,2014,9:179-182.
    [88]李岩,李俊喜,徐丽娟,等.分根培养系统中AM真菌抑制大豆胞囊线虫病的效应[J].微生物学通报,2010,37(11):1610-1616.
    [89]陆爽,郭欢,王绍明,等.盐胁迫下AM真菌对紫花苜蓿生长及生理特征的影响[J].水土保持学报,2011,25(2):227-231.
    [90] Boulois H D D, Joner E J, Leyval C, et al. Role and influence of mycorrhiza fungi on radiocesiumaccumulation by plants[J]. J Environ Radioact,2008,99:785-800.
    [91] Leng H M, Ye Z H, Wong M H. Interactions of mycorrhizal fungi with Pteris vittata (Ashyperaccumulator) in As-contaminated soils[J]. Environ Pollut,2006,139:1-8.
    [92]罗巧玉,王晓娟,林双双,等. AM真菌对重金属污染土壤生物修复的应用与机理[J].生态学报,2013,33(13):3898-3906.
    [93]滕华容,贺学礼.不同AM真菌和施磷量对柴胡黄酮含量的影响[J].陕西农业科学,2005,4:53-54.
    [94]卢彦琦,贺学礼. AM真菌与施N量对白术幼苗化学成分和生物产量的影响[J].河北大学学报(自然科学版),2006,25(6):650-653.
    [95]吴强盛,夏仁学.水分胁迫下丛枝菌根真菌对积实生苗生长和渗透调节物质含量的影响[J].植物生理与分子生物学学报,2004,30(5):583-588.
    [96]陈伟燕,贺学礼,程春泉,等.不同水分和双网无梗囊霉对黄芩生长和养分含量的影响[J].西北农业学报.2014,23(4):173-177.
    [97]赵昕,王博文,阎秀峰.丛枝菌根对喜树幼苗喜树碱含量的影响[J].生态学报,2006,26(4):1057-1062.
    [98] Nikitas K, Thomas T, Eleni P F. Effects of Glomus lamellosum on growth, essential oil production andnutrients uptake in selected medicinal plants[J]. J Agric Sci,2012,4(3):137-144.
    [99] Ferraro G, Broussalis A, Martino V, et al. Argentine medicinal plant: antiviral screening[J].International Symposium on Medicinal and Aromatic Plants,1992,306:239-244.
    [100] Agnese A M, Guglielmone H A, Cabrera J L, et al. Flaveria bidentis and Flaveria haumanii-effectsand bioactivity of sulphated flavonoids[J]. Drug plants III,2010:1-17.
    [101]王利丽,张涛,陈随清.山茱萸化学成分与气象因子相关性分析[J].中国实验方剂学杂志,2013,19(9):152-157.
    [102]牛艳,许兴,魏玉清,等.不同产地土壤因子与宁夏枸杞中β-胡萝卜素关系的研究[J].农业科学研究,2005,26(2):21-23.
    [103]尚晓娜,宋平顺,李士博,等.板蓝根有效成分含量与土壤因子的相关性和灰色关联度研究[J].中国农学通报,2012,28(30):151-154.
    [104]鲁如坤.土壤农业化学分析方法[M].北京:中国科学技术出版社,1999.
    [105]周礼恺.土壤酶学[M].北京:科学出版社,1987.
    [106] Gianinazzi S, Gollotte A, Binet M N, et al. Agroecology: the key role of arbuscular mycorrhizas inecosystem services[J]. Mycorrhiza,2010,20:519-530.
    [107] Hart M M, Forsythe J A. Using arbuscular mycorrhizal fungi to improve the nutrient quality of crops;nutritional benefits in addition to phosphorus[J]. Sci Hortic,2012,148:206-214.
    [108] Koide R T, Schreiner R P. Regulation of the vesicular-arbuscular mycorrhizal symbiosis[J]. Ann RevPlant Physiol Plant Mol Bio,1992,43:557-581.
    [109] Strack D, Fester T, Hause B, et al. Arbuscular mycorrhiza: biological, chemical, and molecularaspects[J]. Chem Ecol,2003,29:1955-1979.
    [110] Tawaraya k, Hirose R, Wagatsuma T. Inoculation of arbuscular mycorrhizal fungi can substantiallyreduce phosphate fertilizer application to Allium fistulosum L. and achieve marketable yield underfield condition[J] Biol Fert Soils,2012,48:839-843.
    [111] Abbaspour H, Saeidi S S, Afshari H, et al. Tolerance of mycorrhiza infected Pistachio (Pistacia veraL.) seedling to drought stress under glasshouse conditions[J]. Plant Physiol,2012,169(7):704-709.
    [112] Elia A, Conversa G, Campi P, et al. Potted mycorrhizal carnation plants and saline stress: Growth,quality and nutritional plant responses[J] Sci Hortic,2012,140:131-139.
    [113] Hajiboland R, Aliasgharzadeh N, Laiegh S P, et al. Colonization with arbuscular mycorrhizal fungiimproves salinity tolerance of tomato (Solanum lycopersicum L.)[J]. Plant Soil,2010,331(1-2):313-327.
    [114] Gong M, Tang M, Chen H, et al. Effects of Glomus mosseae and Rhizobium on the growth of blacklocust seedlings and the quality of weathered soft rock soils in the Loess Plateau[J]. Microbiol,2012,62(4):1579-1586.
    [115] Wu Q S, He X H, Zou Y N, et al. Spatial distribution of glomalin-related soil protein and itsrelationships with root mycorrhization, soil aggregates, carbohydrates, activity of protease andβ-glucosidase in the rhizosphere of Citrus unshiu[J]. Soil Biol Biochem,2012,45:181-183.
    [116]中国土壤学会化学专业委员会.土壤农业化学常规分析方法[M].科学出版社,北京,1983,67-101.
    [117] Phillips J M, Hayman D S. Improved procedures for clearing roots and staining parastic andvesicular-arbuscular fungi for rapid assessment of infection[J]. Tran British Myco Society,1970,55:158-161.
    [118] Wei H Z, Zhang J, Rao Y, et al. Pre-treatment method of determination of total phenolic acids indanshen[J] Trad Herbal Drugs,2008,39(8):1182-1183.
    [119] Morandi D. Occurrence of phytoalexins and phenolic compounds in endomycorrhizal interactions,and their potential role in biological control[J]. Plantand Soil,1996,185(2):241-251.
    [120] Akiyama K, Matsuoka H, Hayashi H. Isolation and identification of a phosphate deficiency-inducedC-glycosylflavonoid that stimulates arbuscular mycorrhiza formation in melon roots[J]. MolecularPlant-Microbe Interactions,2002,15(4):334-340.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700