用户名: 密码: 验证码:
费氏中华根瘤菌Sneb183防控大豆胞囊线虫病机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆起源于中国,与根瘤菌之间存在协同进化关系,而大豆胞囊线虫是大豆生产中首要的病原物,利用根瘤菌防控胞囊线虫对大豆的危害是本文重点内容。本文系统研究了费氏中华根瘤菌Sinorhizobium fredii Sneb183抑制大豆胞囊线虫病的作用机理,并揭示了根瘤菌、大豆和胞囊线虫三者之间的互作关系。通过Sneb183发酵液处理二龄幼虫,研究该菌株对线虫活性、致死率、卵孵化率、呼吸作用等生命活力的影响,明确了根瘤菌Sneb183对大豆胞囊线虫的作用方式;采用裂根法明确菌株Sneb183可以诱导大豆产生对胞囊线虫的系统抗性,通过影响胞囊线虫在大豆根系内的发育,进一步抑制线虫对大豆根系的危害;从差异蛋白质组的角度揭示了根瘤菌诱导大豆根系在线虫侵染的胁迫条件下,产生的差异蛋白质组,从而明确了三者间的关系和根瘤菌Sneb183诱导大豆抗胞囊线虫的作用机理。主要研究结果如下:
     1.明确了根瘤菌Sneb183对大豆胞囊线虫二龄幼虫的作用方式。利用根瘤菌Sneb183发酵液处理大豆胞囊线虫二龄幼虫,发现二龄幼虫行动能力受到明显抑制,且发酵液对二龄幼虫具有触杀作用,72h的致死率达到84.3%。经发酵液处理的线虫卵的孵化率也明显降低,孵化抑制率达62.4%。同时根瘤菌的发酵液可抑制二龄幼虫呼吸,并造成体液渗漏,最终抑制线虫活性甚至死亡。
     2.验证了根瘤菌Sneb183对大豆胞囊线虫病的防治效果。在温室试验中,接种根瘤菌Sneb183的大豆根系对大豆胞囊线虫二龄幼虫和胞囊的抑制率分别达到40.13%和37.8%。在大田试验中,接种根瘤菌Sneb183后,大豆根系对胞囊的抑制率为46.2%,同时根瘤菌Sneb183也表现出对大豆苗期生长的促生作用。在大豆成熟期,根瘤菌Sneb183处理的大豆株系,单株荚数和单株豆粒数与对照相比均有显著提高,分别为对照的1.34和1.37倍。
     3.验证了根瘤菌Sneb183诱导大豆产生抑制胞囊线虫的系统抗性。通过裂根法证明接种根瘤菌Sneb183可以诱导大豆产生系统抗性,从而抑制线虫二龄幼虫的侵染,抑制率为38.8%;通过冰冻切片技术观察植物根系的组织变化,表明根瘤菌Sneb183可以诱导大豆根部表皮增厚,并使中柱鞘细胞加厚,结构更为致密,从而抵御线虫侵染并限制发育;通过测定大豆根系防御酶的酶活变化,表明菌株Sneb183可以激发大豆根系抗性相关酶活性增加,进一步确定根瘤菌Sneb183可以通过诱导大豆产生抗性从而抑制胞囊线虫病害。
     4.证明了根瘤菌Sneb183可以抑制线虫在大豆根系内的发育。接种根瘤菌Sneb183的大豆根系中,不同龄期线虫均表现出发育迟缓;接种根瘤菌Sneb183后的大豆根系分泌物对大豆胞囊线虫二龄幼虫具有一定的毒杀作用,说明根瘤菌Sneb183的接种使大豆的根系分泌物成分发生了改变,产生对J2有毒杀作用的成分,从而表现出对J2的致死作用;通过测定距根瘤不同距离的根系分泌物对J2的作用,以及二龄幼虫在根系不同部位的侵染数量,没有出现显著性差异,从而证明根瘤菌Sneb183接种的大豆根系产生对线虫的抑制作用是一种系统抗性。
     5.测定了在线虫侵染的胁迫条件下,接种根瘤菌Sneb183产生的差异蛋白质组。从蛋白质组学的角度揭示了根瘤菌Sneb183在诱导大豆抵御线虫中的作用。共鉴定出456个差异蛋白质点,其中上调的有244个蛋白,下调的有212个蛋白。这些蛋白充分参与了植物的生物过程、分子功能和细胞组分等。
     6.获得了差异蛋白质组参与的代谢通路。在鉴定出差异蛋白质组的基础上,利用BLAST2G0进行蛋白质的功能注释并分类,用KEGG来对鉴定到的蛋白质在生物通路(pathway)层面的信息进行注释,并得到生物通路图。鉴定出的差异蛋白共参与了118种代谢途径,其中钙信号途径、类黄酮合成途径、磷酸戊糖途径和谷胱甘肽代谢途径等与植物能量代谢和抗胁迫相关,从而诱导大豆抵御线虫侵染,提高植物抗性。
The action mechanisms of Sinorhizobium fredii Sneb183against soybean cyst nematode were researched in this paper systematically, and the interaction relationship was revealed among Snebl83, soybean cyst nematodes (SCN) and soybeans. Through the effect of Sneb183on nematode activity, mortality rate, hatching rate, respiration and so on, the action mode of Sneb183on nematode was understood. The ability of Sneb183to systemically repress SCN was tested, and study revealed Sneb去83induced systemic resistance in soybean and also could inhibit nematode development in soybean root. The differential proteome was used to reveal the change of proteome in the soybean root under nematode infection condition when inoculated with Sneb183; through the differential proteome we could understand the relationship among these three and the mechanism of induced systemic resistance in soybean by Sneb183. The main results were as follows:
     1. To make clear the effect mode of Snebl83on soybean cyst nematode juvenile two (J2). When nematode were treated with Sneb183fermentation liquid, action capability was inhibited significantly, and72h mortality rate was84.3%. The hatching rate reduced62.4%when the egg treated with fermentation liquid. Meanwhile Sneb183could inhibit J2breathing and cause fluid leakage, and ultimately suppress nematode activity or even death.
     2. Verified the Sneb183inhibit soybean cyst nematode on the soybean root through greenhouse and field experiments. In greenhouse experiment, the inhibition rate of J2and cyst in soybean root treated with Sneb183was40.13%and37.8%respectively. In field experiment, the inhibition rate of cyst was46.2%after inoculation of Sneb183. Meanwhile, Sneb183also showed growth-promoting effect on soybean seedling growth. In soybean maturity period, the numbers of pods and beans of soybeans treated with Sneb183were both increased significantly, which were1.34and1.34times respectively compared with control treatment.
     3. Verify the induced systemic resistance of soybean by Sneb183. Through split-root method, we proved Sneb183could induce systemic resistance of soybean, thereby inhibit J2infection, the inhibit rate was38.8%. Frozen technique was used to observe changes of plant root organization, and observed that Sneb183could induce epidermal thickening, and increase pericycle dencity. The structure of root changed more compact and thus resisted nematode infestation and limited development. By measuring the disease related enzymatic activity, showed that Sneb183could stimulate the resistance related enzyme activity, which also determined Sneb183could induce systemic resistance.
     4. Proved Sneb183could inhibit nematode development in soybean root, and made nematode juvenile growing slowly. The root exudates of soybean inoculated with Sneb183was toxic to nematode, this improved that Snebl83could change the root exudates of soybean, and had lethal effect on J2. By measuring the root exudates effects of different distances from the root nodule to nematode, and the number of J2infestation in different parts of the root system, there was no significant difference between the Sneb183treatment and control, thus improved Sneb183induced nematode suppression effect of soybean is a system resistance.
     5. iTRAQ technology was used to test the differential proteome in soybean root when inoculated with Sneb183. The Sneb183treatment and control treatment were both under stress of nematode inoculation. By this way, revealed the effect of Sneb183induced soybean against nematode at proteomic perspective. A total of456differential proteome were identified, in which244proteins were increased and212proteins were reduced. These proteins are involved in the biological process, molecular function, cellular component and so on.
     6. On the basis of differential proteome result, BLAST2GO was use to note protein function, and then used KEGG bioinformatics method to identify the pathway which these proteins involved in, and obtain the biological map. In these differential proteome,118kinds of metabolic pathways was identified, including calcium signaling pathway, flavonoid biosynthesis, pentose phosphate pathway, glutathione metabolism and so on. These pathways were all involved in energy metabolism and systemic resistance of plant, so the soybean resistance to nematode was increased by Sneb183.
引文
1. 毕志树,李进,1965.植物线虫学.农业出版社.
    2. 陈立杰,王媛媛,朱晓峰等.2011.大豆胞囊线虫病生物防治研究进展.沈阳农业大学学报,42(4):393-398.
    3. 陈龙池,廖利平,汪思龙,肖复明.2002根系分泌物生态学研究.生态学杂志,21(6):57-62.
    4. 陈双雅,张永祥,蔡向群.2003.三株拮抗细菌对水仙叶大褐斑病的拮抗机理.中国生物防治,19(1):11-15.
    5. 陈文新,王恩涛.中国根瘤菌.北京:科学出版社,2011.
    6. 陈文新.2004.豆科植物—根瘤菌固氮体系在西部大开发中的作用.草地学报,12:1-2.
    7. 程彦伟,李建友,姜爱良等.2010.蛋白质组学在植物科学研究中的进展.江苏农业科学,(1):17-20.
    8. 董锦艳,李铷,张克勤.2005.松材线虫生物防治研究进展.植物保护,31(5):9-15.
    9. 段玉玺.植物线虫学.北京:科学出版社,2011.
    10.段玉玺,陈立杰.2006.大豆胞囊线虫病及其防治.北京:金盾出版社.
    11.范海延,陈捷,邵美妮等.2009.白粉病菌胁迫下黄瓜R17抗病品系叶片蛋白质组分析.园艺学报,36(6):829-834.
    12.范海延,陈捷,曲波等.2009.应答白粉病菌胁迫的黄瓜S17叶片功能蛋白质组学初步分析.植物病理学报,39(6):650-652.
    13.胡向阳,方建颖,蔡伟明等.2004.丝裂原活化蛋白激酶介导脱乙酰几丁质诱导的人参细胞氧进发与皂苷合成.中国科学C辑,34(1):31-40.
    14.孔庆科,丁爱云.2001.内生细菌作为生防因子的研究进展.山东农业大学学报,32(2):256-260.
    15.孙嘉曼.2013.人参锈腐病化学诱导抗性机制及其病原菌分子检测技术研究。沈阳:沈阳农业大学.
    16.李进荣,段玉玺,陈立杰等.2005.大豆根瘤内生细菌对大豆胞囊线虫影响研究.大豆科学,24(2):154-156.
    17.李靖,利荣千,袁文静.1991.黄瓜感染霜霉病菌叶片中一些酶活性的变化.植物病理学报,21(4):277-283.
    18.李忠光,龚明.2005.植物中超氧阴离子自由基测定方法的改进.云南植物研究,27(2):211-216.
    19.林智敏,宋亚娜,郑伟文.2002.固氮工程菌YKT对番茄根结线虫的防治试验.江西农业大学学报,24(1):52-54.
    20.刘靖宇,江玉姬,谢宝贵等.2012.iTRAQ结合2D LC-MS/MS技术在草菇不同生长发育时期蛋白质组分析中的应用.微生物学通报,39(6):853-864.
    21.刘莉,周俊初,陈华癸.1998.不同化合态氮浓度对大豆根瘤菌结瘤和固氮作用的影响.中国农业科学,31(4):87-89.
    22.刘维志.1995.植物线虫学研究技术.沈阳:辽宁科学技术出版社.
    23.刘杏忠,张克勤,李天飞.2000.植物寄生线虫生物防治.北京:中国科学技术出版社,2000:84-98.
    24.庞彩红,冯兰东,王宝山.2007.高等植物中编码APX的基因特点及其与逆境响应的关系.山东师范大学学报(自然科学版),22(4):114-126.
    25.刘祖祺,张石城.1994.植物抗性生理学.北京:中国农业出版社.
    26.祁之秋,陈长军,王建新等.2008.二硫氰基甲烷及其分解产物对根结线虫幼虫作用方式的研究.植物病理学报,38(4):420-424.
    27.齐泽民,卿东红.2005.根系分泌物及其生态效应.内江师范学院学报,20(2):68-74.
    28.孙果忠,朱振东,武小菲等.2008.大豆疫霉菌、水杨酸和创伤诱导的拟南芥蛋白质谱的比较研究.中国农业科学,41(4):1030-1039.
    29.下敬文.1982.植物苯丙氨酸解氨酶的研究.植物生理学报,8(1):34-41.
    30.王媛媛.2007.多功能生防根瘤菌功能菌株的构建.沈阳农业大学.
    31.吴海燕.2003.大豆与大豆胞囊线虫相互关系研究.沈阳:沈阳农业大学.
    32.吴慧平,解宜林,杨荣铮.1998.水稻潜根线虫接虫期、接虫量对水稻叶绿素含量及相关生化指标的影响.安徽农业科学,26(3):256-258.
    33.谢佩松,徐中根,韦存虚.2009.冰冻切片技术在植物显微结构和组织化学中的应用.生物学杂志,26(3):72-74.
    34.杨淑慎,高俊凤.2001.活性氧、自由基与植物的衰老.西北植物学报,(2):215-220.
    35.赵宇枢,段玉玺,王媛媛等.2009.辽宁省大豆根瘤菌资源抗逆性及生防潜力研究.大豆科学,28(1):113-117.
    36.曾亚,丁新华,沈祥陵等.2008.水稻抗病基因介导的抗白叶枯病反应中蛋白质表达谱的比较分析.中国水稻科学,22(3):234-242.
    37.朱友林,吴健胜,王金生.2000.水稻对白叶枯病菌抗性相关蛋白的双向电泳分析.中国农业科学,33(4):91-93.
    38. Abbott A.1999. Proteomics, transcriptomics:what's in a name. Nature,402:715-720.
    39. Aguilar O. M., Riva O., Peltzer E.2004. Analysis of Rhizobium etli and of its symbiosis with wild Phaseolus vμLgaris supports coevolution in centers of host diversification. Proceedings of the national academy of sciences of the united states of America,101(37):13548-13553.
    40. Bais H. P., Weir T. L., Perry L. G., Gilroy S., Vivanco J. M.2006. The role of root exudates in rhizosphere interactions with plants and other organisms. Annual review plant biology,57:233-266.
    41. Bardin S. D., H. C. Huang and J. Pinto.2004. Biological control of Pythium damping-off of pea and sugar beet by Rhizobium leguminosarm bv. viceae. Canadian journal of botany,82(3):291-296.
    42. Bastian H. C.1865. Monograph on the anguillμLidae, or free nematoids, marine, land, and freshwater; with descriptions of 100 new species. Transactions of the Linnean society of London,25(2):73-184.
    43. Becker J. O., Tavaleta M. E., Colbert S. F., Schroth M. N., et al.1988. Effects of rhizobacteria on root-knot nematodes and gall formation. Phytopathology,78,1466-1469.
    44. Baucher M., Monties B., Montagu M. V., et al.1998. Biosynthesis and genetic engineering of lignin. Critical reviews in plant sciences,17(2):125-197.
    45. Berkeley M. J. Vibrio forming excrescences on the roots of cucumber plants. Gardener's Chronicle, abril,1855:220.
    46. Blechert S., Brodschelm W., Holder S., et al.1995. The octadecanoic pathway:signal molecμLes for the regμLation of secondary pathways. Proceedings of the National Academy of Sciences,92(10): 4099-4105.
    47. Bohlool, B. B. and E. L. Schmidt.1974. A possible basis for specificity in Rhizobium-legume root nodμLe symbiosis. Science,185:269-271.
    48. Bush D. S.1995. Calcium regμLation in plant cells and its role in signaling. Annual review of plant biology,46(1):95-122.
    49. Buxton E., Root W.1962. Exudates from banana and their relationship to strains of the Fusarium causing panama wilt. Annals of applied biology,2(50):269-282.
    50. Camacho M., Santamaria C., Rodriguez-Navarro D. N., et al.2002. Soils of the Chinese Hubei province show a very high diversity of Sinorhizobium fredii strains. Systematic and applied microbiology,25(4):592-602.
    51. Campo S., Carrascal M., Coca M., et al.2004. The defense response of germinating maize embryos against fungal infection:A proteomics approach. Proteomics,4(2):383-396.
    52. Chakraborty U. Purkayastha R. P.1984. Role of rhizobitoxine in protecting soybean roots from Macrophomina phaseolina infection. Canadian journal of microbiology,30:285-289.
    53. Chakrabortry U., and B. N. Chakrabortry.1989. Interaction of Rhizobium leguminosarum and Fusarium solanif.sp. pision pea affecting disease deveopment and phytoalexin production. Canda journal of botany.67:1698-1701.
    54. Chen L. Q., Hou, B. H., Lalonde S., Takanaga H., et al.2010. Sugar transporters for intracellμLar exchange and nutrition of pathogens. Nature,468,527-532.
    55. Chen W. X., Yan G. H., Li J. L.1988. Numerical taxonomic study of fast-growing soybean rhizobia and a proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov. International journal of systematic bacteriology,38(4):392-397.
    56. Chen W. X., Wang E. T., Wang S. Y., et al.1995. Characteristics of Rhizobium tianshanense sp.nov., a moderately and slowly growing root nodμLe bacterium from an arid saline environment in Xinjiang, China. International journal of systematic and evolutionary microbiology,45:153-159.
    57. Cooper J. E.2004. MμLtiple responses of rhizobia to flavonoids during legume root infection. Advances in botanical research,41:1-62.
    58. Cregan P. B., Keyser H. H.1986. Host restriction of nodμLation by Bradyrhizobium japonicum strain USDA 123 in soybean. Crop science,26(5):911-916.
    59. Davis E. L., Hussey R. S., Baum T. J.2004. Getting to the roots of parasitism by nematodes. Trends parasitol,20:134-141.
    60. De Hoff P. L., Brill L. M., Hirsch A. M.2009. Plant lectins:the ties that bind in root symbiosis and plant defense. MolecμLar genetics and genomics,282(1):1-15.
    61. Dileep Kumar B. S. I., Berggren A. M.2001. Potential for improving pea production by co-inocuLation with fluorescent Pseudomonas and Rhizobium. Plant and Soil,229:25-34.
    62. Doke N.1983. Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components. Physiological plant pathology,23(3):345-357.
    63. Donaue J. L., Okpodou C. M., Cramer C. L., et al.1997. Responses of antioxidants to paraquat in pea leaves:relationships to resistance. Plant physiology,113:249-257.
    64. Dowdle S. F., Bohlool B. B.1985. Predominance of fast-growing Rhizobium japonicum in a soybean field in the People's Republic of China. Applied and environmental microbiology,50(5):1171-1176.
    65. Drapeau R., Fortin J. A., Gagnon C.1973. Antifungal activity of Rhizobium. Canadian Journal of Botany,51(3):681-682.
    66. Dudeja S. S., Giri R., Saini R., Suneja-Madan P., et al.2012. Interaction of endophytic microbes with legumes. Jouranl of basic microbiology,52:248-260.
    67. EhteshamμL - Haque S., Ghaffar A.1993. Use of rhizobia in the control of root rot diseases of sunflower, okra, soybean and mungbean. Journal of phytopathology,138(2):157-163.
    68. El-Fattah A., Dababa A. A., Sikora R. A.2007. Influence of the mutualistic endophyte Fusarium oxysporum 162 on Meloidogyne incognita attraction and invasion. Nematology,9:771-776.
    69. Fahrendorf T., Ni W., Shorrosh B. S., et al.1995. Stress responses in alfalfa (Medicago sativa L.) XIX. Transcriptional activation of oxidative pentose phosphate pathway genes at the onset of the isoflavonoid phytoalexin response. Plant molecμLar biology,28(5):885-900.
    70. Fields S. and Song O.1989. A novel genetic system to detect protein protein interactions. Nature, 340(20):245-246.
    71. Fahrendorf T., Ni W., Shorrosh B. S., et al.1995. Stress responses in alfalfa (Medicago sativa L.) XIX. Transcriptional activation of oxidative pentose phosphate pathway genes at the onset of the isoflavonoid phytoalexin response. Plant molecμLar biology,28(5):885-900.
    72. Foyer C. H., Lopez-Delgado H., Dat J. F., et al.1997. Hydrogen peroxide and glutathione associated mechanisms of acclimatory stress tolerance and signalling. Physiologia plantarum,100(2):241-254.
    73. Gage D. J.2004. Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodμLation of temperate legumes. Microbiology and molecμLar biology reviews,68(2):280-300.
    74. Gibson K. E., Kobayashi H., Walker G. C.2008. MolecμLar determinants of a symbiotic chronic infection. Annual review of genetics,42:413-441.
    75. Hallmann J., Quadt-Hallmann A., Miller W. G., Sikora R. A., et al.2001. Endophytic colonization of plants by the biocontrol agent Rhizobium etli G12 in relation to Meloidogyne incognita infection. Phytopathology,91:415-422.
    76. Hardy R. W. F., Heytler P. G., Rainbird R. M.1983. Status of new nitrogen inputs for crops. Better crops for food.97:28.
    77. Han T. X., Han L. L., Wu L. J., et al.2008. Mesorhizobium gobiense sp. nov. and Mesorhizobium tarimense sp. nov., isolated from wild legumes growing in desert soils of Xinjiang, China. International journal of systematic and evolutionary microbiology,58(11):2610-2618.
    78. Hasky-Gunther K., Hoffmann-Hergarten S., Sikora R. A.1998. Resistance against the potato cyst nematode Globodera pallida systemically induced by the rhizobacteria Agrobacterium radiobacter (G12) and Bacillus sphaericus (B43). Fundamental and applied nematology,21:511-517.
    79. Heath K. D., Tiffin P.2009. Stabilizing mechanisms in a legume-rhizobium mutualism. Evolution, 63(3):652-662.
    80. Hoa L. T. P., Nomura M., Tajima S.2004. Characterization of bacteroid proteins in soybean noduLes formed with Bradyrhizobium japonicum USDA110. Microbes and Environments,19(1):71-75.
    81. Hussey R. S. and Krusberg L. R.1970. Histopathology of and oxidative enzyme patterns in Wando peas infected with two popμlations of Ditylenchus dipsaci. Phytopathology,60(12):1818-1825.
    82. Hutter H., Vogel B. E., Plenefisch J. D., et al.2000. Conservation and novelty in the evolution of cell adhesion and extracellμLar matrix genes. Science,287(5455):989-994.
    83. Keith D., Yitzhak S.2011. Biological control of plant-parasitic nematodes:building coherence between microbial ecology and molecμLar mechanisms, Springer.
    84. Kiewnick S., Sikora R. A.2006. Biological control of the root-knot nematode Meloidogyne incognita by Paecllomyces lllacinus strain 251. Biological Control,38:179-187.
    85. Kim S. T., Cho K. S., Yu S., et al.2003. Proteomic analysis of differentially expressed proteins induced by rice blast fungus and elicitor in suspension-cμLtured rice cells. Proteomics,3(12): 2368-2378.
    86. Kohno Y., Watannabe M., Hosokawa D.1981. Studies on the physiological changes in the rice plant infected with Xanthomonas citri. Annals of the phytopathological society of Japan,47:555-561.
    87. Ko M. P., Barker K. R., Huang J. S.1984. NodμLation of soybeans as affected by half-root infection with Heterodera glycines. Journal of nematology,16(1):97.
    88. Kurosaki R, Tsurusawa Y, Nishi A..1987. The elicitation of phytoalexins by Ca2+and cyclic AMP in carrot cells. Phytochemistry,26(7):1919-1923.
    89. Liu L., J. Kloepper, and S. Tuzun.1995. Induction of systemic resistance in cucumber against Fusarium wilt by plant growth-promoting rhizobacteria. Phytopathology,85:695-698.
    90. Luck H. A.1963. spectrophotometric method for the estimation of catalase. Methods of Enzymatic Analysis, Bergmeyer HU Ed,886.
    91. Martinuz A., Schouten A., Sikora R. A.2012. Systemically induced resistance and microbial competitive exclusion:implications on biological control. Phytopathology,102:260-266.
    92. Martinuz A., Schouten A., Sikora R. A.2013. Post-infection development of Meloidogyne incognita on tomato treated with the endophytes Fusarium oxysporum strain Fol62 and Rhizobium etli strain G12. BioControl,58:95-104.
    93. Martinez C. A., Loureiroa M. E., Oliva M. A., Maestri M.2001. Differential responses of superoxide dismutase in freezing resistant Solanum curtilobum and freezing sensitive Solanum tuberosum subjected to oxidative and water stress. Plant science,160:505-515.
    94. Masson-Boivin C., Giraud E., Perret X., et al.2009. Establishing nitrogen-fixing symbiosis with legumes:how many rhizobium recipes?. Trends in microbiology,17(10):458-466.
    95. Maurhofer M., Hase C., Meuwly P., et al.1994. Induction of systemic resistance of tobacco to tobacco necrosis virus by the root colonizing Pseudomonas fluorescens strain CHAO:Influence of the gacA gene and of pyoverdine production. Phytopathology,84:139-146.
    96. Mena J., Pimentel E., Hernandez A. T., et al.2002. Mechanism of action of Corynebacterium paurometabolum strain C-924 on nematodes. Nematology,4:287.
    97. Mihm S., Galter D., Droge W.1995. ModμLation of transcription factor NF kappa B activity by intracellμLar glutathione levels and by variations of the extracellμLar cysteine supply. The FASEB journal,9(2):246-252.
    98. Mishra N. P., Mishra. R. K., Singhal G. S.1993. Changes in the activities of anti-oxidant enzymes during exposure of intact wheat leaves to strong visible light at different temperatures in the presence of protein synthesis inhibitors. Plant Physiology,102(3):903-910.
    99. Moerschbacher B, Kogel K. H., Noll U., et al.1986. An elicitor of the hypersensitive lignification response in wheat leaves isolated from the rust fungus Puccinia graminis f. sp. tritici. I:Partial purification and characterization. Zeitschrift fur naturforschung section C, Biosciences,41(9-10): 830-837.
    100. MμLder E. G., Van Veen W. L.1960. The influence of carbon dioxide on symbiotic nitrogen fixation. Plant and Soil,13(3):265-278.
    101. Munchbach M., Dainese P., Staudenmann W., et al.1999. Proteome analysis of heat shock protein expression in Bradyrhizobium japonicum. European journal of biochemistry,264(1):39-48.
    102. Natera S. H. A., Guerreiro N., Djordjevic M. A.2000. Proteome analysis of differentially displayed proteins as a tool for the investigation of symbiosis. MolecμLar plant-microbe interactions,13(9): 995-1009.
    103. Nemoto Y., Sasakuma T.2000. Specific expression of glucose-6-phosphate dehydrogenase (G6PDH) gene by salt stress in wheatTriticum aestivum. Plant science,158(1):53-60.
    104. O'Farrell H. C., Musayev F. N., Scarsdale J. N., et al.2010. Binding of adenosine-based ligands to the MjDiml rRNA methyltransferase:implications for reaction mechanism and drug design. Biochemistry, 49(12):2697-2704.
    105. Omar, S. A. and M H. Abd-Alla.1998. Biocontrol of fungal root rot diseases of crop plant by the use of rhizobia and bradyrhizobia Folia. Microbiology,43:431-437.
    106. Perry R. N.1997. Plant signals in nematode hatching and attraction. In:CellμLar and molecμLar aspects of plant-nematode interactions. Springer Netherlands,38-50.
    107. Pierce A., Unwin R. D., Evans C. A., et al.2008. Eight-channel iTRAQ enables comparison of the activity of six leukemogenic tyrosine kinases. MolecμLar and CellμLar Proteomics,7(5):853-863.
    108. Pieterse C. M., Van Wees S. C., Hoffl E., et al.1996. Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumμLation and pathogenesis-related gene expression. The plant cell online,8(8):1225-1237.
    109. Prell J., Poole P.2006. Metabolic changes of rhizobia in legume nodμLes. Trends in microbiology, 14(4):161-168.
    110.Proite, K., Carneiro R., Falcao R., Gomes A., et al.2008. Post-infection development and histopathology of Meloidogyne arenariarace on Arachis spp. Plant pathology,57,974-980.
    111. Qin J., Gu F., Liu D., et al.2013. Proteomic analysis of elite soybean Jidoul7 and its parents using iTRAQ-based quantitative approaches. Proteome science,11(1):12.
    112. Ramamoorthy V., Viswanathan R., Raguchander T., Prakasam V., et al.2001. Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop protection,20:1-11.
    113. Reeve W. G., Tiwari R. P., Guerreiro N., et al.2004. Probing for pH-regμLated proteins in Sinorhizobium medicae using proteomic analysis. Journal of molecμLar microbiology and biotechnology,7(3):140-147.
    114. Rusnak F., Mertz P.2000. Calcineurin:form and function. Physiological reviews,80(4):1483-1522.
    115. Saikawa M., Morikawa C.1985. Electron microscopy on a nematode-trapping fungus, AcaμLopage pectospora. Canadian journal of botany,63(8):1386-1390.
    116. Schacht H.1859. Lehrbuch der Anatomie und Physiologie der Gewachse. GWF Mueller.
    117. Scholla M. H., Elkan G H.1984. Rhizobium fredii sp. nov., a fast-growing species that effectively nodμLates soybeans. International journal of systematic bacteriology,34(4):484-486.
    118. Schreck R., Rieber P., Baeuerle P. A.1991. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. The EMBO journal, 10(8):2247.
    119. Shimoda Y., Shinpo S., Kohara M., et al.2008. A large scale analysis of protein-protein interactions in the nitrogen-fixing bacterium Mesorhizobium loti. DNA research,15(1):13-23.
    120. Shoresh M., Harman G E.2008. The molecμLar basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inocμLation of the root:a proteomic approach. Plant Physiology,147: 2147-2163.
    121. Siddiqui Z. A., Mahmood 1.1999. Role of bacteria in the management of plant parasitic nematodes:a review. Bioresource technology,69:167-179.
    122. Siddiqui I. A., Ehteshamμ L H. S., Zaki M. J., et al.2000. Greenhouse evaluation of rhizobia as biocontrol agent of root infecting fungi in okra. Acta agrobotanica,53:13-22.
    123. Sikora R. A., Schafer K., Dababat A. A.2007. Modes of action associated with microbially induced in planta suppression of plant-parasitic nematodes. Australa plant pathology,36:124-134.
    124. Simpfendorfer S., Harden T. J., Murray G. M.1999. The in vitro inhibition of Phytophthora clandestina by some rhizobia and the possible role of Rhizobium trifolii in biological control of Phytophthora root rot of subterranean clover. Crop pasture science,50:1469-1474.
    125. Srinivasan M., Holl F. B., Petersen D. J.1997. NodμLation of Phaseolus vμLgaris by Rhizobium etli is enhanced by the presence of Bacillus. Canadian journal of microbiology,43(1):1-8.
    126. Sturz A. V., Christie B. R., Matheson B. G, ArsenaμLt W. J., et al.1999. Endophytic bacterial communities in the periderm of potato tubers and their potential to improve resistance to soil-borne plant pathogens. Plant Pathology,48:360-369.
    127. Tefft T. M., L. M. Bone.1985. Plant inducing hatching of eggs of the soybean cyst nematode Heterodera glycines. Journal of nematology,17:275-279.
    128. Tian B., Yang J., Zhang K. Q.2007. Bacteria used in the biological control of plant-parasitic nematodes:popμlations, mechanisms of action, and future prospects. FEMS microbiology ecology, 61:197-213.
    129. Tian C. F., Wang E. T., Wu L. J., et al.2008. Rhizobium fabae sp. nov., a bacterium that noduLates Vicia faba. International journal of systematic and evolutionary microbiology,58(12):2871-2875.
    130. Tidow H., Hein K. L., Baekgaard L., et al.2010. Expression, purification, crystallization and preliminary X-ray analysis of calmodμLin in complex with the regμLatory domain of the plasma-membrane Ca2+ -ATPase ACA8. Acta Crystallographica Section F:Structural Biology and Crystallization Communications,66(3):361-363.
    131. Timmers A. C., Auriac M. C., Truchet G. 1999. Refined analysis of early symbiotic steps of the Rhizobium-Medicago interaction in relationship with microtubμLar cytoskeleton rearrangements. Development,126(16):3617-3628.
    132. Tohge T., Yonekura-Sakakibara K., Niida R., et al.2007. Phytochemical genomics in Arabidopsis thaliana:a case study for functional identification of flavonoid biosynthesis genes. Pure and applied chemistry,79(4):811-823.
    133. Tsalik E. L., Hobert O.2003. functional mapping of neurons that control locomotory behavior in Caenorhabditis elegans. Journal of neurobiology,56:178-197.
    134. Tu J. C.1978. Protection of soybean from severs Phytophthora root rot by Rhizobium. Physiological plant pathology,12:233-240.
    135. Van Loon L. C., Bakker P. A. H. M., Pieterse C. M. J.1998. Systemic resistance induced by rhizosphere bacteria. Annual reveal of phytopathology,36:453-483.
    136. Wan J., Torres M., Ganapathy A., et al.2005. Stacey G:Proteomic analysis of soybean root hairs after infection by Bradyrhizobium japonicum. MolecμLar plant-microbe interactions,18:458-467.
    137. Wang L., Zhi T.2010. iTRAQ labeling and biomarker discovery in comparative proteomic studies. Chemistry of life,30:135-140.
    138. Weisbeek P. J, Gerrits H.1997. Iron uptake and competition. Plant growth-promoting rhizobacteria: present status and future prospects,102-107.
    139. White J., Prell J., James E. K., et al.2007. Nutrient sharing between symbionts. Plant physiology, 144(2):604-614.
    140. Wilkins M. R., J. C. Scnchez, A. A. Gooley, et al.1995. Progress with proteome projects:why all proteins expressed by a genome shμLd be identified and how to do it. Biotechnology and genetic engineeringrReviews,13(1):19-50.
    141.Wingate V. P. M., Lawton M. A., Lamb C. J.1988. Glutathione causes a massive and selective induction of plant defense genes. Plant physiology,87(1):206-210.
    142. Wuyts N., Swennen R., De Waele D.2006. Effects of plant phenylpropanoid pathway products and selected terpenoids and alkaloids on the behaviour of the plant-parasitic nematodes Radopholus similis, Pratylenchus penetrans and Meloidogyne incognita. Nematology,8(1):89-101.
    143.Wyss U., Grundler F. M. W.1992. Feeding behavior of sedentary plant parasitic nematodes. Netherlands journal of plant pathology,98,165-173.
    144. Xie Z. P., C. Staehelin, A. Wiemken, Broughton W. J.1999. Symbiosis-stimuLated chitinase isoenzymes of soybean. Journal of experimental botany,50(332):327-333.
    145. Yang H., Huang Y., Zhi H., Yu D., et al.2011. Proteomics-based analysis of novel genes involved in response toward soybean mosaic virus infection. MolecμLar biology reports,38:511-521.
    146. Yang Y., Chen Y., Song J., et al.2003. Analysis of isoenzymes of peroxidase of insect-resistant varieties in upland cotton (G. hirsutum L.). Journal of Mountain AgricμLture and Biology,6:11.
    147. Zhu M., Simons B., Zhu N., et al.2010. Analysis of abscisic acid responsive proteins in Brassica napus guard cells by mμLtiplexed isobaric tagging. Journal of proteomics,73(4):790-805.
    148. Zieske L. R.2006. A perspective on the use of iTRAQ reagent technology for protein complex and profiling studies. Journal of experimental botany,57(7):1501-1508.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700