用户名: 密码: 验证码:
航天器姿态控制的正规矩阵方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航天器依赖其上的控制系统以完成飞行使命。随着发展,航天器的构造越来越复杂,性能要求也越来越高,为航天器姿态控制系统的设计带来了挑战。基于此,本论文研究正规矩阵设计方法在航天器姿态控制律设计中的应用问题。
     本论文以可建模为具有存储角动量和柔性附件的中心刚体的航天器为研究对象,首先建立了系统的动力学模型,并分析了其频域线性化模型的正规矩阵特性、对角优势特性、以及零极点分布特性。基于分析结果,先后研究了刚体航天器姿态稳定、柔性航天器姿态稳定、以及航天器姿态机动的正规矩阵控制问题。对乘性摄动和逆加摄动两种不确定性下的设计进行了比较。研究了闭环内输入成形技术,并将其应用于柔性航天器姿态稳定问题中。结合反馈线性化技术为航天器大角度姿态机动设计了正规矩阵控制律。基于Hamilton-Jacobi-Isaacs不等式为姿态跟随问题设计了非线性H∞正规矩阵控制律。
     对航天器动力学特性的研究表明:(1)航天器的动力学模型不是正规矩阵,影响其正规矩阵特性的主要因素在于柔性运动、以及惯性积和存储角动量与轨道角速度之间的耦合;(2)航天器动力学的传输零点不受存储角动量的影响,仍然是柔性附件振动的各约束模态频率,但其系统极点不再是柔性振动的各非约束模态频率,而是由一个奇数维广义陀螺特征值问题确定;(3)最大最小主惯性矩之比满足约束的刚体,其惯性张量在任意建立的质心体坐标系内都是对角优势矩阵,这使得航天器动力学传递函数矩阵一般可视为对角优势矩阵。
     在航天器姿态稳定的正规矩阵控制中,使用逆加摄动不确定性描述比使用乘性摄动有更多优势。在逆加摄动描述下,可以方便的校正使系统偏离正规矩阵特性的因素。而且,在逆加摄动描述下,正规矩阵设计条件仅对控制律中部分参数提出要求,而将其它参数释放出来以供协调三轴性能要求使用。
     与传统输入成形一样,闭环内输入成形器也能抑制振动,并具有对振动频率摄动的鲁棒性,能够同时抑制设计频率及其各奇数次倍频邻域内的振动。但与传统输入成形不同,闭环内输入成形不能单独抑制设计频率的奇数次倍频。将闭环内输入成形系统视为各时滞间具有严格倍数关系的特殊的多时滞系统,给出了其渐近稳定和鲁棒稳定的LMI判据。通过分析多模态系统中各模态频率之间的关系,可以有效地缩短闭环内输入成形持续时间并简化输入成形器设计。将闭环内输入成形应用于柔性航天器,可以在获得振动抑制效果的同时,提高系统的正规性。
     为将正规矩阵设计方法扩展到非线性姿态机动问题中,将其与反馈线性化技术相结合,为大角度姿态机动设计了正规矩阵控制律,并同时使用闭环内和闭环外两种输入成形器,分别抑制柔性振动和刚体振荡,提高控制快速性和精度。结合姿态跟随问题,设计了基于姿态误差模型的正规矩阵姿态机动控制,该正规矩阵控制律被证明是非线性姿态跟随问题的非线性H_∞解。
     数值仿真结果验证了文中理论分析和设计结果的正确性和有效性。
Spacecraft rely heavily on the effectiveness of complex onboard control systems.Currently, the structures of spacecraft are more and more complex, and the performancerequirements are higher and higher. These challenge the designing of spacecraft attitudecontrol systems. The present thesis is focused on the application issues of the normalmatrix design approach on the attitude control of spacecraft.
     The researches are based on the spacecraft that can be regarded as a central rigid-body with stored angular momentum and some ?exible appendages attached. Firstly, thesystem’s dynamical model is derived, and the characteristics of the normal matrix, diago-nally dominant, and the distribution of poles and zeros of the linearized dynamical modelin frequency domain are analyzed carefully. Based on these analysis results, the normalmatrix control problems are considered for the attitude stabilization of rigid and ?exiblespacecraft, and for the attitude maneuver of spacecraft. A comparison is made betweentwo uncertainty descriptions: the multiplicative perturbation and inverse-additive pertur-bation. The inside-the-loop input shaping is studied and applied to the attitude stabiliza-tion of ?exible spacecraft. The feedback linearization is employed in the designing ofnormal matrix control law for large angle attitude maneuvering, and the nonlinear H∞normal matrix control law is designed by using the Hamilton-Jacobi-Isaacs inequality forthe attitude tracking problem.
     The research on the characteristics of spacecraft dynamics show that, (i) the dy-namics model of spacecraft is generally not the normal matrix, and the main factors thataffect the normality are the ?exible motions and the coupling between the products ofinertia, stored angular momentum, and the orbit velocity. (ii) The transmission zeros arestill the constrained modal frequencies of ?exible appendages regardless of the storedangular momentum, but the unconstrained modal frequencies are no longer the systempoles. The system poles are determined by a odd-dimension eigenvalue problem of gen-eralized gyroscopic system when the stored angular momentum occur. (iii) The inertiatensor of a rigid body in any centroid body-fixed coordinate is a diagonally dominant ma-trix if the maximum and minimum principle moments of inertia meet a given condition.Therefore, the transfer function matrix of spacecraft dynamics are generally regarded asa diagonally dominant matrix.
     For the normal matrix control of spacecraft attitude stabilization, the usage of the inverse-additive perturbation can bring more advantages to the system than that of themultiplicative perturbation. With the uncertainty descriptions of the inverse-additive per-turbation, the improvement of the system’s normality is more convenient, and only partof the parameters in the control law are included in the normal-matrix design condition,therefore the others are freed and can be used in the trade-off among performance re-quirements of the three loops.
     Like the traditional input shaping, the inside-the-loop input shaper can suppressthe vibrations, has robustness to the alteration of the vibration frequencies, and can si-multaneously suppress the vibrations of the design frequency and its odd-number timesfrequencies. But unlike traditional input shaping, the inside-the-loop input shaper cannot suppress the vibration of a single odd, for example, 3 or 5, times frequency. TheLMI criteria of asymptotic and robust stability are derived for the inside-the-loop inputshaping system, which is regarded as a special case of multi-delay system with delays ofmultiple relationship. The relationships among the modal frequencies in the multi-modesystem can be used in the saving of the shaping time of inside-the-loop input shaper andthe reduction of the input shaper effectively. The system’s robustness can be improvedby inserting the inside-the-loop input shaper into the attitude control loops of the ?exiblespacecraft besides the vibration suppression.
     For the applications of the normal matrix design methodology to nonlinear attitudemaneuver control problems, the normal matrix control approach are combined with thefeedback linearlization. The normal matrix control law is derived for the large angle at-titude maneuver problem, and both the inside-the-loop input shaper, for the suppressionof the ?exible vibrations, and the outside-the-loop input shaper, for the reduction of therigid oscillation, are employed to promoting the precision and response speed of the sys-tem. For the attitude tracking problem, the normal matrix control law is designed basedon the attitude error dynamics model, and the control law is proved to be a nonlinear H_∞control law for the nonlinear attitude tracking problem.
     The computer simulation results demonstrate the validity and effectiveness of thetheoretic analysis and design results in the present dissertation.
引文
1李果,刘良栋,张洪华.航天器控制若干技术问题的新进展.空间控制技术与应用. 2008, 34(1): 14~19
    2 A. K. Banerjee. Contributions of Multibody Dynamics to Space Flight: A BriefReview. Journal of Guidance, Control, and Dynamics. 2003, 26(3): 385~394
    3耿云海.大型挠性充液空间飞行器非线性控制技术研究.哈尔滨工业大学工学博士学位论文. 2003: 1~18
    4 P. W. Likins. Spacecraft Attitude Dynamics and Control - a Personal Perspectiveon Early Developments. Journal of Guidance, Control, and Dynamics. 1986, 9(2):129~134
    5 E. Mettler, M. B. Quadrelli. Multibody Dynamics Modeling of Segmented Boomsof the Mars Express Spacecraft. Journal of Spacecraft and Rockets. 2005, 42(3):523~529
    6 W. Huntressa, D. Stetsonb, R. Farquhar, et al. The Next Steps in Exploring DeepSpace - a Cosmic Study by the IAA. Acta Astronautica. 2006, 58(6-7): 304~377
    7 J. K. Miller, A. S. Konopliv, P. G. Antreasian, et al. Determination of Shape,Gravity, and Rotational State of Asteroid 433 Eros. Icarus. 2002, 155: 3~17
    8 J. K. Miller, P. G. Antreasian, R. W. Gaskell, et al. Determination of Eros Physi-cal Parameters for Near Earth Asteroid Rendezvous Orbit Phase Navigation. Ad-vances in the Astronautical Sciences. 2000, 103: 2551~2568
    9 D. K. Yeomans, P. G. Antreasian, A. Cheng, et al. Estimating the Mass of As-teroid 433 Eros During the NEAR Spacecraft Flyby. Science. 1999, 285(5427):560~561
    10 P. A. Taylor, J.-L. Margot, D. Vokrouhlick, et al. Spin Rate of Asteroid (54509)2000 PH5 Increasing Due to the YORP Effect. Science. 2007, 316(5822):274~277
    11戈新生,刘延柱.万有引力场中带挠性太阳帆板航天器的姿态稳定性.宇航学报. 1999, 20(3): 61~68
    12 X. Li, A. J. Throckmorton, J. B. Boka. Stability Analysis on Earth ObservingSystem AM-1 Spacecraft Earth Acquisition. Journal of Guidance, Control, andDynamics. 1996, 19(3): 512~519
    13 Y. Liu, L. Chen. Chaotic Attitude Motion of a Magnetic Rigid Spacecraft in anElliptic Orbit and its Control. Acta Mechanica Sinica. 2003, 19(1): 71~78
    14 G. L. Gray, A. P. Mazzoleni, D. R. C. III. Analytical Criterion for Chaotic Dynam-ics in Flexible Satellites with Nonlinear Controller Damping. Journal of Guidance,Control, and Dynamics. 1998, 21(4): 558~565
    15 V. V. Kouprianov, I. I. Shevchenko. Rotational Dynamics of Planetary Satellites:A Survey of Regular and Chaotic Behavior. Icarus. 2005, 176(1): 224~234
    16 H. B. Hablani. Multiaxis Tracking and Attitude Control of Flexible Spacecraftwith Reaction Jets. Journal of Guidance, Control, and Dynamics. 1994, 17(4):831~839
    17 J. M. Mendel. On-off Limit-Cycle Controllers for Reaction Jet Controlled Systems.IEEE Transactions on Automatic Control. 1970, 15(3): 285~299
    18 G. Song, N. V. Buck, B. N. Agrawal. Spacecraft Vibration Reduction Using Pulse-Width Pulse-Frequency Modulated Input Shaper. Journal of Guidance, Control,and Dynamics. 1999, 22(3): 433~440
    19 R. W. Froelich, H. Patapoff. Reaction Wheel Attitude Control for Space Vehicles.IRE Transactions on Automatic Control. 1959, 4(3): 139~149
    20 H. Schaub, S. R. Vadali, J. L. Junkins. Feedback Control Law for Variable SpeedControl Moment Gyros. The Journal of Astronautical Sciences. 1998, 46(3):307~328
    21 X. J. Chen, W. H. Steyn, S. Hodgart, et al. Optimal Combined Reaction-WheelMomentum Management for Earth-Pointing Satellites. Journal of Guidance, Con-trol, and Dynamics. 1999, 22(4): 543~550
    22 C. J. Heiberg, D. Bailey, B. Wie. Precision Spacecraft Pointing Using Single-Gimble Control Moment Gyroscopes with Disturbance. Journal of Guidance, Con-trol, and Dynamics. 2000, 23(1): 77~85
    23 X. Ye, N. Yajima, G. Ai. Attitude Control and High Precision Poinging ControlSystem of a Large Balloon Borne Solar Telescope. Advances in Space Research.2000, 26(9): 1419~1422
    24 H. S. Lin. Design and Analysis of Galileo Sun Acquisition Algorithm. Proceedingsof the 1981 AAS/AIAA Astrodynamics Conference. 1981: 829~851
    25 S. N. Singh, P. T. Kabamba, N. H. McClamroch. Planar, Time-Optimal, Rest-to-Rest Slewing Maneuvers of Flexible Spacecraft. Journal of Guidance, Control, andDynamics. 1989, 12(1): 71~81
    26 E. M. C. Kong, D. W. Miller. Optimal Spacecraft Reorientation for Earth OrbitingClusters: Applications to Techsat 21. Acta Astronautica. 2003, 53(11): 863~877
    27 M. Romano, B. N. Agrawal. Acquisition, Tracking and Pointing Control of theBifocal Relay Mirror Spacecraft. Acta Astronautica. 2003, 53(4-10): 509~519
    28 H.-S. Myung, H. Bang. Nonlinear Predictive Attitude Control of Spacecraft underExternal Disturbances. Journal of Spacecraft and Rockets. 2003, 40(5): 696~699
    29 A. Tewari, R. Sharma. Optimal Nonlinear Tracking of Spacecraft Attitude Maneu-vers. AIAA/AAS Astrodynamics Specialist Conference. 2004: AIAA–2004–5209
    30 W. Luo, Y.-C. Chu, K.-V. Ling. H∞Inverse Optimal Attitude-Tracking Controlof Rigid Spacecraft. Journal of Guidance, Control, and Dynamics. 2005, 28(3):481~494
    31 W. Luo, Y.-C. Chu, K.-V. Ling. Inverse Optimal Adaptive Control for AttitudeTracking of Spacecraft. IEEE Transactions on Automatic Control. 2005, 50(11):1639~1654
    32 G. Ma, B. Song, C. Li. Fuzzy Sliding Mode Control of a Spacecraft Attitude Track-ing System. Proceedings of the 2nd IEEE Conference on Industrial Electronics andApplications. 2007: 1696~1700
    33 W. Cai, X. Liao, D. Y. Song. Indirect Robust Adaptive Fault-Tolerant Control forAttitude Tracking of Spacecraft. Journal of Guidance, Control, and Dynamics.2008, 31(5): 1456~1463
    34 E. Jin, Z. Sun. Robust Controllers Design with Finite Time Convergence for RigidSpacecraft Attitude Tracking Control. Aerospace Science and Technology. 2008,12(4): 324~330
    35 P. E. Crouch. Spacecraft Attitude Control and Stabilization: Applications of Geo-metric Control Theory to Flexible Body Models. IEEE Transactions on AutomaticControl. 1984, 29(4): 321~331
    36 M. L. Psiaki. Estimation of a Spacecraft’s Attitude Dynamics Parameters by UsingFlight Data. Journal of Guidance, Control, and Dynamics. 2005, 28(4): 594~603
    37 A. Feldman, A. Y. Lee. In-?ight Estimations of Cassini Spacecraft Inertia Tensorand Thruster Magnitude. 16th AAS/AIAA Space Flight Mechanics Conference.2006: AAS–2006–102
    38 K. Zhou, J. C. Doyle, K. Glover. Robust and Optimal Control. Upper Saddle River,NJ, USA: Prentice Hall, 1995: 7~12
    39 G. Zames. Feedback and Optimal Sensitivity: Model Reference Transformations,Multiplicative Seminors, and Approximate Inverses. IEEE Transactions on Auto-matic Control. 1981, 26(2): 301~320
    40 J. C. Doyle, G. Stein. Multivariable Feedback Design: Concepts for a Class-cal/Modern Synthesis. IEEE Transactions on Automatic Control. 1981, 26(1):4~16
    41孙继广.矩阵扰动分析.第二版.北京:科学出版社, 2001: 168~396
    42高黛陵,吴麒.多变量频率域控制理论.北京:清华大学出版社, 1998:178~216
    43 L. Zhang. The H∞Index of Normal Transfer Function Matrices. Proceedings ofthe 1993 IEEE Region 10 Conference on Computer, Communication, Control andPower Engineering. Beijing, 1993, 4: 213~217
    44 Y. S. Hung, A. G. J. MacFarlane. Multivariable Feedback : A Quasi-ClassicalApproach. New York: Springer-Verlag, 1982: 86~111
    45吴麒,高黛陵.控制系统的智能设计.北京:机械工业出版社, 2003: 142~152
    46张霖,吴麒,高黛陵.设计多变量鲁棒控制系统的正规矩阵方法.自动化学报. 1994, 20(2): 138~145
    47王岩青.设计多变量鲁棒控制系统的正规矩阵方法.机械制造与自动化.2004, 33(6): 72~73,77
    48 X. Liu, Gjshen, L. Chen, et al. Multivariable Robust Digital Control: An ExtendedSchur Decomposition Approach. The Fifth World Congress on Intelligent Controland Automation. Hangzhou, 2004, 1: 519~521
    49 X. Liu, Y. Sun. Multivariable Robust Digital Control: A Modified Dyadic Ap-proach. The 2004 IEEE International Conference on Control Applications. Taipei,2004, 2: 1195~1198
    50 G. K. Pang, A. G. MacFarlane. An Expert Systems Approach to Computer-Aided Design of Multivariable Systems. Berlin, Germany: Springer-Verlag, 1988:93~188
    51 L. Jin. Robust Attitude Control of a Large Communication Satellite with Flex-ible Solar Arrays. 35th Congress of the International Astronautical Federation.Lausanne, Switzerland, 1984: IAF–ST–84–06
    52 N. Sundararajan, S. M. Joshi, E. S. Armstrong. Robust Controller Synthesis fora Large Flexible Space Antenna. Journal of Guidance, Control, and Dynamics.1987, 10(2): 201~208
    53 M. Tahk, J. L. Speyer. Parameter Robust Linear-Quadratic-Gaussian Design Syn-thesis with Flexible Structure Control Applications. Journal of Guidance, Control,and Dynamics. 1989, 12(4): 460~468
    54 M. S. Bhat, A. G. Sreenatha, S. K. Shrivastava. Robust Low Order Dynamic Con-troller for Flexible Spacecraft. IEE Proceedings, Part D: Control Theory and Ap-plications. 1991, 138(5): 460~468
    55 A. Grewal, V. J. Modi. Robust Attitude and Vibration Control of the Space Station.Acta Astronautica. 1996, 38(3): 139~160
    56 L. C. G. DeSouza. Robust Controller Design for Flexible Space System Using aCombination of LQG/LTR and PRLQG Methods. Proceedings of the 1996 3rdInternational Conference on Dynamics and Control of Structures in Space. 1996:151~166
    57张昊,张衡,许少云,等.系统参数鲁棒设计方法的研究(二)——方法与应用.系统工程与电子技术. 1998, (9): 71~75
    58 J. Kim. Bandwidth-Limited Robust Nonlinear Spacecraft Control. PhD thesis,University of Illinois at Urbana-Champaign. 1991: 1~106
    59 J. R. Bell, E. V. Bergmann, W. M. Hollister, et al. Aerocapture Attitude ControlSystem Incorporating Robustness and Vehicle Parameter Identification. Advancesin the Astronautical Sciences. 1992, 76(1): 860
    60 E. Hakan, O. Nejat. Robust Output Tracking Control of Nonlinear MIMO Systemsvia Sliding Mode Technique. Automatica. 1992, 28(1): 145~151
    61 J. C. Chiou, M.-C. Hwang, S. Wu, et al. Robust Attitude Control of SpacecraftUsing Sliding Mode Control and Productive Networks. International Journal ofSystems Science. 1997, 28(5): 435~446
    62 Y.-W. Liang, T.-C. Chu, C.-C. Cheng. Robust Attitude Control for Spacecraft.Proceedings of the American Control Coference. 2002: 1342~1347
    63王景,刘良栋.小卫星的鲁棒自适应姿态控制.宇航学报. 2003, 24(3):235~239
    64 K. J. Walchko. Robust Nonlinear Attitude Controll with Disturbance Compensa-tion. PhD thesis, University of Florida. 2003: 1~135
    65 Q. Hu. Robust Variable Structure Control of Flexible Spacecraft Containing In-put Nonlinearity/Dead-Zone. Collection of Technical Papers - AIAA Guidance,Navigation, and Control Conference 2006. Keystone, CO, USA, 2006, 1: 25~38
    66吕建婷,马广富,李传江.卫星姿态跟踪的模糊滑模控制器设计.吉林大学学报(工学版). 2007, 37(4): 955~958
    67 Q. Hu, G. Ma. Control of Three-Axis Stabilized Flexible Spacecraft Using Vari-able Structure Strategies Subject to Input Nonlinearities. Journal of Vibration andControl. 2007, 12(6): 659~681
    68 Q. Hu, G. Ma, L. Xie. Robust and Adaptive Variable Structure Output FeedbackControl of Uncertain Systems with Input Nonlinearity. Automatica. 2008, 44(2):552~559
    69 Y.-W. Liang, S.-D. Xu, C.-L. Tsai. Study of VSC Reliable Designs with Applica-tion to Spacecraft Attitude Stabilization. IEEE Transactions on Control SystemsTechnology. 2007, 15(2): 332~338
    70 Y. Jin, X. Liu, W. Qiu, et al. Time-Varying Sliding Mode Controls in Rigid Space-craft Attitude Tracking. Chinese Journal of Aeronautics. 2008, 21(4): 352~360
    71 K.-W. Byun, B. Wie, D. Geller, et al. Robust H∞Control Design for the SpaceStation with Structured Parameter Uncertainty. Journal of Guidance, Control, andDynamics. 1991, 14(6): 1115~1122
    72 S. L. Ballois, G. Duc. H∞Control of an Earth Observation Satellite. Journal ofGuidance, Control, and Dynamics. 1996, 19(3): 628~635
    73 H. Buschek, A. J. Calise. Aerospace Control System Design with Robust FixedOrder Compensators. Aerospace Science and Technology. 1997, 1(6): 391~404
    74 C. Valentin-Charbonnel, G. Duc, S. L. Ballois. Low-Order Robust Attitude Con-trol of an Earth Observation Satellite. Control Engineering Practice. 1999, 7(4):493~506
    75 F. Zhou, C. Zhao, J. Zhou. Robust H∞Design of the Attitude Control/momentumManagement System for a Space Station. Chinese Journal of Aeronautics. 1999,12(4): 227~230
    76 T. Nagashio, T. Kida. Robust Attitude Controller Design of Linear Parameter Vary-ing Spacecraft viaμSynthesis and Gain Scheduling. Proceedings of the 1999 IEEEInternational Conference on Control Applications. Kohala Coast, HI, USA, 1999,2: 979~984
    77兰维瑶,陈亚陵.新型卫星姿态运动的鲁棒控制器设计.厦门大学学报(自然科学版). 1999, 38(2): 193~198
    78 L.-L. Show, J.-C. Juang, C.-D. Yang. Nonlinear H∞Robust Control for SatelliteLarge Angle Attitude Maneuvers. Proceedings of the American Control Confer-ence. Arlington, VA, USA, 2001, 2: 1357~1362
    79王广雄,王新生.鲁棒镇定问题的H∞优化设计.自动化学报. 2002, 28(4):601~605
    80 Z. Yang, G. Ma, C. Li. Robust Control Synthesis Method for the Satellite. Proceed-ings of the 2nd International Conference on Machine Learning and Cybernetics.Xi’an, Shanxi, 2003, 2: 726~730
    81李传江,马广富.基于l2增益稳定的航天器鲁棒姿态控制.哈尔滨工业大学学报. 2007, 39(5): 712~715,720
    82贾秋玲.非线性系统的鲁棒控制理论及其应用.西北工业大学工学博士学位论文. 2003: 1~154
    83周宗锡,吴方向,李锋.基于Rodrigues参数的飞行器姿态鲁棒控制.西北工业大学学报. 2004, 22(2): 133~136
    84仝西岳,李东旭.基于迭代LMI的航天器的姿态静态输出反馈.宇航学报.2007, 28(3): 539~544
    85 D. E. Bossert. Design of Robust Quantitative Feedback Theory Controllers forPitch Attitude Hold Systems. Proceedings of the AIAA Guidance, Navigation andControl Conference. Hilton Head Island, SC, USA, 1992, 1: 517~524
    86 W.-H. Chen. Qft Design for Spacecraft with Uncertain Flexible Structures. Pro-ceedings of the World Congress on Intelligent Control and Automation. 2006, 2:8191~8195
    87 M. Garcia-Sanz, I. Eguinoa, M. Barreras, et al. Nondiagonal MIMO QFT Con-troller Design for Darwin-Type Spacecraft with Large Flimsy Appendages. Jour-nal of Dynamic Systems, Measurement and Control. 2008, 130(1): 011006–1~011006–15
    88 X. Cen, Q. Wang, X. Ma. Near Time Optimal Control with Perturbation Estimationfor Flexible Spacecraft Slewing Maneuvers. Journal of Systems Engineering andElectronics. 2005, 16(1): 84~91
    89周黎妮,唐国金,李海阳.航天器姿态机动的自抗扰控制器设计.系统工程与电子技术. 2007, 29(12): 2122~2126
    90 N. Unnikrishnan, S. N. Balakrishnan, R. Padhi. Dynamic Re-Optimization of aSpacecraft Attitude Controller in the Presence of Uncertainties. Proceedings ofthe 2006 IEEE International Symposium on Intelligent Control. Munich, Germany,2007: 452~457
    91 Z.-X. Li, B.-L. Wang. Robust Attitude Tracking Control of Spacecraft in the Pres-ence of Disturbances. Journal of Guidance, Control, and Dynamics. 2007, 30(4):1156~1159
    92 J. Zhang, S. Xu, J. Li. A New Design Approach of PD Controllers. AerospaceScience and Technology. 2005, 9(4): 329~336
    93 J. S.-C. Yuan, M. E. Stieber. Robust Beam-Pointing and Attitude Control of aFlexible Spacecraft. Journal of Guidance, Control, and Dynamics. 1986, 9(2):228~234
    94 D. Alazard, J.-P. Chretien, M. L. Du. Robust Attitude Control of a Telescopewith Flexible Modes. Proceedings of the 1996 3rd International Conference onDynamics and Control of Structures in Space. 1996: 167~184
    95 L.-L. Show, J.-C. Juang, C.-T. Lin, et al. Spacecraft Robust Attitude TrackingDesign: Pid Control Approach. Proceedings of the American Control Conference.2002:1360–1365
    96 J. Antonsen, R. Kristiansen, P. J. Nicklasson. Attitude Control of the ESEO Satel-lite. Astronautical Federation - 56th International Astronautical Congress 2005.2005: 3272~3281
    97 S. Beatty. Comparison of PD and LQR Methods for Spacecraft Attitude ControlUsing Star Trackers. 2006 World Automation Congress. 2006: 1~6
    98 G.-S. Huang, H.-J. Uang. Robust Adaptive PID Tracking Control Design for Un-certain Spacecraft Systems: A Fuzzy Approach. IEEE Transactions on Aerospaceand Electronic Systems. 2006, 42(4): 1506~1514
    99 M. Shibata, T. Nagashio, T. Kida. Reduced-Order Symmetric H∞Controller forRobust Attitude Control of Flexible Spacecraft. Proceedings of the SICE AnnualConference. Okayama, Japan, 2005: 1959~1962
    100 J. Yuan, D. Yang, H. Wei. Systems and Control in Aerospace and Astronautics.Proceedings of 1st International Symposium on ISSCAA. 2006: 6~10
    101 D. Bandopadhya, D. K. Bhogadi, etal. Active Vibration Suppression of a FlexibleLink Using Ionic Polymer Metal Composite Robotics. Proceedings of 2006 IEEEConference on Robotics, Automation and Mechatronics. 2006: 1~6
    102 K. L. Sorensen. A Combined Feedback and Command Shaping Controller for Im-proving Positioning and Reducing Cable Sway in Cranes. MSEng thesis, GeorgiaInstitute of Technology. 2005: 1~103
    103 D. P. Magee. Optimal Filtering to Improve Performance in Hard Disk Drives: Sim-ulation Results. Proceedings of the American Control Conference. 1999: 71~75
    104 W. E. Singhose. Command Generation for Flexible Systems. PhD thesis, Mas-sachusetts Institute of Technology. 1997: 1~285
    105陕晋军.挠性空间飞行器的分力合成主动振动抑制方法研究.哈尔滨工业大学工学博士学位论文. 2002: 1~110
    106 J. R. Huey. The Intelligent Combination of Input Shaping and PID Feedback Con-trol. PhD thesis, Georgia Institute of Technology. 2006: 1~300
    107胡庆雷.挠性航天器姿态机动的主动振动控制.哈尔滨工业大学工学博士学位论文. 2006: 1~176
    108 N. C. Singer, W. P. Seering. Preshaping Command Inputs to Reduce System Vi-bration. Journal of Dynamic Systems, Measurement and Control. 1990, 112(1):76~82
    109 D. Liu, D. Yang, W. Zhang. On Optimal Control Strategy of Maneuver of Satelliteswith Flexible Appendages. Proceedings of PISSTA. Beijing, 1987: 530~539
    110董明晓,梅雪松.时滞滤波理论及其工程应用.北京:科学出版社, 2008:134~150
    111 D. Gimpel, J. Calvert. Signal Component Control. Transactions of the AIEE. 1952,71(2): 339~343
    112 O. Smith. Feedback Control Systems. New York: McGraw-Hill, 1957: 331~340
    113 L. Y. Pao, W. E. Singhose. Verifying Robust Time-Optimal Commands for Multi-Mode Flexible Spacecraft. Journal of Guidance, Control, and Dynamics. 1997,20(4): 831~833
    114 W. E. Singhose, E. A. Crain, W. P. Seering. Convolved and Simultaneous Two-Mode Input Shapers. IEE Proceedings - Control Theory and Applications. 1997,144(6): 515~520
    115 T. D. Tuttle, W. P. Seering. A Zero-Placement Technique for Designing ShapedInputs to Suppress Multiple-Mode Vibration. Proceedings of the American ControlConference. Baltimore, MD, USA, 1994, 3: 2533~2537
    116 D. Gorinevsky, G. Vukovich. Nonlinear Input Shaping Control of Flexible Space-craft Reorientation Maneuver. Journal of Guidance, Control, and Dynamics. 1998,21(2): 264~270
    117 K. Kozak, I. Ebert-Uphoff, W. Singhose. Locally Linearized Dynamic Analysisof Parallel Manipulators and Application of Input Shaping to Reduce Vibrations.Journal of Mechanical Design. 2004, 126(1): 156~168
    118 W. E. Singhose, S. Derezinski, N. Singer. Extra-Insensitive Input Shapers for Con-trolling Flexible Spacecraft. Journal of Guidance, Control, and Dynamics. 1996,19(2): 385~391
    119 K. Zuo, V. Drapeau, D. Wang. Closed Loop Shaped-Input Strategies for FlexibleRobots. International Journal of Robotics Research. 1995, 14(5): 510~529
    120 V. Kapila, A. Tzes, Q. Yan. Closed-Loop Input Shaping for Flexible StructuresUsing Time-Delay Control. Proceedings of the 38th Conference on Decision andControl. Phoenix, AZ, USA, 1999: 1561~1566
    121 V. Kapila, A. Tzes, Q. Yan. Closed-Loop Input Shaping for Flexible Structures Us-ing Time-Delay Control. Journal of Dynamic Systems, Measurement, and Control.2000, 122(3): 454~460
    122 A. Tzes. Robust Control Design Issues for Input-Shaped Discrete Systems.Proceedings of the American Control Conference. Denver, CO, USA, 2003:4785~4787
    123 U. Staehlin, T. Singh. Design of Closed-Loop Input Shaping Controllers. Proceed-ings of the American Control Conference. Denver, CO, USA, 2003: 5167~5172
    124 J.-Y. Park, P.-H. Chang. Vibration Control of a Telescopic Handler Using TimeDelay Control and Commandless Input Shaping Technique. Control EngineeringPractice. 2004, 12(6): 769~780
    125 L. Y. Pao, C. La-orpacharapan. Shaped Time-Optimal Feedback Controllers forFlexible Structures. Journal of Dynamic Systems, Measurement, and Control.2004, 126(1): 173~186
    126 J.-P. Richard. Time-Delay Systems: An Overview of some Recent Advances andOpen Problems. Automatica. 2003, 39(10): 1667~1694
    127 E. Fridman, U. Shaked. Delay-Dependent Stability and H∞Control: Constant andTime-Varying Delays. International Journal of Control. 2003, 76(1): 48~60
    128何勇,吴敏.多时变时滞系统的鲁棒稳定及有界实引理的时滞相关条件.控制理论与应用. 2004, 21(5): 735~741
    129 M. D. Shuster. A Survey of Attitude Representations. The Journal of the Astro-nautical Sciences. 1993, 41(4): 439~517
    130 M. J. Sidi. Spacecraft Dynamics and Control. No. 7 in Cambridge AerospaceSeries, Cambridge, England, British: Cambridge University Press, 1997: 88~316
    131 Y. Ohkami, P. W. Likins. Determination of Poles and Zeros of Transfer Functionsfor Flexible Spacecraft Attitude Control. International Journal of Control. 1976,24(1): 13~22
    132 P. C. Hughes. Modal Identities for Elastic Bodies with Application to VehicleDynamics and Control. Transactions of the ASME, Seres E: Journal of AppliedMachanics. 1980, 47(1): 177~184
    133 T. Kida, Y. Ohkami, S. Sambongi. Poles and Transmission Zeros of Flexible Space-craft Control Systems. Journal of Guidance, Control, and Dynamics. 1985, 8(2):208~213
    134 P. C. Hughes, H. N. Sharpe. In?uence of Stored Angular Momentum on theModal Characteristics of Spacecraft with Flexible Appendages. Transactions ofthe ASME, Seres E: Journal of Applied Machanics. 1975, 42: 785~788
    135刘暾,杨大明.带挠性附件卫星的模型化及截断.宇航学报. 1989, 10(4):87~95
    136刘延柱,马晓敏.基于四元数的带飞轮航天器的自适应姿态控制.上海交通大学学报. 2003, 37(12): 1957~1960
    137 J. A. Wertz, A. Y. Lee. In?ight Estimation of the Cassini Spacecraft’s Inertia Ten-sor. Proceedings of the 11th Annual AAS/AIAA Space Flight Mechanics Meeting.Santa Barbara, California, America, 2001: 1087~1102
    138 A. Y. Lee, J. A. Wertz. In-?ight Estimation of the Cassini Spacecraft’s InertiaTensor. Journal of Spacecraft and Rockets. 2002, 39(1): 153~155
    139 E. Wilson, D. W. Sutter, R. W. Mah. Motion-Based Mass- and Thruster-PropertyIdentification for Thruster-Controlled Spacecraft. Infotech@Aerospace. Arling-ton, Virginia, America, 2005: AIAA–2005–6907
    140杨大明.空间飞行器姿态控制系统.哈尔滨:哈尔滨工业大学出版社, 2000:48~62
    141 M. H. Kaplan. Modern Spacecraft Dynamics and Control. New York, New York,America: John Wiley & Sons, 1976: 212~272
    142 The Mathworks, Natick, Massachusetts, America. Genetic Algorithm and DirectSearch Toolbox 2– User’s Guide, version 2.4 edn., 2008
    143 C. Aladahalli, J. Cagan, K. Shimada. Objective Function Effect Based PatternSearch– Theoretical Frameword Inspired by 3d Component Layout. Transactionsof the ASME: Journal of Mechanical Design. 2007, 129: 243~254
    144 W. E. Singhose, N. Singer, W. Seering. Time-Optimal Negative Input Shapers.Journal of Dynamic Systems, Measurement, and Control. 1997, 119(3): 198~205
    145 W. E. Singhose, E. O. Biediger, Y.-H. Chen. Reference Command Shaping UsingSpecified-Negative-Amplitude Input Shapers for Vibration Reduction. Journal ofDynamic Systems, Measurement, and Control. 2004, 126(1): 210~214
    146 Y. He, M. Wu, et al. Parameter-Dependent Lyapunov Functional for Stability ofTime-Delay Systems with Polytopic Type Uncertainties. IEEE Transactions onAutomatic Control. 2004, 49(5): 828~832
    147吴敏,何勇.时滞系统鲁棒控制——自由权矩阵方法.北京:科学出版社,2008: 49~65
    148梁春燕,谢剑英.多模态柔性系统的最优时滞滤波器设计.振动工程学报.2001, 14(2): 179~182
    149原劲鹏,杨旭,杨涤.输入成型在卫星喷气姿态机动控制中的应用.东南大学学报(自然科学版). 2005, 35(增刊(II)): 137~141
    150 E. A. Crain, W. E. Singhose, W. P. Seering. Derivation and Properties of Convolvedand Simultaneous Two-mode Input Shapers. Proceedings of the 1996 IFAC WorldCongress. San Francisco, California, America, 1996: 1~6
    151贾英宏.航天器姿态与能量一体化控制研究.哈尔滨工业大学工学博士学位论文. 2004: 1~130
    152 E. Barbieri, U. Ozguner. Unconstrained and Constrained Mode Expansions for aFlexible Slewing Link. Transaction of ASME. 1988, 110(6): 416~421
    153 H. B. Hablani. Constrained and Unconstrained Modes: Some Modeling Aspectsof Flexible Spacecraft. Journal of Guidance, Control, and Dynamics. 1982, 5(2):164~173
    154黄翔宇.探测器自主导航方法及在小天体探测中的应用研究.哈尔滨工业大学工学博士学位论文. 2005: 76~107
    155 E. M. Cliff, T. L. Herdman, Z. Y. Liu. Minimum Angular-Impulse Control for aLarge Flexible Spacecraft. Journal of Guidance, Control, and Dynamics. 2007,30(1): 87~99
    156 J.-J. E. Slotine, W. Li. Applied Nonlinear Control.北京:机械工业出版社, 2004:207~275
    157冯璐,龚诚,何长安.刚体飞行器大角度机动的反馈非线性化控制.飞行力学. 1999, 17(4): 28~32
    158冯璐,周建国,龚诚,等.用于刚体姿态控制的一种非线性反馈控制器.第17届中国控制会议论文集.浙江宁波, 1998: 249~253
    159仲维国.深空探测器自主姿态制导算法研究.哈尔滨工业大学工学博士学位论文. 2007: 64~79
    160李文亮.四元数矩阵.长沙:国防科技大学出版社, 2002: 1~21
    161 J. S.-C. Yuan. Closed-Loop Manipulator Control Using Quaternion Feedback.IEEE Transactions on Robotics and Automation. 1988, 4(4): 434~440
    162 A. J. van der Schaft. L2-gain Analysis of Nonlinear Systems and Nonlinear State-Feedback H∞Control. IEEE Transactions on Automatic Control. 1992, 37(6):770~784
    163寿鹤年. Spacecraft Attitude Control: A Nonlinear Robust Control Approach.国立成功大学博士学位论文. 2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700