用户名: 密码: 验证码:
控制受限的挠性航天器姿态容错控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航天器在轨飞行任务中,一方面,由于执行机构长期不断地执行在轨的各种控制操作,所导致的执行机构故障已成为航天器控制系统失效的主要原因,而系统的失效,轻则导致精度、性能的降低,重则造成航天器失效;另一方面,燃料的消耗、有效载荷的运动以及挠性附件结构的振动,致使航天器的惯量参数是时变的且不能精确获知;同时在轨航天器又不可避免地受到各种外部干扰力矩与挠性结构的振动干扰作用;此外,由于执行机构自身的物理限制,导致其输出是有界受限的,这种饱和特性的存在将大大降低航天器姿态控制性能,严重时将导致闭环系统不稳定,从而也将使整个航天任务失败。因此针对上述问题,研究一类航天器在轨执行任务过程中存在执行机构故障、不确定性、外部干扰以及控制输入饱和非线性的鲁棒容错控制技术便显得十分重要。本论文结合国家自然科学基金、高等学校博士学科点专项科研基金等基础研究课题,从理论和应用两方面对挠性航天器的动力学建模、控制受限的挠性航天器姿态控制、鲁棒容错姿态控制、挠性结构振动抑制等方面进行了深入的研究,其研究内容主要包括以下几个方面。
     根据欧拉定理分别建立了用欧拉角和四元数描述的挠性航天器姿态运动学方程,并基于真-伪坐标形式的Lagrange理论建立了挠性航天器的动力学模型,给出了挠性航天器非线性、低阶模态动力学模型以便于后续姿态控制系统的分析和设计。
     针对挠性航天器存在参数不确定性、外部干扰以及控制力矩受限的姿态机动问题,在基于非线性和低阶模态的动力学模型基础上,提出了一种将变结构控制与神经网络控制相结合的智能鲁棒控制方法。该方法是一种仅利用姿态角速度反馈而无需挠性模态信息反馈的变结构输出反馈控制器的设计方法,其中,神经网络逼近技术被用来补偿执行机构饱和非线性。在此基础上,又给出了一种改进的自适应变结构输出反馈控制器的设计方法,以克服确定不确定性和外干扰界函数上限的困难;基于Lyapunov稳定性理论对两类设计方法分析了滑动模态的存在性及闭环系统的稳定性。通过与传统控制方法控制性能相比,仿真结果表明两种控制器在完成姿态机动的同时,可有效地补偿执行机构的非线性饱和特性与抑制挠性附件的振动。
     针对一类航天器存在未知惯量参数、干扰力矩与执行机构失效的姿态机动问题,利用航天器上执行机构冗余的有效资源,提出了一种将自适应变结构控制与时延技术相结合的鲁棒容错控制方法,该方法在继承变结构鲁棒控制优点的同时,引入控制参数在线自适应调整技术,提高了控制律对参数和干扰变化的自适应能力,以克服确定这些界函数的困难;同时,利用时延技术的逼近能力来补偿执行机构的故障,使得控制器对执行机构的失效具有很强的容错能力;对设计者而言,执行机构故障信息不需要进行在线的检测和分离。将设计的控制器应用于航天器的姿态机动控制,并与传统控制方法控制性能相比,仿真结果表明该控制器能有效地抑制外部干扰、参数不确定性和执行机构失效的约束,在完成姿态调节控制的同时,具有良好的过渡过程品质。
     为了进一步抑制挠性结构的振动,在内回路设计了应变率反馈(SRF)补偿器以增加挠性结构阻尼,使挠性结构的振动能够很快衰减,以对挠性结构进行主动振动控制;在上述研究的基础上,进一步考虑控制存在输入饱和受限的鲁棒容错控制问题,提出了一类基于变结构控制的主动鲁棒容错控制设计方法。该设计在继承变结构控制的优点的同时,显式地引入执行器输出的饱和幅值,以确保控制输出在其要求界的范围内以避免饱和非线性对系统的影响,而且对设计者而言,执行器故障信息不需要进行在线的检测和分离。此外,通过将基于应变率反馈的振动补偿器与容错控制器相结合的复合主动振动容错控制方法应用于航天器进行仿真验证,结果表明该控制器能有效地抑制外部干扰、挠性结构的振动和执行器故障的约束,在完成姿态调节控制的同时,保证其控制输出满足饱和受限界的要求,具有良好的过渡过程品质,不仅具有一定的理论研究价值,而且具有一定的工程应用前景。
Accurate and reliable control is one of the most important problems in spacecraft design. Although the missions of space vehicles and their attitude requirements vary greatly, high pointing accuracy and fault tolerance are important parts of the overall design problem for the spacecraft control system. However, the orbiting attitude slewing or tracking operation will introduce certain levels of vibration to flexible appendages, which will deteriorate its pointing performance. Dynamics of spacecraft are time varying and highly nonlinear, and they are affected by various disturbances coming from the environment and knowledge about system parameters such as the inertia matrix, which are usually not well known. Moreover, due to physical limitation, momentum exchange devices or thrusters as actuator for the spacecraft attitude control plant fail to render infinite control torque and thus the actuator outputs are constantly bounded or constrained. Once the actuator reaches its input limit, the efforts to further increase the actuator output would not result in any variation in the output, and then this usually deteriorates the system performance and even results in system instability. In addition, actuators may fail during system operation, and the actuator failures are often uncertain in the sense that it is not known when, how much, and how many actuators fail. All these in a realistic environment create considerable difficulty in the design of attitude control system for adequate performance and stability, especially, when all these issues are treated simultaneously. In this dissertation, dynamic modeling, attitude control with control input constraint, robust fault tolerant attitude control and vibration control of spacecraft with flexible appendages are deeply studied, which is funded by the National Natural Science Foundation of China and the Research Fund of the Doctoral Program of Higher Education of China. The main contents of this dissertation are presented as follows:
     Flexible spacecraft attitude kinematics described by Euler angle and unit quaternion is presented based upon Euler Theorem, and with assumption of small elastic displacements, an approximately analytical dynamic model of spacecraft is derived using Lagrange’s principle. For the purpose of control law design, a reduced-order model of flexible spacecraft is then developed.
     Neural network (NN) based robust controller for rotation maneuver is considered for an orbiting flexible spacecraft, explicitly taking into account the actuator saturation, uncertainties and external disturbances. The actuator saturation is assumed to be unknown and treated as the system input disturbance. With the universal approximating property and learning capability of NN, the NN-based saturation compensator is design and inserted into a feed-forward to compensate the saturation nonlinearity. Then a variable structure controller, which only uses the output information, is designed to reject the disturbance, deal with uncertainty and ensure that the system trajectories globally uniformly ultimately bounded. In addition, a modified adaptation control law is presented for the upper bound on the uncertainty to improve the adaptive performances such that a new controller is designed which can guarantee the boundedness of the estimated gains when the boundary layer technique is employed. To study the effectiveness of the corresponding control scheme, the traditional methods are also developed for the control system. Both analytical and numerical results are presented to show the theoretical and practical merit of this approach.
     Time-delay-control (TDC) based adaptive variable structure control (AVSC) system is designed for spacecraft attitude maneuvers with redundant actuators in the presence of actuator failures, parametric uncertainties and external disturbances. More specifically, this proposed scheme combined the TDC and AVSC design technique such that this design does not require the knowledge of the boundedness of the considered uncertainties/disturbances, and only one parameters are required to be updated in the adaptive loop; with the TDC, the unknown actuator faults are estimated by using one-step previous state information and canceled out by the estimated values such that it does not need a fault detection and isolation mechanism. Lyapunov stability analysis shows that the resulting closed-loop system is proven to be stable and the effect of the external disturbances and possible uncertainties on the output can be attenuated by appropriately choosing the design parameters. Furthermore, the benefits of the control approach is analytically authenticated and also validated via simulation study.
     For further suppressing the flexible vibration, the inner-control loop uses the piezoceramics as sensors and actuators to actively suppress certain flexible modes by designing strain rate feedback (SRF) compensators. An attractive feature of the method is that the vibration reduction and attitude control are achieved separately in the two separate feedback loops, allowing the pointing requirements and simultaneous vibrations suppression to be satisfied independently of one another. Then, for the outer-loop, a variable structure based fault tolerant attitude control system is further investigated for an orbiting three-axis stabilized flexible spacecraft with redundant thrusters, in which the thruster failures, control input saturation and external disturbances are explicitly taken into account simultaneously. In addition, by explicitly considering the saturation magnitude of the available control input of thruster, a straightforward relationship between this magnitude and those of the desired trajectories and disturbances even with continuous control is established. Lyapunov stability analysis shows that the resulting closed-loop system is proven to be stable and the effect of the external disturbances and faults can be attenuated by appropriately choosing the design parameters. Numerical examples are also presented to demonstrate that the control algorithms developed are not only robust against external disturbances, but also able to accommodate thruster failures under limited saturation value.
引文
[1]林来兴. 1990-2001年航天器制导、导航与控制系统故障分析研究[J].国际太空, 2004, 2(5):9-13.
    [2] Ho J Y L. Direct Path Method for Flexible Multibody Spacecraft Dynamics[J]. Journal of Spacecraft, 1977, 2:102-110.
    [3] Bodley C S, et al. A Digital Computer Program for the Dynamic Inteaction Simulation of Control and Structure [J]. NASA TP-1219, 1978.
    [4] Kane T R, Levinson D A. Formulation of Equations of Motion for Complex Spacecraft[J]. Journal of Guidance, Control and Dynamics, 1980, 3(2):99-112.
    [5] Kane T R, Levinson D A. Multibody Dynamics[J]. Journal of Applied Mechanics, 1983, 50(4):1071-1078.
    [6] Gugan R J. Reduction of Stiffness and Mass matrices[J]. AIAA Journal, 1965, 39(2):380-386.
    [7] Skelton P C, Kabamba P E. Comments on Balanced Gains and Their Significance for L2 Model Reduction[J]. IEEE Transactions on Automatic Control, 1981, 31(6):796-797.
    [8] Grwronski W, Juang J N. Model Reduction for Flexible Structures. Advance in Large Scale Systems Dynamics. Edited by C. T. Leondes, Academics Press, 1990:143-222.
    [9] Skelton P C, Hughes H B. Order Reduction for Models of Space Structure Using Modal Cost Analysis[J]. Journal of Guidance, Control and Dynamics, 1982, 5(4):351-357.
    [10] Likins P W, Fleischer G E. Results of Flexible Spacecraft Attitude Control Studies Utilizing Hybrid Coordinates[J]. Journal of Spacecraft and Rockets, 1971, 8(3):264-273.
    [11] Meirovitch L, Nelson H D. High-Spin Motion of a Satellite Containing Elastic Parts[J]. Journal of Spacecraft and Rockets, 1966, 3(11):1597-1602.
    [12] Meirovitch L. Stability of a Spinning Body Containing Elastic Parts via Lyapunov’s Direct Method[J]. AIAA Journal, 1970, 8(7):1193-1200.
    [13] Meirvitch L, Calico R A. Stability of Motion of Force-Free Spinning Satellites with Flexible Appendages[J]. Journal of Spacecraft and Rockets, 1972, 9(4):237-245.
    [14] Meirvitch L, Calico R A. A Comparative Study of Stability Methods for Flexible Satellites[J]. AIAA Journal, 1973, 11(1):91-98.
    [15] Hughes P C. Attitude Dynamics of a Three-Axis Stabilized Satellite with a Large Flexible Solar Array[J]. Journal of the Astronautical Sciences, 1972, 10(3):166-189.
    [16] Hughes P C. Dynamics of Flexible Space Vehicles with Active Attitude Control[J]. Celestial Mechanics, 1974, 9(1):21-39.
    [17] Vadali S R. Variable Structure Control of Spacecraft Large Attitude Maneuvers[J]. Journal of Guidance, Control and Dynamics, 1986, 9(3):235-239.
    [18] Hu Q L, Ma G F. Variable Structure Control and Active Vibration Suppression of Flexible Spacecraft During Attitude Maneuver[J]. Aerospace Science and Technology, 2005, 9(4):307-317.
    [19] Bo?kovic J D, Li S M, Mehra R K. Robust Adaptive Variable Structure Control of Spacecraft under Control Input Saturation[J]. Journal of Guidance, Control and Dynamics, 2001, 24(1):14-22.
    [20] Lo S C, Chen Y P. Smooth Sliding-mode Control for Spacecraft Attitude Tracking Maneuvers[J]. Journal of Guidance, Control and Dynamics, 1995, 18(6):1345-1349.
    [21] Mehrdad J, Nasser S, Hamidreza M. Robust Tracking Control of Attitude Satellite with Using New Ekf for Large Rotational Maneuvers[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, Austin, Texas, 2003:5785-5794.
    [22] Li Z X, Wang B L. Robust Attitude Tracking Control of Spacecraft in the Presence of Disturbances[J]. Journal of Guidance, Control and Dynamics, 2007, 30(4):1156-1159.
    [23] Tohru W, Kennichi K, Katsuhiro T. A Sliding Mode intelligent Servo System to Improve the Path Accuracy and Power Consumption of Robot Manipulator[J]. Japan/USA Symposium on Flexible Automation, 1990:195-206.
    [24] Araujo A D, Singh S N. Variable Structure Adaptive Control of Wing-Rock Motion of Slender Delta Wings [J]. Journal of Guidance, Control and Dynamics, 1998, 21 (2):251-256.
    [25] Yeung K S, Chen Y P. Regulation of a One-Link Flexible Robot Arms:New using Sliding Mode Control Technique[J]. International Journal of Control, 1989, 49(6):1965-1978.
    [26] Zeng Y, Araujo A D, Singh S N. Output Feedback Variable Structure Adaptive Control of a Flexible Spacecraft[J]. Acta Astronautica, 1999, 44(1):11-22.
    [27] Jin E D, Sun Z W. Robust Attitude Tracking Control of Flexible Spacecraft for Achieving Globally Asymptotic Stability[J]. International Journal of Robust and Nonlinear Control, 2009, 19(11):1201-1223.
    [28]卜劭华,宋斌.航天器姿态跟踪系统的自适应滑模控制[J].控制工程,2008,18(S1):38-41.
    [29]宋斌,卜劭华,颜根廷.航天器姿态跟踪系统的非线性鲁棒自适应控制[J].上海航天,2009,26(5):1-6.
    [30]林壮,段广仁,宋申民.刚体航天器姿态跟踪的高阶滑模控制器设计[J].控制与决策,2009,24(11):1753-1756.
    [31]靳永强,刘向东,侯朝祯.含有参数不确定性的挠性航天器姿态跟踪滑模控制[J].控制理论与应用,2009,26(3):299-304.
    [32] Hu Q L. Adaptive Output Feedback Sliding Mode Maneuvering and Vibration Control of Flexible Spacecraft with Input Saturation[J]. IET Control Theory & Applications, 2008, 2(6):467-478.
    [33] Hu Q L. Sliding Mode Maneuvering Control and Active Vibration Damping of Three-axis Stabilized Flexible Spacecraft with Actuator Dynamics[J]. Nonlinear Dynamics, 2008, 52(3):227-248.
    [34] Hu Q L, Ma G F. Adaptive Variable Structure Maneuvering Control and Vibration Reduction of Three-axis Stabilized Flexible Spacecraft[J]. European Journal of Control, 2006, 12(6):654-668.
    [35] Wilson D G, Starr G P, Parker G G, Robinett R D. Nonlinear Adaptive Control for Slewing Flexible Active Structures[J]. Journal of Guidance, Control and Dynamics, 2004, 27(1):142-145.
    [36] Costic B T, Dawson D M, De Queiroz M S, Kapila V. Quaternion-based Adaptive Attitude Tracking Controller without Velocity Measurements[J]. Journal of Guidance, Control and Dynamics, 2001, 24(6):1214-1222.
    [37] Wong H, De Queiroz M S, Kapila V. Adaptive Tracking Control Using Synthesized Velocity from Attitude Measurements[J]. Automatica, 2001, 37(6):947-953.
    [38] Miwa H, Akella M R. Global Adaptive Stabilization using Output Feedback for Spacecraft Attitude Tracking[J]. Advances in the Astronautical Sciences, 2002, 112(I):345-357.
    [39] Shahravi M, Kabganian M. Attitude Tracking and Vibration Suppression ofFlexible Spacecraft using Implicit Adaptive Control Law[C]. American Control Conference, 2005(2):913-918.
    [40] Motlagh R B, Motlagh M R J. Adaptive Robust Attitude Tracking Control of Spacecraft[C]. Proceedings of the IEEE Conference on Control Applications. 2005:498-503.
    [41] Ahmed J, Coppola V T, Bernstein D S. Adaptive Asymptotic Tracking of Spacecraft Attitude Motion with Inertia Matrix Identification[J]. Journal of Guidance, Control and Dynamics, 1998, 21(5):684-691.
    [42] Bo?kovi? JD, Li S M, Mehra RK. Robust Tracking Control Design for Spacecraft under Control Input Saturation[J]. Journal of Guidance, Control and Dynamics, 2001, 27(4):627-633.
    [43] Hu Q L, Ma G F, Xie L H. Robust and Adaptive Variable Structure Output Feedback Control of Uncertain Systems with Input Nonlinearity[J]. Automatica, 2008, 44(2):552-559.
    [44] Hu Q L, Xie L H, Gao H J. Adaptive Variable Structure and Active Vibration Reduction for Flexible Spacecraft under Input Nonlinearity[J]. SAGE Journal of Vibration and Control, 2007, 13(11):1573-1602.
    [45] Hu Q L. Robust Integral Variable Structure Controller and Pulse-Width Pulse-Frequency Modulated Input Shaper Design for Flexible Spacecraft with Mismatched Uncertainty/Disturbance[J]. ISA Transactions, 2007, 46 (4):505-518.
    [46] Li C J, Ma G F. Adaptive Backstepping Control for Attitude Tracking of a Spacecraft[C]. 2007 IEEE International Symposium on Industrial Electronics, Caixanova-Vigo, Spain, 2007:83-88.
    [47] Seo D, Akella M R. High-performance Spacecraft Adaptive Attitude-trackingControl Through Attracting-manifold Design[J]. Journal of Guidance Control and Dynamics, 2008, 31(4):884-891.
    [48] Scarritt S K. Nonlinear Model Reference Adaptive Control for Satellite AttitudeTracking[C]. AIAA Guidance, Navigation and Control Conference and Exhibit, Honolulun, Hawaii, 2008:7165-7175.
    [49] Liao X, Song Y D. Attitude Tracking of Crew Exploration Vehicles (cevs) Drivenby Nonlinear on Ff Actuators[C]. AIAA Guidance, Navigation and Control Conferenceand Exhibit, Hilton Head, South Carolina, 2007:6688-6709.
    [50] Cai W C, Liao X H, Song Y D. Indirect Robust Adaptive Fault-tolerant Control for Attitude Tracking of Spacecraft[J]. Journal of Guidance Controland Dynamics, 2008, 31(5):1456-1463.
    [51]朱良宽,马广富,胡庆雷.挠性航天器鲁棒后步滑模姿态跟踪及主动振动控制[J].控制与决策,2008,23(5):134-140.
    [52]胡庆雷,马广富.改进型自适应变结构的挠性卫星姿态机动控制[J].哈尔滨工业大学学报,2008,40(1):1-5.
    [53] Hu Q L. Robust adaptive attitude tracking control with L2 -gain performance and vibration reduction of an orbiting flexible spacecraft[J]. ASME Transactions Journal of Dynamic Systems, Measurement and Control, 2011, 133(1): 011009_1-11.
    [54]宋斌,李传江,马广富.航天器姿态机动的鲁棒自适应控制器设计[J].宇航学报,2008,29(1):121-125.
    [55]李争学,王本利,马兴瑞.挠性附件航天器的鲁棒姿态跟踪控制[J].宇航学报,2009,30(3):974-980.
    [56] Sharma R, Tewari A. Optimal Nonlinear Tracking of Spacecraft Attitude Maneuvers[J]. IEEE Transactions on Control Systems Technology, 2004, 12(5):677-682.
    [57] Luo W C, Chu Y C, Ling K V. H-infinity Inverse Optimal Attitude-tracking Control of Rigid Spacecraft[J]. Journal of Guidance Control and Dynamics, 2005, 28(3):481-493.
    [58] Pukdeboon C, Zinober A S. Optimal Sliding Mode Controllers for Attitude Trackingof Spacecraft[C]. 18th IEEE International Conference on Control Applications, Saint Petersburg, Russia, 2009:1708-1713.
    [59] Liang J S, Fullmer R, Chen Y Q. Time-Optimal Magnetic Control for Small Spacecraft[C]. 43rd IEEE Conference on Decision and Control, Paradise Island, Bahamas, 2004:255-260.
    [60] Tewari A. Optimal Nonlinear Spacecraft Attitude Control through Hamilton-Jacobi Formulation[J]. Journal of the Astronautical Sciences, 2002, 50(1):99-112.
    [61] Tsiotras P. Stabilization and Optimality Results for the Attitude Control Problem[J]. Journal of Guidance, Control and Dynamics, 1996, 19(4):772-779.
    [62] EI-Gohary A. Optimal Control of a Rigid Spacecraft Programmed Motion without Angular Velocity Measurements[J]. European Journal of Mechanics A/Solids, 2006, 25:854-866.
    [63] Schaub H, Akella M R, Junkins J L. Adaptive Control of Nonlinear AttitudeMotions Realizing Linear Closed Loop Dynamics[J]. Journal of Guidance, Control and Dynamics, 2001, 24(1):95-100.
    [64] Singh S N, Bossart T C. Feedback Linearization and Nonlinear Ultimate Boundedness Control of the Space Station using CMG[C]. AIAA Guidance, Navigation, and Control Conference, 1990, 1:369-376.
    [65] Sheen J J, Bishop R H. Spacecraft Nonlinear Control[J]. Journal of Astronautical Sciences, 1994, 42(3):361-377.
    [66] Krstic M, Kanellakopoulos I, Kokotovic P. Nonlinear and Adaptive Control Design[M]. Wiley, New York, 1995.
    [67] Kristiansen R, Nichlasson P J. Satellite Attitude Control by Quaternion-based Backstepping[C]. American Control Conference, 2005, 2:907-912.
    [68] Singh S N, Yim W. Nonlinear adaptive backstepping design for spacecraft attitude control using solar radiation pressure[C]. Proceedings of 41st IEEE Conference Decision Control, 2002.
    [69] Kim K S, Kim Y. Robust Backstepping Control for Slew Maneuver using Nonlinear Tracking Function[J]. IEEE Transactions on Control System and Technology, 2003, 11(6):822-829.
    [70] Ciliz M K. Adaptive backstepping control using combined direct and indirect adaptation[J]. Circuits, Systems and Signal Processing, 2007, 26(6):911-939.
    [71] Zhou D, Shen T L, Tamura K. Nonlinear and adaptive nonlinear controllers for attitude stabilization and tracking of a spacecraft[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2005, 48(159):7-12.
    [72] Silani E, Lovera M. Predictive Attitude and Momentum Control for Satellites with Magnetic Actuators[C]. Proceedings of 4th International ESA Conference on Spacecraft Guidance, Navigation and Control Systems, 2002:609-612.
    [73] Crassidis J L, Markley F L, Anthony T C, Andrews, S F. Nonlinear Predictive Control of Spacecraft[J]. Journal of Guidance, Control and Dynamics, 1997, 20(6):1096-1103.
    [74] O. Hegrenas, J. T. Gravdahl, P. Tondel. Spacecraft Attitude Control using Explicit Model Predictive Control. Automatica. 2005, 41(12):2107-2114.
    [75] Myung H, Bang H, Oh C, Tahk M J. Nonlinear Predictive Attitude Control of Spacecraft under External Disturbance[J]. 15th Triennial World Congress, Barcelona, Spain, 2002: 211-215.
    [76] Liu C M, Shen Y, Hu H Z, Wang H G. Predictive Variable Structure Control for a Class of Nonlinear System[J]. Journal of Aeronautics, 1999, 12(4):231-235.
    [77] Tsiotras P. Further Passivity Results for the Attitude Control Problem. IEEE Transactions on Automatic Control, 1998, 43(11):1597-1600.
    [78] Subbarao K. Nonlinear PID-like Controllers for Rigid-body Attitude Stabilization[J]. The Journal of the Astronautical Sciences, 2004, 52(1-2):61-74.
    [79] Hokayem P F, Schilling K. Input-to-state Stable Attitude Control[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(6):1826-1829.
    [80] Sanyal A K, Chaturvedi N A. Almost Global Robust Attitude Tracking Control of Spacecraft in Gravity[C]. AIAA Guidance, Navigation and Control Conference and Exhibit, Honolulu, Hawaii, 2008:6979-6988.
    [81] Sanyal A, Z. Ho L. Attitude Tracking Control of a Small Satellite in Low Earth Orbit[C]. AIAA Guidance, Navigation, and Control Conference, Chiago, Illinois, 2009:5902-5916.
    [82] Zhou Z, Colgren R. Spacecraft Nonlinear Attitude Tracking Control with Nonconstant Rate Command[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, Providence, Rhode Island, 2004:5128-5138.
    [83]王芳,战毅,张洪华.有扰情况下航天器全局稳定姿态跟踪控制[J].宇航学报,2007,28(2):470-474.
    [84]袁长清,李俊峰,王天舒.基于逆系统方法的航天器姿态跟踪最优鲁棒控制[J].工程力学,2008,25(2):214-218.
    [85] Yang Q, Gang C, Min X. The Nonlinear Controller Designing for Spacecraft Large Angle Attitude State Tracking[C]. 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference, Canberra, Australia, 2006:67-74.
    [86] Sanyal A, Fosbury A, Chaturvedi N, Bernstein D S. Inertia-free Spacecraft Attitude Tracking with Disturbance Rejection and Almost Global Stabilization[J]. Journal of Guidance Control and Dynamics, 2009, 32(4):1167-1178.
    [87]霍伟.基于无源性的航天器姿态跟踪控制设计[J].空间控制技术与应用, 2008, 34(2):3-13.
    [88] Malekzadeh M, Naghash A. Robust Nonlinear Tracking Control Design for Flexible Spacecraft[C]. AIAA Guidance, Navigation, and Control Conference, Chicago, Illinois, 2009:6187-6205.
    [89] Wu C S, Chen B S, Jan Y W. Unified design for H2, H∞and Mixed Controlof Spacecraft[J]. Journal of Guidance, Control and Dynamics, 1999, 22(6):884-896.
    [90] Show L, Juang J, Jan Y W, Lin C T. Spacecraft Robust Attitude Control with Saturation Nonlinearity[C]. AIAA Guidance, Navigation and Control Conference and Exhibit, 2002.
    [91] Show L L, Juang J C, Jan Y W, Lin C T. Quaternion Feedback Attitude Control Design:A Nonlinear H∞Approach[J]. Asian Journal of Control, 2003, 5(3):406-411.
    [92] Show L L, Juang J C, Lin C T, Jan Y W. Spacecraft Robust Attitude Tracking Design:PID Control Approach[C]. American Control Conference, 2002, 2:1360-1365.
    [93] Yang C D, Kung C C. Nonlinear H∞Flight Control of General Six-degree-of-freedom Motions[J]. Journal of Guidance, Control and Dynamics, 2000, 23(2):278-288.
    [94] AliAbbasi M, Talebi H A, Karrari M. A Satellite Attitude Controller Using Nonlinear H∞Approach[C]. Proceedings of 41st IEEE Conference on Decision and Control, 2002:4078-4083.
    [95] Kuang J, Leung A Y T. H∞Feedback for Attitude Control of Liquid-filled Spacecraft[J]. Journal of Guidance, Control and Dynamics, 2001, 24(1):46-53.
    [96] Wang C L. Semiglobal Practical Stabilization of Nonholonomic Wheeled Mobile Robots with Saturated Inputs[J]. Automatica, 2008, 44(3):816-822.
    [97] Hu T, Lin Z. Control Systems with Actuator Saturation:Analysis and Design[M]. Birkhauser Boston, 2001.
    [98] Iourtchenko D V. Solution to a Class of Stochastic Lq Problems with Bounded Control[J]. Automatica, 2009, 45(6):1439-1442.
    [99] Tyan F, Bernstein D S. Antiwindup Compensator Synthesis for Systems with Saturation Actuators[J]. International Journal of Robust and Nonlinear Control, 1995, 5(5):521-537.
    [100] Haddad W M, Kapila V. Antiwindup Controllers for Systems with Input Nonlinearities[J]. Journal of Guidance Control and Dynamics, 1996, 19(6):1387-1390.
    [101] Wu F, Lu B. Anti-windup Control Design for Exponentially Unstable Lti Systems with Actuator Saturation[J]. Systems Control & Letters, 2004, 52(3-4):305-322.
    [102] Herrmann G, Turner M C, Menon P P, Bates D G. Anti-windup Synthesis for Nonlinear Dynamic Inversion Controllers[C]. Proceeding of the 5th IFAC Symposium on Robust Control Design, Roulousse, France, 2006:80-86.
    [103] Grimm G, Hatfield J, Postlethwaite I, et al. Antiwindup for Stable Linear Systems with Input Saturation : An Lmi-based Synthesis[J]. IEEE Transactions on Automatic Control. 2003, 48(9):1509-1525.
    [104] Grimm G, Teel A R, Zaccarian L. Linear Lmi-based External Anti-windup Augmentation for Stable Linear Systems[J]. Automatica, 2004, 40(11):1987-1996.
    [105] Sajjadi-Kia S, Jabbari F. Combining Anti-windup and Over Saturation[C]. AIAA Guidance, Navigation and Control Conference and Exhibit, Hilton Head, South Carolina, 2007:6410-6421.
    [106] Boyd S, Ghaoul L E, Feron E. Linear Matrix Inequalities in System and Control Theory[M]. Society for Industrial Mathematics, 1994.
    [107] Da Silva J M, Ghiggi I, Tarbouriech S. Non-rational Dynamic Output Feedback for Time-delay Systems with Saturating Inputs[J]. International Journal of Control, 2008, 81(4):557-570.
    [108] Yoon S S, Park J K, Yoon T W. Dynamic Anti-windup Scheme for Feedback Linearizable Nonlinear Control Systems with Saturating Inputs[J]. Automatica, 2008, 44(12):3176-3180.
    [109] Maciejowski J M. Predictive Control:With Constraints. Prentice Hall, 2002.
    [110] Mayne D Q, Rawlings J B. Constrained Model Predictive Control:Stability and Optimality[J]. Automatica, 2001, 37(3):483-483.
    [111] Chisci L, Rossiter J A, Zappa G. Systems with Persistent Disturbances:Predictive Control with Restricted Constraints[J]. Automatica, 2001, 37(7):1019-1028.
    [112] Famularo D, Martino D, Mattei M. Constrained Control Strategies to Improve Safety and Comfort on Aircraft[J]. Journal of Guidance Control and Dynamics, 2008, 31(6):1782-1792.
    [113] Yan J J. Sliding Mode Control Design for Uncertain Time-delay Systems Subjected to a Class of Nonlinear Inputs[J]. International Journal of Robust and Nonlinear Control, 2003, 13(6):519-532.
    [114] Lam J, Gao H, Xu S, et al. H-infinity and L-2/L Infinity Model Reduction for System Input with Sector Nonlinearities[J]. Journal of Optimization Theory and Applications, 2005, 125(1):137-155.
    [115] Yu F M, Chung H Y, Chen S Y. Fuzzy Sliding Mode Controller Design for Uncertain Time-delayed Systems with Nonlinear Input[J]. Fuzzy Sets and Systems, 2003, 140(2):359-374.
    [116] Farrell J, Polycarpou M, Sharma M. Adaptive Backstepping with Magnitude, Rate, and Bandwidth Constraints:Aircraft Longitude Control[C]. Annual American Control Conference (ACC 2003), Denver, 2003:3898-3904.
    [117] Zhou J, Er M J, Zhou Y. Adaptive Neural Network Control of Uncertain Nonlinear Systems in the Presence of Input Saturation[C]. 9th International Conference on Control, Automation, Robotics and Vision, Singapore, 2006:590-594.
    [118] Leonessa A, Haddad W M, Hayakawa T, Morel Y. Adaptive Control for Nonlinear Uncertain Systems with Actuator Amplitude and Rate Saturation Constraints[J]. International Journal of Adaptive Control and Signal Processing, 2009, 23(1):73-96.
    [119] He P G, Jagannathan S. Reinforcement Learning Neural-network-based Controller for Nonlinear Discrete-time Systems with Input Constraints[J]. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics, 2007, 37(2):425-436.
    [120] Kulkarni A, Purwar S. Wavelet Based Adaptive Backstepping Controller for a Class of Nonregular Systems with Input Constraints[J]. Expert Systems with Applications, 2009, 36(3):6686-6696.
    [121] Hong Y, Yao B. A Globally Stable High-performance Adaptive Robust Control Algorithm with Input Saturation for Precision Motion Control of Linear Motor Drive Systems[J]. IEEE-Asme Transactions on Mechatronics, 2007, 12(2):198-207.
    [122] Sonneveldt L, Chu Q P, Mulder J A. Nonlinear Flight Control Design Using Constrained Adaptive Backstepping[J]. Journal of Guidance Control and Dynamics, 2007, 30(2):322-336.
    [123] Purwar S, Kar I N, Jha A N. Adaptive Output Feedback Tracking Control of Robot Manipulators Using Position Measurements only[J]. Expert Systems with Applications, 2008, 34(4):2789-2798.
    [124] Bateman A, Hull J, Lin Z L. A Backstepping-based Low-and-high Gain Design for Marine Vehicles[J]. International Journal of Robust and Nonlinear Control, 2009, 19(4):480-493.
    [125] Abu-Khalaf M, Lewis F L, Huang J. Policy Iterations on the Hamilton-jacobiisaacs Equation for H-infinity State Feedback Control with InputSaturation[J]. IEEE Transactions on Automatic Control, 2006, 51(12):1989-1995.
    [126] Luo Y H, Zhang H G. Approximate Optimal Control for a Class of Nonlinear Discrete-time Systems with Saturating Actuators[J]. Progress in Natural Science, 2008, 18(8):1023-1029.
    [127] Biswas P P, Ray S, Samanta A N. Nonlinear Control of High Purity Distillation Column under Input Saturation and Parametric Uncertainty[J]. Journal of Process Control, 2009, 19(1):75-84.
    [128] Graichen K,, Zeitz M,. Feedforward Control Design for Finite-time Transition Problems of Nonlinear Systems with Input and Output Constraints[J]. IEEE Transactions on Automatic Control, 2008, 53(5):1273-1278.
    [129] Wie B, Lu J B. Feedback-control Logic for Spacecraft Eigenaxis Rotations under Slew Rate and Control Constraints[J]. Journal of Guidance, Control and Dynamics, 1995, 18(6):1372-1379.
    [130]张美华,张丙文.轮控小卫星姿态大角度机动递阶饱和控制器设计[J].上海航天, 2005,22(3):15-18.
    [131] Gennaro S D. Stabilization of Rigid Spacecraft with Uncertainties and Input Saturation in a Central Gravitational Field[C]. 36th IEEE Conference on Decision and Control, San Diego, 1997:4204-4209.
    [132] Laib A. Adaptive Output Regulation of Robot Manipulators under Actuator Constraints[J]. IEEE Transactions on Robotics and Automation, 2000, 16(1):29-35.
    [133] kella M R, Valdivia A, Kotamraju G R. Velocity-free Attitude Controllers Subject to Actuator Magnitude and Rate Saturations[J]. Journal of Guidance, Control and Dynamics, 2005, 28(4):659-666.
    [134] Bang H, Tahk M J, Choi H D. Large Angle Attitude Control of Spacecraft with Actuator Saturation[J]. Control Engineering Practice, 2003, 11(9):989-997.
    [135] Wallsgrove R J, Akella M R. Globally Stabilizing Saturated Attitude Control in the Presence of Bounded Unknown Disturbances[C]. AAS/AIAA 14th Space Flight Mechanics Meeting, Maui, 2004:957-963.
    [136] Ali I, Radice G, Kim J. Backstepping Control Design with Actuator Torque Bound for Spacecraft Attitude Maneuver[J]. Journal of Guidance Control and Dynamics, 2010, 33(1):254-259.
    [137]周连文,周军.控制受限的挠性航天器大角度机动变结构控制[J].华北工学院学报,2004, 25(4):246-249.
    [138] Blanke M, Kinnaert M, Lunze J. Diagnosis and fault-tolerant control[M]. Springer, Berlin, 2003.
    [139] Ducard G J. Fault-tolerant Flight Control and Guidance Systems[M]. Springer-Verlag, London, 2009.
    [140] Mahmoud M, Jiang J, Zhang Y M. Active Fault Tolerant Control Systems[M]. Springer-Verlag, NewYork, 2003.
    [141] Saljak D D. Reliable Control Using Multiple Control Systems[J]. International Journal of Control, 1980, 32:303-329.
    [142] Vidyasagar M, Viswanadham N. Reliable Stabilization Using a Multi-Controller Configuration[J]. Automatica, 1985, 21(4):599-602.
    [143] Gundes A N. Controller design for reliable stabilization[C]. Proceedings of 12th IFAC World Congress, 1993, 4:1-4.
    [144] Sebe N, Kitamori T. Reliable Stabiliza- tion Based on a Multi-Compensator Configuration [C]. Proceedings of 12th IFAC World Congress, 1993, 4:5-8.
    [145] Saeks R, Murray J. Fractional Representation, Algebraic Geometry, and the Simultaneous Stabilization Problem [J]. IEEE Transaction on Automatic Control, 1982, 24(4):895-903.
    [146] Kabamba P T, Yang C. Simultaneous Controller Design for Linear Time-invariant Systems[J]. IEEE Transaction on Automatic Control, 1991, 36(1):106-111.
    [147]陈雪芹,耿云海,张迎春.基于LMI的鲁棒容错控制及其在卫星姿态控制中的应用[J].控制理论与应用,2008,25(1):95-99.
    [148] Liang J J, Dong C Y, Wang Q. A Fault-tolerant Attitude Control System for a Satellite Based on Fuzzy Global Sliding Mode Control Algorithm[C]. 7th International Symposium on Instrumentation and Control Technology, Beijing, China, 2008:127-128.
    [149] Godard G, Kumar K D. Fault Tolerant Reconfigurable Satellite Formations Using Adaptive Variable Structure Techniques[J]. Journal of Guidance, Control and Dynamics, 2010, 33(3):969-984.
    [150] Olbrot A W. Fault Tolerant Control in the Presence of Noise:A New AAlgorithm and Some Open Problems[C]. Proceeding of 12th IFAC World Congress, 1993, 7:467-470.
    [151] Kaminer I. A Velocity Algorithm for the Implementation of Gain-scheduled Controllers[J]. Automatica, 1995, 31(8):1185-1192.
    [152] Li W, Xu W Z, Wang J. Active fault tolerant control using BP networkapplication in the temperature control of 3-layer PE steel pipe producing[C]. Proceedings of the 5th World Congress on Intelligent Control and Automation, Hangzhou, China, 2004:1525-1529.
    [153] Moerder D D. Application of Pre-computed Laws in a Reconfigurable Aircraft Flight Control System[J]. Journal of Guidance, Control and Dynamics, 1989, 12(3):325-333.
    [154] Srichander R, Walker B K. Stochastic Stability Analysis for Continuous-time Fault Tolerant Control Systems[J]. International Journal of Control, 1993, 57(3):433-452.
    [155] Ranmamurthi K, Agogino A M. Real-time Expert System for Fault Tolerant Supervisory Control[J]. Journal of Dynamic Systems, Measurement, and Control, 1993, 115(3):219-227.
    [156] Wu N E, Zhou K, Salomon G. Control Recongurability of Linear Time-invariant Systems[J]. Automatica, 2000, 36(12):1767-1771.
    [157] Morse W D, Ossman K A. Model-following Reconfigurable Flight Control Systems for the AFTI/F-16[J]. Journal of Guidance, Control and Dynamics, 1990, 13(6):969-976.
    [158] Huang C Y, Stengel R F. Restructurable Control Using Proportional-integral Implicit Model Following[J]. Journal of Guidance, Control and Dynamics, 1990, 13(2):303-309.
    [159] Napolitanob M R, Swaim R L. New Technique for Aircraft Flight Control Reconfiguration[J]. Journal of Guidance, Control and Dynamics, 1991, 14(1):184-190.
    [160] Kwong W A. Expert Supervision of Fuzzy Learning Systems for Fault Tolerant Aircraft Control[C]. Proceedings of the IEEE, 1995, 83(3):466-483.
    [161] Hu G, Ren J C, Liu C F. Robust Fault-tolerant Control for A Class of Nonlinear Singular Systems with Uncertainty[C]. Proceedings of Physical Control, Petersburg, Russia. 2003:1377-1371.
    [162] Hou Q, Cheng Y H, Lu N Y, Jiang B. Study on FDD and FTC of Satellite Attitude Control System Based on the Effectiveness Factor[C]. In 2nd International Symposium on Systems and Control in Aerospace and Astronautics, Shenzhen, China, 2008:1096-1101.
    [163] Henry D. Fault diagnosis of Microscope Satellite Thrusters Using H-infinity/ H- Filters[J]. Journal of Guidance, Control and Dynamics, 2008, 31(3):699-711.
    [164] Chen W, Saif M. Observer-based Fault Diagnosis of Satellite Systems Subjectto Time-varying Thruster Faults[J]. Journal of Dynamic Systems Measurement and Control, 2007, 129(3):352-356.
    [165] Ji C W, Rong J J. Development of Fault Diagnosis System for Spacecraft Based on Fault Tree and G2[J]. Journal of Beijing Institute of Technology, 2002, 11(4):444-448.
    [166] Wu Q, Saif M. Robust Fault Diagnosis for A Satellite Large Angle Attitude System Using An Iterative Neuron PID (INPID) Observer[C]. In 2006 American Control Conference, New York, 2006:5710-5715.
    [167] Jiang T, Khorasani K. A Fault Detection, Isolation and Reconstruction Strategy for A Satellite's Attitude Control Subsystem with Redundant Reaction Wheels[C]. In IEEE International Conference on Systems, Man and Cybernetics, Montreal, Cook Islands, 2007:1644-1650.
    [168] Talebi H A, Patel R V. An Intelligent Fault Detection and Recovery Scheme for Reaction Wheel Actuator of Satellite Attitude Control Systems[C]. Proceedings of the 2006 IEEE International Conference on Control Applications, 2006:2099-2104.
    [169] Li Z Q, Ma L, Khorasani K. A Dynamic Neural Network-based Reaction Wheel Fault Diagnosis for Satellites[C]. In International Joint Conference on Neural Networks Vancouver, Canada, 2006:3714-3721.
    [170]曲春娣,张洪钺.卫星动量轮闭环系统的UIO双观测器故障诊断[J].航天控制,2005,23(6):66-71.
    [171]江耿丰,邢琰,王南华.基于双观测器的卫星姿控系统敏感器故障隔离[J].中国空间科学技术,2007,27(5):8-13.
    [172]金磊,徐世杰.基于扩张状态观测器的飞轮故障检测与恢复[J].北京航空航天大学学报,2008,34(11):1272-1275.
    [173]田科丰,李智斌.基于自适应观测器的飞轮故障诊断方法[J].华中科技大学学报,2009,37(Sup. I):184-186.
    [174] Srichander R, Walker B K. Stochastic Stability Analysis for Continuous-time Fault Tolerant Control Systems[J]. International Journal of Control, 1993, 57:433-452.
    [175] Mahmoud M, Jiang J, Zhang Y M. Stochastic Stability Analysis of Fault-Tolerant Control Systems in the Presence of Noise[J]. IEEE Trans. On Automatic Control, 2001, 46(11):1810-1815.
    [176] Tao G. Direct Adaptive Control of Systems with Actuator Failures:state of the Art and Continuing Challenges[C]. AIAA Guidance, navigation andControl conference and Exhibit, Honolulu, Hawaii, 2008.
    [177] Kim K S, Lee K J, Kim Y D. Reconfigurable Flight Control System Design Using Direct Adaptive Method[J]. Journal of Guidance, Control and Dynamics, 2003, 26(4):543-550.
    [178] Tandale M D, Valasek J. Fault-tolerant structured adaptive inversion control[J]. Journal of Guidance, Control and Dynamics, 2006, 29(3):635-642.
    [179] Cieslak J, Henry D, Zolghadri A. Development of An Active Fault-tolerant Flight Control Strategy[J]. Journal of Guidance, Control and Dynamics, 2008, 31(1):135-147.
    [180] Bo?kovic J D, Li S M, Mehra R K. Intelligent Control of Spacecraft in the Presence of Actuator Failures[C]. In Proceedings of the 38th IEEE Conference on Decision & Control, 1999:4472-4477.
    [181] Li L, Ma LY, Khorasani K. A Dynamic Recurrent Neural Network Fault Diagnosis and Isolation Architecture for Satellite's Actuator/thruster Failures[J]. Lecture Notes in Computer Science, 2005, 3298(3):574-583.
    [182] Chen W, Saif M. Observer-based Fault Diagnosis of Satellite Systems Subject to Yime-varying Thruster Faults[J]. Journal of Dynamic Systems, Measurement, and Control, 2007, 129(3):352-356.
    [183] Wu Q, Saif M. Robust Fault Diagnosis for a Satellite Large Angle Attitude System Using an Iterative Neuron PID Observer[C]. In Proceedings of the American Control Conference, Minneapolis, USA, 2006:5710-5715.
    [184] Wu N E, Zhang Y, Zhou K. Detection, Estimation, and Accommodation of Loss of Control Effectiveness[J]. International of Journal of Adaptive Control and Signal Processing, 2000, 14:775-795.
    [185] Calise A J, Lee S, Sharma M. Development of a Reconfigurable Flight Control Law for Tailless Aircraft[J]. Journal of Guidance, Control, and Dynamics, 2001, 25(5):896-902.
    [186] Pashilkar A A, Sundararajan N, Saratchandran P. Adaptive Nonlinear Neural Controller for Aircraft under Actuator Failures[J]. Journal of Guidance, Control and Dynamics, 2007, 30(3):835-847.
    [187] Chen J, Patton R. Robust Model-based Fault Diagnosis for Dynamic Systems, Kluwer, 1998
    [188] Jin J H, Ko S H, Ryoo C K. Fault Tolerant Control for Satellites with Four Reaction Wheels[J]. Control Engineering Practice, 2008, 16:1250-1258.
    [189] Cai W C, Xiao X L, Song Y D. Indirect Robust Adaptive Fault-tolerantControl for Attitude Tracking of Spacecraft[J]. Journal of Guidance, Control and Dynamics, 2008, 31(5):1456-1463.
    [190] Hu Q L. Robust Adaptive Sliding-mode Fault-tolerant Control with L2-gain Performance for Flexible Spacecraft Using Redundant Reaction Wheels[J]. IET Control Theory and Applications, 2010, 4(6):1055-1070.
    [191] Zhang Y W, Qin S J. Adaptive Actuator/Component Fault Compensation for Nonlinear Systems[J]. Aiche Journal, 2008, 54(9):2404-2412.
    [192] Tang X, Tao G, Joshi S M. Adaptive Output Feedback Actuator Failure Compensation for a Class of Non-linear Systems[J]. International Journal of Adaptive Control and Signal Processing, 2005, 19(6):419-444.
    [193] Guan W, Yang G H. Adaptive Fault-tolerant Output-feedback Control of LTI Systems Subject to Actuator Saturation[C]. In 2009 American Control Conference, New York. 2009:2569-2574.
    [194] Ye D, Yang G H. Adaptive Fault-tolerant Tracking Control against Actuator Faults with Application to Flight Control[J]. IEEE Transactions on Control Systems Technology, 2006, 14(6):1088-1096.
    [195] Pujol G. Reliable H∞Control of A Class of Uncertain Interconnected Systems:An LMI Approach[J]. International Journal of Systems Science, 2009, 40(6):649-657.
    [196]陈雪芹,耿云海.基于混合H2/H∞的集成故障诊断与容错控制研究[J].宇航学报, 2007, 28(4): 890-897.
    [197] Liang J J, Dong C Y, Wang Q. A Fault-tolerant Attitude Control System for a Satellite Based on Fuzzy Global Sliding Mode Control Algorithm[C]. 7th International Symposium on Instrumentation and Control Technology, Beijing, China, 2008, 712827:1-9.
    [198] Hess R, Wells S R. Sliding Mode Control Applied to Reconfigurable Flight Control Design[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(3):452-462.
    [199] Kim D, Kim Y. Robust Variable Structure Controller Design for Fault Tolerant Flight Control[J]. Journal of Guidance, Control, and Dynamics, 2000, 23(3):430-437.
    [200] Zhou D H, Frank P M. Fault Diagnostics and Fault Tolerant[J]. IEEE Trans. On Aerospace and Electronic Systems, 1998, 34(2):420-426.
    [201] Polycarpou M M. Fault Accommodation of a Class of Multivariable Nonlinear Dynamical Systems Using A Learning Approach[J]. IEEE Trans.On Automatic Control, 2001, 46(5):736-742.
    [202] Zhang X D, Parisni T, Polycarpou M M. Adaptive Fault-tolerant Control of Nonlinear Uncertain Systems:An Information-based Diagnostic Approach[J]. IEEE Trans. on Automatic Control, 2004, 49(8):1259-1274.
    [203]罗小元.几类非线性系统鲁棒故障诊断及容错控制研究.燕山:燕山大学学位论文, 2005.
    [204] Wang H, Wang Y. Neural-network-based Fault-tolerant Control of Unknown Nonlinear Systems[J]. IEE Proc-Control Theory and Application, 1999, 146(5):389-398.
    [205] Yu D L, Chang T K, Yu D W. Fault Tolerant Control of Multivariable Processes Ssing Auto-tuning PID Controller[J]. IEEE Trans. On Systems Man and Cybernetics-Part B:Cybernetics, 2005, 35(1):32-42.
    [206] Diao Y, Passino M. Intelligent Fault-tolerant Control Using Adaptive and Learning Methods[J]. Control Engineering Practice, 2002, 10(5):801-817.
    [207] Wang M, Zhou D H. Fault Tolerant Control of Feedback Linearizable Systems with Stuck Actuators[J]. Asian Journal of Control, 2008, 10(1):74-87.
    [208] Bo?kovic J D, Jackson J A, Mehra R K, Nguyen N T. Multiple-Model Adaptive Fault-Tolerant Control of a Planetary Lander[J]. Journal of Guidance, Control and Dynamics, 2009, 32(6):1812-1826.
    [209] Boskovic J D, Mehra R K. Multiple-model Adaptive Flight Control Scheme for Accommodation of Actuator Failures[J]. Journal of Guidance, Control and Dynamics, 2002, 25(4):712-724.
    [210] Shaffer P J, Ross I M, OppenheimeR M W, Doman D B, Bollino K P. Fault-tolerant Optimal Trajectory Generation for Reusable Launch Vehicles[J]. Journal of Guidance, Control and Dynamics, 2007, 30(6):1794-1802.
    [211] Ye S J, Zhang Y M, Wang X M, Rabbath C A. Robust Fault-tolerant Control Using On-line Control Re-allocation with Application to Aircraft[C]. In 2009 American Control Conference, New York, 2009:5534-5539.
    [212] Alwi H, Edwards C. Fault Tolerant Control Ssing Sliding Modes with On-line Control Allocation[J]. Automatica, 2008, 44(7):1859-1866.
    [213] Alwi H, Edwards C, Stroosma O, Mulder J A. Fault Tolerant Sliding Mode Control Design with Piloted Simulator Evaluation[J]. Journal of Guidance, Control and Dynamics, 2008, 31(5):1186-1201.
    [214] Shin J Y, Wu N E, Belcastro C. Adaptive Linear Parameter Varying ControlSynthesis for Actuator Failure[J]. Journal of Guidance, Control and Dynamics, 2004, 27(5):787-794.
    [215] Wang H, Yang G H. Integrated Fault Detection and Control for LPV systems[J]. International Journal of Robust and Nonlinear Control, 2009, 19(3):341-363.
    [216] Gao Z W, Ding S X. Actuator Fault Robust Estimation and Fault-tolerant Control for a Class of Nonlinear Descriptor Systems[J]. Automatica, 2007, 43(5):912-920.
    [217] Yang H, Cocquempot V, Jiang B. Fault-tolerant Control for a Class of Hybrid Systems with Uncontrollable Switching[J]. International Journal of Systems Science, 2009, 40(10):1063-1075.
    [218] Zhang Y W, Qin S J. Adaptive Actuator Fault Compensation for Linear Systems with Matching and Unmatching Uncertainties[J]. Journal of Process Control, 2009, 19(6):985-990.
    [219] Gennaro D S. Output Stabilization of Flexible Spacecraft with Active Vibration Suppression[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(3):747-759.
    [220] Gennaro D S. Active Vibration Suppression in Flexible Spacecraft Attitude Tracking[J]. Journal of Guidance, Control and Dynamics, 1998, 21(3):400-408.
    [221]姜野.挠性卫星姿态机动的时变滑模变结构主动振动控制研究[D].哈尔滨:哈尔滨工业大学学位论文, 2007:10-16.
    [222] Krstic M, Kanellakopoulos I, Kokotovic P V. Nonlinear and Adaptive Control Design[J]. NewYork:Wiley. 1995.
    [223]肖冰.带有输入饱和受限的挠性航天器姿态跟踪鲁棒控制研究[D].哈尔滨:哈尔滨工业大学学位论文, 2010:22-24.
    [224]胡庆雷.挠性航天器姿态机动的主动振动控制[D].哈尔滨:哈尔滨工业大学学位论文,2006:61-65.
    [225] Hung J Y, Gao W, Hung J C. Variable Structure Control:A Survey[J]. IEEE Transactions on Industrial Electronics, 1993, 40(1):2-22.
    [226] Hebertt L A, Orestes L S. Dynamics Compensatory Design in Nonlinear Aerospace Systems[J]. IEEE Transaction on Aerospace and Electronics Systems, 1999, 29(2):364-377.
    [227] Zak S H, Hui S. On Variable Structure Output Feedback Controllers for Uncertain Dynamic System[J]. IEEE Trans. Automatic Control, 1993, 38:1509-1512.
    [228] Lewis F L, Jagannathan S, Yesildirek A. Neural Network Control of Robot Manipulators and Nonlinear Systems[J]. Taylor and Francis, Philadelphia, PA, 1999.
    [229] Gao W Z, Selmic R R. Neural Network Control of a Class of Nonlinear Systems with Actuator Saturation[J]. IEEE Transactions on Neural Networks, 2006, 17(1):147-156.
    [230] Blanke M, Kinnaert M, Lunze J. Diagnosis and Fault-tolerant Control[M]. Springer, Berlin, 2003.
    [231] Sidi M J. Spacecraft Dynamics and Control[M]. Cambridge University Press, 1997.
    [232] Youcef-Toumi K, Reddy S. Analysis of Linear Time Invariant Systems with Time Delay[J]. Journal of Dynamic Systems, Measurement, and Control, 1992, 114(4):544-555.
    [233] Bailey T, Hubbard J E. Distributed Piezoelectric-Polymer Active Vibration Control of A Cantilever Beam[J]. Journal of Guidance, Control and Dynamics, 1985, 8(5):605-611.
    [234] Fanson J L, Caughey T K. Positive Position Feedback Control for Large SpaceStructures[J]. AIAA Journal, 1990, 28(4):717-724.
    [235] Meyer J L, Harrington W B, Agrawal B N. Vibration Suppression of a Spacecraft Flexible Appendage Using Smart Material[J]. Smart Mater. Struct., 1998, 7:95-104.
    [236] Song G, Schmidt SP, Agawal B N. Active Vibration Suppression of A Flexible Structure Using Smart Material and Modular Control Patch[J]. Journal of Aerospace Engineering, 2000, 214(G4):217-229
    [237] Song G, Kotejoshyer B. Vibration Reduction of Flexible Structures during Slew Operations[J]. International Journal of Acoustics and Vibration, 2002, 7(2):105-109.
    [238]胡庆雷,肖冰,马广富.带有干扰的挠性卫星非线性姿态输出反馈控制[J].动力学与控制, 2009, 7(4):379-384
    [239]朱良宽.挠性航天器姿态鲁棒非线性控制算法研究[D].哈尔滨:哈尔滨工业大学学位论文,2008:68-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700