用户名: 密码: 验证码:
一类簇状刚挠航天器模型与逆系统方法姿态控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中心刚体带附件的簇状航天器是应用比较广泛的一类航天器,其姿态控制系统是航天器重要的组成部分,控制系统的成败决定着航天器能否正确执行特定的任务。因此,对这类航天器姿态控制的研究具有重要的意义。本文结合国防科工委“十五”基础预研项目“复杂机构卫星智能自适应逆控制技术的研究”和国家自然科学基金“一类基于智能自适应逆控制的复杂系统研究与应用”,以带挠性附件的簇状刚挠航天器为对象,分析了姿态模型和梁的振动模型;详细研究了逆系统方法,探讨了逆系统的解析构造,将逆系统方法用于设计航天器姿态控制器,分别在不考虑执行器和考虑执行器情况下设计复合控制器,并进行了仿真研究。
     论文首先给出带挠性附件的簇状航天器姿态动力学模型和在轨固支-自由三维挠性Euler-Bernoulli梁振动模型。姿态动力学模型采用了Newton-Euler法推导,运动学方程使用了Euler角姿态描述方式,而梁的振动方程则采用了微元法。梁的振动方程求解采用了固支自由标准模态展开,以此详细分析了航天器姿态机动对挠性梁的影响以及挠性梁振动对航天器本体的影响。并对航天器的环境力矩进行了数值计算。
     从状态方程和微分方程两个角度研究了逆系统方法。针对Interactor算法不能构造解析逆的局限性,提出了Interactor算法的改进,对一般情况下的广义逆系统构造方法进行了深入讨论。在分析伪线性复合系统可镇定性和解耦非理想性的基础上,将极点配置和内模原理用于闭环控制;分析了由逆系统与内模控制器构成的复合控制器的鲁棒性。将逆系统方法用于航天器的姿态控制,比较了极点配置与内模控制作为闭环控制器的性能。仿真结果表明,基于逆系统的内模控制方法在航天器姿态机动控制中具有很强的鲁棒性,并可以通过附加前置滤波器降低控制量。
     将逆系统方法用于含飞轮的航天器姿态控制器设计。考虑了飞轮的阻力效应,建立了飞轮的MIMO仿真模型,并评估了摩擦对飞轮的影响。提出对飞轮进行低、高速同时补偿,并基于观测器设计了低、高速补偿器。采用逆系统与内模原理相结合的方法设计了航天器姿态控制器,并进行了仿真研究。结果表明,利用逆系统与内模原理相结合的方法对含飞轮的航天器进行姿态控制是可行的。对含PWPF调制器的航天器姿态控制,由于PWPF调制器与航天器模型构成的广义对象存在回滞本质非线性而不可逆,提出了基于Lyapunov函数构造控制器的方法,分析了稳定性,并进行了仿真计算。
     最后,将逆系统方法用于带挠性梁的航天器姿态控制器设计。分别采用解析构造和神经网络逼近两种方式获得逆系统,结合内模原理设计闭环姿态控制器,并进行了仿真研究。结果表明,在梁的模态可测情况下,逆系统方法也可应用于带挠性梁的航天器。
As a consequence of the increasing demand for high performance positioning and rapid maneuvering in space missions, research works have focused considerable attention on the modeling and control of the rigid-flexible coupling spacecraft in last twenty years. Especially, the spacecraft whose configuration is composed of the central rigid body and some fixed or hinged flexible appendages is excessively paid attention to. Therefore,the dissertation is based on the pre-research defense project“Research of the intelligent adaptive inverse control for flexible satellite”of the National 10th five-year plan and the National Natural Science Foundation of China“Research and application of intelligent adaptive inverse control for a class of complex system”. Dynamic model, kinetic model and beam vibration model of a cluster-like rigid-flexible spacecraft are given and analyzed. Inverse system method is studied in detail, and inverse system’s analytic construction is presented. Inverse system method and internal mode principle are used to attitude control design for a spacecraft with actuators and without actuators, and simulations are done. Research contents are followed:
     Firstly, attitude dynamic model of a cluster-like rigid-flexible spacecraft and Euler-Bernoulli beam vibration model are established. Newton-Euler method is used to derivate attitude dynamic model, and kinetic mode is described in the form of Euler angle. Tiny element method is used to derivate vibration model, and vibration equations are solved by using fixed-free standard modes. The influence that spacecraft’s maneuvers impose on the flexible beam and its counterpart are analyzed based on kinematic equations, dynamic equations and vibration equations. Numerical calculation of environment moments is done.
     Secondly, Inverse system method is studied from two ways-state equations and differential equations. Improvement of Interactor algorithm is presented in order to construct analytic inverse system. Construction of generalized inverse system is discussed in detail. Stabilization and non-idealization for pseudo-linear system are analyzed, and pole assignment and internal model principle are applied to the closed-loop system. Robustness of the multiplex controller which is composed of inverse system and internal model controller is proved. Inverse system method is applied to spacecraft attitude control. Performance difference between pole assignment and internal control which acts as the closed-loop controller is compared. Simulation result shows that the latter has strong robustness in spacecraft attitude control, and added pre-filter reduce control value.
     Inverse system method is also applied to attitude control of the spacecraft with flywheels. A MIMO dynamic simulation model is established via the machine- electricity equations, Dahl friction model and air resistance model, and effect that friction has on the flywheel is evaluated. It is presented that voltage compensator, which is based on a state observer, is designed at low speed and high speed. Spacecraft attitude controller integrates inverse system and internal controller. Simulation result shows the attitude controller is feasible. Because a hysteresis essential nonlinearity is a part of the spacecraft with PWPF modulation, inverse system method can’t be used. Lyapunov function-based control law is presented, and its stability is analyzed. Simulation result shows the attitude controller is validate.
     Finally, the inverse system method is applied to the attitude control of the flexible spacecraft. Inverse system of the plant is individually obtained by using Analytic construction and neural network construction. Internal controller is used as the closed-loop controller. Simulation result shows the attitude controller is validate.
引文
1 马兴瑞, 王本利,苟兴宇. 航天器动力学----若干问题进展及应用. 科学出版社, 2001: 北京.
    2 刘暾,赵钧. 空间飞行器动力学. 哈尔滨工业大学出版社, 2003.10: 哈尔滨.
    3 屠善澄. 卫星姿态动力学与控制. 宇航出版社, 2001.12: 北京.
    4 G. S. Nurre. Dynamics and Control of Large Space Structures. J. Guidance, Control and Dynamics, 1984, 7(5): 514-526.
    5 K. Subbarao, A. Verma,J. L. Junkins. Structured Adaptive Model Inversion Applied to Tracking Spacecraft Maneuvers. AAS/AIAA Space Flight Mechanics Meeting, 2000, ClearWater, Florida.
    6 唐超颖,王彪. 基于在线神经网络的自适应控制器的设计与应用. 2006, 34(6): 34-38.
    7 解永春, 牟小刚, 吴宏鑫,李季苏. 挠性航天器大角度机动的全系数自适应控制. 宇航学报, 1999, 20(2): 1-6.
    8 刘亚秋. 基于动态神经网络的自适应逆控制及其应用研究. 哈尔滨工业大学博士学位论文. 2004.10.
    9 李勇,吴宏鑫. 一类挠性航天器的变结构控制. 宇航学报, 1998, 19(1).
    10 王庆超, 岑小锋,马兴瑞. 挠性航天器旋转机动的输入成形变结构控制. 系统工程与电子技术, 2006, 28(5): 727-730.
    11 胡庆雷,马广富. 带有输入非线性的挠性航天器姿态机动变结构控制. 宇航学报, 2006, 27(4): 630-634.
    12 L. B. Sandrine,D. Gilles. H∞ Control of an Earth Observation Satellite. Journal of Guidance,Control and Dynamics, 1996, 19(3).
    13 兰维瑶,陈亚陵. 新型卫星姿态运动的鲁棒控制器设计. 厦门大学学报(自然科学版), 1999, 38(2): 193-198.
    14 王广雄, 张静,朱井泉. 挠性系统的鲁棒控制设计. 控制与决策, 2003, 18(3): 281-284.
    15 王松, 崔平远, 张池平,杨涤. 柔性航天器姿态的在线神经网络控制. 飞行力学, 1998, 16(2): 83-89.
    16 管萍, 陈家斌,戈新声. 挠性卫星姿态的模糊神经控制. 火力与指挥控制, 2005, 30(2): 36-40.
    17 张云,王培垣. 一种用于挠性卫星姿态控制的改进模糊控制器. 上海航天, 2004.6, (6): 42-46.
    18 S. H. Lane,R. F. Stengel. Flight Control Design Using Nonlinear Inverse Dynamics. Automatica, 1988, 24(4): 471-483.
    19 李春文,冯元琨. 多变量非线性控制的逆系统方法. 清华大学出版社, 1991: 北京.
    20 李春文, 张平,冯元琨. 一种基于逆系统方法的化学反应器改进控制方案. 控制与决策, 1998, 13(5): 577-580.
    21 戴先中, 陈珩, 何丹, 张腾, 陆达君,沈建强. 神经网络逆系统及其在电力系统控制中的应用. 电力系统自动化, 2001.10: 11-17.
    22 V. J. Modi. Attitude Dynamics of Satellite with Flexible Appendages-A Brief Review. J. Spacecraft and Rockets, 1974, 11: 743-751.
    23 D. A. Turic,A. Mirlha. Dynamic Analysis of Elastic Mechanism System, Part I: Applications. ASME J. Dynamic Systems, Measurement and Control, 1981, 106: 243-248.
    24 R. M. Alexander,K. L. Lawrence. Experimentally Determined Dynamic Strains in An Elastics Mechanism. ASME J. Engineering for Industry, 1975, 97(3): 791-794.
    25 B. S. Thompson,C. K. Sung. A Variational Formulation for The Nonlinear Finite Element Analysis of Flexible Linkages: Theory, Implementation, and Experimental Results. ASME J. Mechanical Transmissions and Automation in Design, 1984, 106: 482-488.
    26 M. A. Giovagnoni. A Numerical and Experimental Analysis of A Chain of Flexible Bodies. ASME J. Dyna. Syst. Meas. Contr., 1994, 116: 73-80.
    27 P. W. Likins. Spacecraft Attitude Dynamics and Control- A Personal Perspective on Early Developments. J. Guidance,Control and Dynamics, 1986, 9(2): 129-134.
    28 P. M. Bainum. A Review of ModelingTechniques for The Open and Closed Loop Dynamics of Large Space Structures. Large Space Structures: Dynamics and Control, 1998: 165-177.
    29 P. M. Bainum. Breakwell Memorial Lectures: Review of Astrodynamics,1958-2001--A Personal Pespective. Acta Astronautica, 2002, 15(1): 517-526.
    30 S. S. Rao. Modeling, Control, and Design of Flexible Structure: A Survey. Appl. Mech. Rev., 1990, 43(5).
    31 A. Suleman. Structrural Modeling Issues in Flexible Systems. AIAA Journal, 1995, 32(4).
    32 G. J. Qu. Dynamics Analysis of Flexible spacecraft. the 41st Congress of IAF, 1990.
    33 G. J. Qu. On The Development of Large Flexible Spacecraft Dynamics. ESA SP, 1991, China.
    34 曲广吉,程道生. 空间站复合体柔性动力学分析研究. 空间站技术学术会议, 1997, 中国.
    35 缪炳祺,曲广吉. 柔性航天器动力学模型的模态综合-混合坐标法建模研究. 空间飞行器总体学术会议, 1997, 中国.
    36 缪炳祺, 曲广吉,程道生. 柔性航天器的动力学建模问题. 中国空间科学技术, 1999, (5): 35-39.
    37 程绪铎,王照林. 复杂系统动力学、控制的几个问题. 安庆师范学院学报(自然科学版), 2000, 6(1): 22-26.
    38 R. E. Skelton,P. C. Hughes. Order Reduction for Flexible of Space Structures Using Model Cost Analysis. J. Guidance and Control, 1982, 5(4): 351-357.
    39 G. S. Nurre, J. P. Sharkey, J. D. Neson,A. J. Bradley. Preserving Mission On-obit Modifications to Hubble Telescope Pointing Control System. J. Guidance, 1995, 18(2): 222-229.
    40 A. K. Banerjee,M. E. Lomak. Multi-Flexible Body Dynamics Capturing Motion-induced stiffness. ASME JAM, 1991, 58: 766-775.
    41 P. Gross. Bifurcation and Stability Analysis of a Rotating Beam. Quarterly of Applied mathematics, 1993, 4: 701-711.
    42 李俊峰,王照林. 航天器柔性伸展附件非线性振动稳定性研究. 清华大学学报(自然科学版), 1998, (2): 439-447.
    43 肖世富,陈滨. 一类刚-柔耦合系统的建模与稳定性研究. 力学学报, 1997, 19(3): 439-447.
    44 李志斌, 王照林,王天舒. 平面型刚柔耦合系统几何非线性动力学建模. 力学学报(增刊), 2002, 34: 79-84.
    45 M. Fraid,S. A. Lukasiewicz. Dynamic Modeling of Spatial Maniopulators with Flexible Links and Joints. Computers and Structures, 2000, 75: 419-437.
    46 P. B. Usoro, R. Nadira,S. S. mahil. A Finite Element/Lagrangian Approach to Modeling Lightweight Flexible Manipulators. ASME J. Dynamic Systems,Measurement and Control, 1986, 108: 198-205.
    47 阎绍泽, 黄铁球, 吴德隆,范晋伟. 空间飞行器柔性附件动力学建模方法研究. 导弹与航天运载技术, 1999, (2): 31-39.
    48 M. Fumisoshi, H. Michirori,S. Hideaki. Modeling and Control of A Flexible Solar Array Paddle as A Clamped-Free Rectangular Plate. Automatica, 1996, 32(1): 49-58.
    49 M. Iura,S. N. Atluri. Dynamic Analysis of Planar Flexible Beams with Finite Rotations by Using Inertial and Rotating Frames. Computers and Structures, 1998, 55(3): 453-462.
    50 刘才山, 陈滨,王示. 考虑刚弹耦合作用的柔性多体连续系统动力学建模. 力学与实践, 1999, 21(6): 22-25.
    51 B. Frederic,C. Philippe. Symbolic Modeling of A Flexible Manipulator via Assembling of Its Generalized Newton-Euler Model. Mech. Mach. Theory, 1996, 31(1): 45-46.
    52 D. A. Levinson. The Derivation of Equations of Motion of Multiple Rigid Body Systems Using Symbolic Manipulation. AIAA Journal, 1976, 14.
    53 J. Wittenburg,U. Wolz. A Symbolic Program for Nonlinear Articulated Rigid Body Dynamics. Proc. ASME Conf. Mechenial Vibration and Noise, 1985, Cincinnat.
    54 L. Meirovitch. Dynamics and Control of Structures. Wiley, 1990: New York.
    55 黄圳主. 大型航天器动力学与控制. 国防科技大学出版社, 1990: 长沙.
    56 W. W. Hooker. A Set of Dynamics Attitude Equations for An Arbitrary n-Body Satellite Having Rotational Degrees of Freedom. AIAA Journal, 1970: 1205-1207.
    57 P. W. Likins. Dynamics Analysis of A System of Hinged-Connected Rigid Bodies with Nonrigid Appendages. Int. J. Solids and Structures, 1973, 9: 1473-1487.
    58 T. R. Kane,D. A. Leivinson. Formation of Equations of Motion for Complex Spacecraft. J. Guidance, Control and Dynamics, 1980, 3(2): 99-112.
    59 P. C. Hughes. Spacestructure Vibration Modes:How Many Exist? Which Ones Are Important? IEEE Contr. Sys. Mag., 1987, 7(1): 22-28.
    60 S. N. Atluri,M. Iura. Nonlinearities in The Dynamics and Control of Space Structures: Some Issues for Computational Mechanics. Large Space St ructures:Dynamics and Control, 1988: 33-70.
    61 J. T. Spanos,W. Truha. Selection of Component Modes for The Simulation of Flxible Multibody Spacecraft. J. Guidance, Control and Dynamics, 1991, 14(2): 278-286.
    62 R. E. Skelton,A. Hu. Modeling Structures for Control Design. Computers and Structures, 1985, 63: 112-123.
    63 J. Mirro. Automatic Feedback Control of A Vibrating Beam. MITMaster Thesis. 1972.
    64 W. J. Book, O. N. Maizz,D. E. Whitney. Feedback Control of Two-Beam,Two-Joint System with Distribute Flexibility. ASME J. Dynamic Systems, Measurement and Control, 1975, 97: 424-431.
    65 T. R. Kane, R. R. Ryan,A. K. Banerjee. Dynamics of A Cantilever Beam Attached to A Moving Base. J. Guidance,Control and Dynamics, 1987, 10: 139-151.
    66 P. C. Hughes,R. E. Skelton. Modal Truncateion for Flexible Spacecraft. J. Guidance and Control, 1981, 4(3): 291-297.
    67 A. Y. Lee,W. S. Tsuha. Model Reduction Methodology for Articulated, Multi-Flexible Body Structures. J. Guidance, Control and Dynamics, 1994, 17(1): 69-75.
    68 R. E. Skelton. Component Cost Analysis of Large Scale Systems. Int. J. Control, 1983.
    69 C. Z. Gregory. Reduction of Large Flexible Spacecraft Models Using Internal BalancingTheory. J. Guidance, Control and Dynamics, 1984, 7: 725-732.
    70 L. Meirovitch. Analytical Method in Vibrations. Macmillan, 1967.
    71 W. J. Book. Recursive Lagrangian Dynamics of Flexible Manipulator Arms. International Journal of Robotics Research, 1984, 3: 87-101.
    72 G. G. Hastings,W. J. Book. A Linear Dynamic Model for Flexible Robotic Manipulators. IEEE Contr. Sys. Mag., 1987, 7(1): 61-67.
    73 J. Yuh,T. Young. Dynamic Modeling of An Axially Moving Beam in Rotation:Simulation and Experiment. Journal of Dynamic Systems, Measurement and Control, 1991, 113(1): 34-40.
    74 H. H. Yoo,C. Pierre. Modal Characteristic of A Rotating Rectangular Cantilever Plate. J of Sound and Vibration, 2003, 259(1): 81-96.
    75 杨辉, 洪嘉振,余征跃. 刚柔耦合多体系统动力学建模与数值仿真. 计算力学学报, 2003, 20(4): 402-407.
    76 章定国,朱志远. 一类刚柔耦合系统的动力刚化分析. 南京理工大学学报, 2006, 30(1): 21-25.
    77 王平, 李铁寿,吴宏鑫. 磁控小卫星周期时变的比例微分控制设计方法. 中国空间科学技术, 1999.10, (5): 14-19.
    78 耿云海, 崔祜涛, 孙兆伟,杨涤. 小卫星主动磁控制地球捕获姿态控制系统设计. 航空学报, 2000, 21(2): 142-145.
    79 刘新建, 雷勇军,唐乾刚. 大挠性太阳能帆板航天器的姿态控制. 国防科技大学学报, 2003, 25(5): 6-8.
    80 X. Li, J. T. Arthur,B. B. Jefery. Stability Analysis on Earth Observing System AM-1 Spacecraft Earth Acquisition. Journal of Guidance, Control and Dynamics, 1996, 19(3).
    81 李勇. 挠性航天器快速大角度机动的非线性模型与控制. 中国空间科学技术, 1998.8, (4): 19-23.
    82 邓以高, 田军, 王亚锋,雷军委. 飞行器姿态控制方法综述. 战术导弹控制技术, 2006, (2): 7-13.
    83 B. N. Agrawal, G. Song,N. V. Buck. Control and Dynamics of A Flexible Spacecraft Using Input Shaping and Pulse-Width Pulse-Frequency Modulated thruster. 48th International Astronautical Congress, 1997, Turin, Italy.
    84 R. N. Clark,G. F. Franklin. Limit Cycle Oscillations in Pulse-Modulated systems. J. Spacecraft, 1969, 6(7): 799-804.
    85 G. Song,B. N. Agrawal. Vibration Suppression of Flexible Spacecraft during Attitude Control. Acta Astronautica, 2001, 49(2): 73-83.
    86 B. S. John. Reaction Wheel Low-speed Compensation Using A Dither Signal. Journal of Guidance,Control,and Dynamics, 1993, 16(4): 617-622.
    87 郑育红,王平. 一种用磁力矩器控制卫星的新方法. 宇航学报, 2002, 21(3): 95-99.
    88 孙兆伟,曹喜滨. 主动磁控小卫星模糊控制算法的研究. 哈尔滨工业大学学报, 2002, 34(6): 848-852.
    89 孙兆伟, 杨旭,杨涤. 小卫星磁力矩器与反作用飞轮联合控制算法研究. 控制理论与应用, 2002, 19(2): 173-177.
    90 孙兆伟, 林晓辉,曹喜滨. 小卫星姿态大角度机动联合控制算法. 哈尔滨工业大学学报, 2003, 35(6): 663-667.
    91 李太玉,张育林. 利用地磁场给飞轮卸载的新方法. 中国空间科学技术, 2001.12, (6): 56-61.
    92 Z. H. Luo. Direct Strain Feedback Control of Flexible Robot Arms: New Theoretical and Experimental Results. IEEE Trans. Auto. Contr., 1993, 38(11): 1610-1662.
    93 O. M(?)rgul. Orientation and Stabiliation of A Flexible Beam Attached to A Rigid Body: Planar Motion. IEEE Automat. Cotro., 1991, 36(8): 953-962.
    94 S. Parman,H. Koguchi. Controlling The Attitude Maneuvers of Flexible Spacecraft by Using Time- Optimal/Fuel-Efficient Shaped Inputs. Journal of Sound and Vibration, 1999, 21(4): 545-565.
    95 W. E. Singhose, S. Derezinski,N.Singer. Extra-Insensitive Input Shapers for Controlling Flexible Spacecraft. Journal of Guidance,Control,and Dynamics, 1996, 2: 385-391.
    96 P. C. Parks. Lyapunov Resign of Model Reference Adaptive Control syste,s. IEEE Trans. on Automat. Cotro., 1966, 11(2): 362-367.
    97 R. Ortaga. Adaptive Stabilization of Non-Linearizable Systems under a Matching Condition. Proc ACC, 1990.
    98 J. Pomet,L. Praly. Adaptive Nonlinear Regulation: Estimation from the Lyapunov Equation. IEEE Trans. on Automatic Control, 1992, AC-37: 729-740.
    99 C. Byrnes, A. Isidori,J. Willems. Passivity, Feedback Equivalence, and The Global Stabilization of Minimum Phase Nonlinear Systems. IEEE Trans. on Automatic Control, 1991, AC-36: 1228-1240.
    100 M. M. Seron, D. J. Hill,A. L. Fradkov. Nonlinear Adaptive Control of Feedback Passive Systems. Automatica, 1995, 31(7): 1053-1060.
    101 苏丙未, 曹云峰, 陈欣,杨一栋. 一种鲁棒自适应 Backstepping 控制方案研究. 应用科学学报, 2002, 20(4): 350-353.
    102 解学军, 张正强,张嗣瀛. 一种基于反推技术的鲁棒自适应控制器. 控制理论与应用, 2003, 20(6): 947-950.
    103 I. D. Landau. A Survey of Model Reference Adaptive Techniques (theory and Application). Automatica, 1974, 10(4): 353-379.
    104 K. J. ?strom,B. Wittenmark. On Self-tuning Regulators. Automatica, 1973, 9(2): 185-199.
    105 D. W. Clarke. An Introduction to Self-Tuning Regulator and Controller. IEE Colloquium on Self-Tuning and Adaptive Systems, 1976.
    106 J. M. Edmunds. Digital Adaptive Pole-Shifting Regulators. IEE Colloquium on Self-Tuning and Adaptive Systems, 1976.
    107 吴振顺, 许文波,汲永涛. 最小方差自校正控制器在液控伺服作动器上的应用与仿真. 机床与液压, 2002.1, (1).
    108 丁军,徐用懋. 单神经元自适应 PID 控制器及应用. 控制工程, 2004, 11(1): 27-30.
    109 许世范,李敬兆. 极点配置自校正控制直流调速系统研究. 中国矿业大学学报, 24(3): 24-28.
    110 C. E. Rohrs. Robustness of Adaptive Control Algorithm in The Presence of Unmodeled Dynamics. Proc. of CDC, 1982.
    111 张世杰,曹喜滨. 基于单神经元自适应 PID 控制的航天器大角度姿态机动. 上海航 天, 2003, (6): 9-14.
    112 刘军,韩潮. 基于单神经元的卫星姿态自适应 PID 控制. 计算机仿真, 2006, 23(3): 45-48.
    113 连葆华, 崔平远,崔祜涛. RBF 网络及其在卫星姿态控制中的应用. 高技术通讯, 2002, (4): 83-87.
    114 J. Marsik. A New Conception of Digital Adaptive PSD Control. Problemsof Control and Information theory, 1983, 12(4): 267-279.
    115 J. Marsik,V. Strejc. Application of Identification Free Algorithms for Adpative control. Automatica, 1989, 25(2): 237-277.
    116 S. Chen, E. S. Chng,K. Alkadhimi. Regularized Orthogonal Least Squares Algorithm for Constructing Radial Basis Function Networks. Int J. Cont rol, 1996, 64(5): 829-837.
    117 吴宏鑫. 全系数自适应理论及其应用. 国防工业出版社, 1990: 北京.
    118 邱志成,张洪华. 基于特征模型的挠性悬臂板控制. 航天控制, 2002, (2): 1-5.
    119 吴宏鑫, 解永春, 李智斌,何英姿. 基于对象特征模型描述的智能控制. 自动化学报, 1999, 25(1): 9-17.
    120 吴宏鑫, 刘一武, 刘忠汉,解永春. 特征建模与挠性结构的控制. 中国科学(E辑), 2001, 31(2): 137-149.
    121 齐春子, 吴宏鑫,吕振铎. 多变量全系数自适应控制系统稳定性的研究. 控制理论与应用, 2000, 17(4): 489-494.
    122 孙多青,吴宏鑫. 多变量线性时变系统的特征模型及自适应模糊控制方法. 宇航学报, 2005, 26(6): 677-681.
    123 B. Widrow,E. Walach. Adaptive Inverse Control. Prentice-Hall, 1996: Upper Saddle River,NJ.
    124 岑小锋. 复杂挠性航天器动力学模型及其近似逆控制研究. 哈尔滨工业大学博士学位论文. 2004.
    125 V. I. Utkin. Variable Structure Systems with Sliding Modes. IEEE Trans. on Automatic Control, 1977, 22(2): 212-222.
    126 胡跃明. 变结构控制理论与应用. 科学出版社, 2003: 北京.
    127 周连文, 周军,李卫华. 控制受限的挠性航天器大角度机动变结构控制. 华北工学院学报, 2004, 25(4): 246-249.
    128 周连文, 周军,李卫华. 基于遗传算法的挠性航天器大角度机动的变结构控制. 上海航天, 2005.1: 15-18.
    129 周连文,周军. 挠性航天器大角度机动的变结构控制. 航天控制, 2003, (3): 48-52.
    130 唐超颖, 沈春林,李丽荣. 航天器姿态滑模变结构控制系统的设计. 南京航空航天大学学报, 2003, 35(4): 361-365.
    131 周连文, 周军,李卫华. 挠性航天器大角度机动的滑模变结构控制. 飞行力学, 2004, 22(1): 71-73.
    132 H. Elmali,N. Olgac. Sliding Mode Control with Perturbation Estimation (SMCPE): A New Approach. International Journal of Cont rol, 1992, 56(1): 923-941.
    133 王炳全, 崔祜涛,杨涤. 轻型高精度卫星的变结构姿态控制器. 航空学报, 2000, 21(5): 417-420.
    134 S. V. Yallapragada, B. S. Heck,J. D. Finney. Reaching Conditions for Variable Structure Control with Output Feedback. Journal of Guiance, Control and Dynamics, 1996, 19(4): 848-853.
    135 Y. Shen, C. Liu,H. Hu. Output Feedback Variable Structure Control for Uncertain Systems with Input Nonlinearities. Journal of Guiance, Control and Dynamics, 2000, 23(4): 762-764.
    136 王晓磊, 吴宏鑫,李智斌. 挠性航天器非线性滑动模态控制和实验研究. 宇航学报, 2001, 22(6): 50-56.
    137 T. Floquet, W. Perruquetti,J. P. Barbot. Angular Velocity Stabilization of A RigidBody via VSS Control. Journal of Dynamics Systems, Measurement and Control, 2000, 122.
    138 刘春梅, 沈毅, 胡恒章,葛升民. 非线性挠性结构的神经网络变结构控制. 系统工程与电子技术, 2000, 22(2): 11-14.
    139 管萍,陈家斌. 挠性卫星的自适应模糊滑模控制. 航天控制, 2004, 22(4): 62-67.
    140 管萍, 陈家斌,刘晓河. 基于滑模控制的挠性卫星的自学习模糊控制. 北京理工大学学报, 2005, 25(2): 127-130.
    141 S. D. Gennaro. Active Vibration Suppression in Flexible Spacecraft Atitude Tracking. Journal of Guidance, Control and Dynamics, 1998, 21(3).
    142 谭文. 挠性航天器的姿态控制:混合灵敏度方法. 厦门大学学报(自然科学版), 1995, 34(3).
    143 谭文,陈亚陵. μ 方法在挠性航天器鲁棒控制设计中的应用. 宇航学报, 1996, 17(3): 15-20.
    144 兰维瑶, 彭洪, 罗林开,陈亚陵. 挠性卫星姿态低阶鲁棒控制器设计. 厦门大学学报(自然科学版), 2001, 40(sup.1): 18-24.
    145 M. G. Safonov, R. Y. Chiang,H. Flashner. H∞ Robust Control Synthesis for A Large Space Structure. J. Guidance, 1991, 14(3): 513-520.
    146 D. Mustafa,K. Glover. Controller Reduction by H∞-Balanced Truncation. IEEE Automat. Cotro., 1991, 36(6): 668-689.
    147 宋斌, 马广富, 李传江,谌颖. 基于 H∞鲁棒控制的挠性卫星姿态控制. 系统仿真学报, 2005, 17(4): 968-970.
    148 J. Sefton,K. G. Pole/Zero Cancellations in The General H∞ Problem with Reference to A Two-block Design. Syst. Contr. Letters, 1990, 14: 295-306.
    149 P. Gahinet,P. Apkarian. Int. J. Robust and Nonlinear Contr. A linear matrix inequality approach to H∞ control, 1994, 4(1): 421-448.
    150 C. Scherer, P. Gahinet,M. Chilali. Multiobjective Output-feedback Control via LMI Optimization. IEEE Trans. on Autom. Contr., 1997, 42(7): 896-911.
    151 C. Scherer, P. Gahinet,P. Apkarian. Robust Pole Placement in LM I Regions. IEEE Automat. Cotro., 1999, 44(12): 2257-2270.
    152 M. Chilali,P. Gahinet. H∞ Design with Pole Placement Constraints: An LMI Approach. IEEE Automat. Cotro., 1996, 41(3): 358-367.
    153 王新生, 王广雄,张华强. 鲁棒极点约束的 H∞设计. 2001, 16(sup.1): 801-804.
    154 S. Narendra,K. Paratharathy. Identification and Control of Dynamical Systems Using Neural Networks. IEEE Trans on Neural Networks, 1990, 1(1).
    155 Y.-Y. Lin,G.-L. Lin. General Atitude Maneuvers of Spacecraft with Flexible Structures. Journal of Dynamics Systems, Measurement and Control, 1995, 18(2).
    156 孙庆,吴宏鑫. 挠性结构卫星单轴气浮台的模糊控制. 航天控制, 1997, (2): 29-36.
    157 白圣建,黄新生. 一类挠性航天器的模糊控制. 战术导弹控制技术, 2006, (3): 29-33.
    158 王蜀泉,赵光恒. 基于模糊控制的卫星大角度姿态机动控制方法研究. 中国科学院研究生院学报, 2006, 23(1): 112-117.
    159 W. J. Rugh. Nonlinear System Theory: The Volterra/Wiener Approach. The John Hopkins University Press, 1981: London.
    160 韩崇昭,党映农. 非线性控制系统综合的频域逆系统方法研究. 控制与决策, 2000, 15(5): 545-547.
    161 胡钋,陈允平. 非线性逆系统的一种求解方法. 武汉大学学报, 2005, 38(2): 113-117.
    162 R. W. Brockett,M. D. Mesarvic. The Reproducibility of Multivariable Systems. J of Mathematical Analysis and Its Applications, 1965, 11(2): 548-563.
    163 C. W. Li,Y. K. Feng. Functional Reproducibility of General Multivariable Nonlinear Systems. Int. J. Control, 1987, 45(1): 255-268.
    164 L. M. Silverman. Inversion of Multivariable Linear Systems. IEEE Automat. Cotro., 1979, 14(2): 270-276.
    165 W. Respondek. On Local Right-Invertibility of Nonlinear Control Systems. Control Theory and Advanced Technology, 1988, 4(3): 325-348.
    166 戴先中, 刘军,冯纯伯. 连续非线性系统的神经网络 α 阶逆系统控制方法. 自动化学报, 1998, 24(4): 463-468.
    167 张腾. 神经网络逆系统方法及其在电力系统控制中的应用. 东南大学博士论文. 2002.
    168 吴热冰,李春文. 一般非线性系统的构造性逆系统方法. 控制理论与应用, 2003, 20(3): 345-350.
    169 F. Deza, s. D. Bo,E. Busvelle. Exponential Observers for Nonlinear Systems. IEEE Trans Automat Contr, 1993, 38(3): 482- 484.
    170 F. Esfandiari, H. K. Khalil,56. Output Feedback Stabilization of Fully Linearizable Systems. Int. J. Control, 1992, 56(1007-1037).
    171 F. Deza, E. Busvelle,J. P. Gauthier. High-Gain Estimation for Nonlinear Systems. Systems and Control Letters, 1992, 18.
    172 J. E. Slotine,W. Li. Applied Nonlinear Control. Prentice Hall, 1991: New Jersey.
    173 G. B. Wang, S. S. Peng,H. P. Huang. A Sliding Observer for Nonlinear Process Control. Chem Engng Sci, 1997, 52(7): 787-805.
    174 H. Hammouri,J. P. Gauthier. Global Time Varying Linearization Up to Output Injection. SIAM Journal on Control, 1992, 6: 1295-1310.
    175 J. Han. A Class of Extended State Observers for Uncertain Systems(In Chinese). Control and Decision, 1995, 10(1): 85-88.
    176 Z. Gao. Scaling and Bandwidth-Parameterization Based Controller-Tuning. the 2003 American Control Conference, 2003.6, Denver, Colorado.
    177 王勋先, 丁刚,韩曾晋. 基于逆系统方法感应电动机调速系统的分析及控制. 电机与控制学报, 1998, 2(3): 162-165.
    178 杨立永, 李华德,王久和. 基于逆系统理论的感应电动机控制策略. 辽宁工程技术大学学报, 2005, 24(5): 706-708.
    179 费德成,朱秋. 基于逆系统理论的无轴承永磁同步电机解耦控制研究. 中国工程科学, 2005, 7(11): 48-54.
    180 孙玉坤, 费德成,朱熀秋. 基于 α 阶逆系统五自由度无轴承永磁电机解耦控制. 中国电机工程学报, 2006, 26(1): 120-126.
    181 董翠英,陈娟. 基于逆系统方法的内模控制在伺服系统低速问题中的研究. 北京化工大学学报, 2005, 32(2): 98-100.
    182 梁新荣,吴智铭. 基于任务的两协调机械手的关节轨迹优化. 上海交通大学学报, 1999, 33(4): 473-477.
    183 戴先中, 孟正大, 沈建强,阮建山. 神经网络 α 阶逆系统控制方法在机器人解耦控制中的应用. 机器人, 2001, 23(4): 363-367.
    184 李春文, 杜继宏, 李鹏,汤涛. 基于逆系统方法的汽轮发电机组汽门开度非线性控制. 电子技术应, 1998, (4): 27-29.
    185 施伟锋. 船舶柴油发电机组双回路系统神经网络控制研究. 哈尔滨工程大学学报, 2005, 26(5): 570-574.
    186 B. Enrique,?. ümit. Unconstrained and Constrained Mode Expansions for A Flexible Slewing Link. Journal of Dynamic Systems, Measurement and Control,1988, 110(4): 416-421.
    187 S. Choura. On The Modeling, and Open-Loop Control of A Rotating Thin Flexible Beam. Journal of Dynamic Systems, Measurement and Control, 1991, 113(1): 26-33.
    188 A. M. Bloch. Stability Analysis of A Rotatiing Flexible System. Acta Applicandáe mathematicae, 1989, 15(2): 211-234.
    189 L. Merovitch. State equations for maneuvering and control of flexible bodies using quasi momenta. J. Guidance, Control and Dynamics, 1993, 16(5).
    190 G. G. Hastings,W. J. Book. A Linear Dynamic Model of Flexible Robotic Manipulators. IEEE Contr. Sys. Mag., 1987, 7(1): 61-64.
    191 陈庆伟, 吕朝霞, 胡维礼,吴宏鑫. 基于逆系统方法的非线性内模控制. 自动化学报, 2002, 28(5): 715-721.
    192 M. J. Sidi. Spacecraft Dynamics and Control. Press Syndicate of The University of Cambridge, 1997: New York.
    193 G. B. Song, V. B. Nick,N. A. Brij. Spacecraft Vibration Reduction Using Pulse-width Pulse-Frequency Modulated Input Shaper. Journal of Guidance, Control, and Dynamics, 1999, 22(3): 433-440.
    194 陈非凡, 张高飞,陈益峰. 小卫星动量轮非线性特性建模与仿真方法. 宇航学报, 2003, 24(6): 651-655.
    195 B. A. Armstrong. Survey of Models, Analysis Tools and Compensation Methods for The control of Machines with Friction. Automatica, 1994, 30(7): 1083-1108.
    196 P. Dahl. A Solid Friction Model. Aerospace Corp., 1968: Segundo,CA.
    197 李连军,戴金海. 反作用轮低速特性观测补偿方法. 国防科技大学学报, 2005, 27(1): 39-43.
    198 K. Hornik. Approximation Capabilities of Multilayer Feedforward Networks. Neural Networks, 1991, (4): 251-257.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700