用户名: 密码: 验证码:
幼鼠内侧颞叶癫痫发病机制及丙戊酸早期干预的疗效和机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景与目的:
     癫痫(epilepsy)是小儿神经系统常见疾病之一,发病率为3.5‰-6.6‰。内侧颞叶癫痫(mesial temporal lobe epilepsy, MTLE)是最常见的难治性癫痫之一,以海马硬化为其突出的临床病理特征。迄今为止,MTLE的治疗一直是癫痫治疗的难点,药物治疗及手术治疗都未能取得令人满意的疗效。因此,有关海马硬化的MTLE综合征的发病机制、对抗癫痫药物治疗的反应以及耐药机制等仍是近几十年来癫痫研究的热点与难点。
     儿童时期的癫痫以及癫痫综合征与成年期有很大不同。发育期的中枢神经系统由于其结构与功能以及与癫痫有关的神经递质、受体尚未完全成熟,痫性发作对未成熟大脑发生发展的影响以及未成熟大脑对抗癫痫药物治疗反应都随着大脑发育各阶段的不同而有很大的差异。大量研究表明,在伴有海马硬化性颞叶癫痫的成人患者中有相当高比例可追问到儿童早期有长时间痫性发作史,尤其是热性惊厥史。幼年早期长时间痫性发作后大脑可塑性发生的改变对个体能产生长远的影响,与MTLE的形成密切相关。因此,研究发育阶段幼鼠痫性发作后大脑各阶段的结构和功能与癫痫发生发展的关系以及对抗癫痫药物治疗的反应对于MTLE病理生理研究有着重要的意义。
     近年来有关MTLE的研究多集中在神经再生和突触可塑性、神经细胞损伤、细胞代谢和蛋白合成、神经传递和信号传导、细胞骨架的改变、离子通道等各个方面,但绝大多数研究均局限于某一个时间点的某一个方面,缺乏系统、连续的观察。而癫痫的发生是不断发展和变化的,因此,本研究运用蛋白质组学方法,分离鉴定幼鼠MTLE模型发生发展的各个时间段差异表达的蛋白质,并运用生物信息学技术,将各个阶段的差异表达蛋白质进行全景式比较分析,功能归类,从一个整体、连续发展的角度探讨MTLE发病机制。在此基础上,运用广谱抗癫痫药物丙戊酸(valproate, VPA)在早期对幼鼠模型进行干预,探讨VPA早期干预对幼鼠MTLE模型的疗效以及相关治疗机制,并收集人难治性MTLE术后海马标本进行临床验证,从多个角度探讨难治性MTLE的发病机制以及VPA早期干预的治疗机制,为今后通过药物治疗难治性MTLE提供一个新的视角。
     研究方法:
     本研究分为三部分:
     1.分别用10mg/kg、30mg/kg、50mg/kg、100mg/kg四种剂量的匹罗卡品对3周龄Sprague-Dawley大鼠进行诱导出癫痫发作,寻求匹罗卡品的最佳致痫剂量;致痫后连续观察8周,比较MTLE模型鼠的行为学、脑电图的改变,尼氏染色以及Timm染色观察海马的形态学改变,对慢性MTLE模型进行鉴定。
     2.根据MTLE发生发展过程取三个时间点(急性期、潜伏期、慢性期)一共分为6个组:急性对照组、急性模型组、潜伏对照组、潜伏模型组、慢性自发发作组、慢性无发作组。采用二维凝胶电泳技术分离各组大鼠海马总蛋白,PDQuest软件识别各组间差异表达蛋白质,基质辅助激光解吸电离飞行时间质谱进行鉴定,生物信息学软件对差异表达蛋白质进行比较分析、功能归类,构建与幼鼠MTLE发生发展相关的差异蛋白相互作用网络。Western blot技术对部分差异蛋白的表达进行印证。
     3.在自发发作开始出现的潜伏期末用VPA对MTLE模型持续干预2周,观察其对治疗的反应,尼氏染色和Timm染色观察治疗后的海马形态学改变并进行疗效评估;同时,对治疗与未治疗两组的大鼠海马蛋白表达谱进行分析比较,结合MTLE模型各阶段之间的差异表达蛋白谱,寻找与VPA早期干预密切相关的蛋白质并运用westernblot技术印证其表达情况。进一步地,收集人难治性MTLE术后海马标本,western blot检测其表达情况进行临床验证。
     研究结果:
     1.匹罗卡品10 mg/kg组的诱导成功率为0%,30mg组诱导成功率为30%,50mg/kg组的诱导成功率为60%,100 mg/kg组的诱导成功率为10%,其最佳致痫剂量为50 mg/kg;慢性MTLE模型成功率为63.3%。慢性MTLE模型鼠出现自发部分运动性发作,脑电图呈现典型癫痫样放电,尼氏染色显示有神经元脱失以及变性、胶质细胞增生;Timm染色可见到异常苔藓纤维出芽,异常兴奋环路形成。
     2.建立了幼鼠慢性MTLE模型发生发展各个阶段的海马二维凝胶电泳图谱。共鉴定了各个阶段差异表达的蛋白质共110个,这些蛋白主要参与的功能有:细胞骨架调节、细胞连接、能量代谢、突触形成和神经递质释放、热休克蛋白、信号通路调节分子等;通过比较分析发现部分蛋白在癫痫发生发展的各个阶段有不同表达。并用Western blot技术对部分差异表达蛋白进行了验证,其结果与比较蛋白质组学研究的结果基本一致。
     3.发现VPA早期干预可完全控制幼鼠MTLE模型的癫痫发作。尼氏染色和Timm染色的结果表明VPA具有神经保护作用,能阻止神经元脱失和异常苔藓纤维出芽,并发现突触相关蛋白synapsin-1、dynamin-1和neurogranin在VPA治疗组与未治疗组中有差异表达。Western blot技术检测synapsin-1、dynamin-1和neurogranin在大鼠模型和临床样本中的表达水平与比较蛋白质组学研究的结果一致。
     研究结论:
     1.本研究成功诱导出具有自发发作的幼鼠慢性MTLE模型,在发作形式、脑电图以及海马形态学改变等均符合人类MTLE的特征。为今后研究幼年期痫性发作对成年慢性MTLE的影响以及药物干预等提供了一个比较理想的实验性动物模型。
     2.首次建立了幼鼠慢性MTLE模型海马的连续、动态的凝胶电泳图谱;共鉴定了各阶段差异表达的蛋白质110个,这些蛋白可能与MTLE发病机制密切相关,为全面探讨慢性颞叶癫痫的病理生理机制及寻求最佳的药物作用靶点提供新的思路。
     3.丙戊酸早期干预幼鼠MTLE模型可完全控制癫痫发作,为今后临床上药物控制难治性MTLE提供了可能的最佳干预时间点;突触相关蛋白synapsin-1、dynamin-1、neurogranin与慢性MTLE模型发病机制、丙戊酸早期干预的治疗机理相关,可能是今后关于难治性MTLE研究的一个重要靶点。
Background and objective:
     Epilepsy is one of the common seen neurological disorders in children, with prevalence and incidence of 3.5‰-6.6‰. Mesial temporal lobe epilepsy (MTLE) is the most common epilepsy syndrome with pharmacologically intractable partial-onset seizures. The pathological substrate is hippocampal sclerosis (HS). To date, most of the patients with MTLE do poorly responds to anti-epileptic drugs (AEDs) and surgically interruption, which is a headachy problem in the world. So, the studies about the pathogenesis of MTLE associated with HS, the responds to AEDs and mechanisms of drug-resisitence, are the focus and key fields about epilepsy in the recent decades.
     The epilepsy in children is quite different with the epilepsy in adults. In early development of the central nervous system, the structure and function, the neurotransmitters and receptors related to epilepsy had enormous room for growth. The influence of seizures to the immature brain and the effect of the AEDs are various in the different stages of the brain's development. Quite a lot of research data shown that, a fairly high ratio of MTLE adult patients with HS can be pursued long history of epileptic seizures, particularly febrile convulsion in childhood. The brain plasticity change after long epileptic seizures in early childhood can produce long-term effects in the individual. MTLE with HS is closely related to the abnormal brain plasticity formation. Under go developmental changes from infancy to adult after the influence of seizures forms, plasticity and learning also contributes to the pathophysiology of epilepsy.
     The current molecular researches related to MTLE have been focused on regeneration and synaptic plasticity, neurons damage regulation, cellular metabolism and protein synthesis, neurotransmission and signal transduction, cytoskeleton changes and ion channels changes and ect. But a great part of these studies were limited to a certain aspect of a certain time, lacking a systematic and consecutive research. So, considered epileptogenesis's unceasing development and changes, this study aimed to explore the pathogenesis and development of MTLE from a general and consecutive perspective, by using proteomics method to separate and identify the differentially expressed proteins in the different stages of immature rat models with MTLE, combined with bio-informatics technology to perform a global comparative analysis and function classification with the differentially expressed proteins. Then, the wide-broad AEDs valproate (VPA) was administrated in early stage of MTLE development to observe its therapeutic effects and to explore the related mechanisms. Furthermore, to approach the mechanisms and impact of VPA's administration in different aspects, the expression levels of partial significant proteins in the postoperative hippocampus from patients with drug-resistant MTLE were validated, to explore new strategies and targets for clinical intervention in the future.
     Methods:
     The research includes three parts:
     1. For seizure induction, the 3-week-old Sprague-Dawley rats were intraperitoneally injected pilocarpine with different doses of 10 mg/kg,30 mg/kg,50 mg/kg and 100mg/kg, to obtain the most suitable dosage of pilocarpine. The surviving animals were continuously monitored for 8 weeks to observe the spontaneous seizures. After the chronic spontaneous MTLE induced, EEG was recorded to observe the epileptic discharges, nissl and Timm staining were performed to evaluate neurons loss and mossy fiber sprouting, so as to validate the chronic MTLE models.
     2. The MTLE rats were divided into 6 groups based on different stages (acute stage, latent stage, chronic stage):acute control group, acute seizure group, latent control group, latent seizure group, chronic spontaneous seizure group, chronic no spontaneous seizure group. Proteins in the hippocampus were separated by two-dimensional polyacrylamide gel electrophoresis (2-DE) technology. PDQuest software was used to analyze 2-DE images, and MALDI-TOF-MS was used to identify the differentially expressed proteins. Then the differentially expressed proteins were analyzed and classified globally and then the protein interaction network was construction by applying bio-informatics software. Western blot techniques were used to determine the differential expression levels of the partial proteins.
     3. VPA was administrated at or before the onset of spontaneous seizures for 2 weeks to observe the MTLE rats'responds to AEDs. Nissl and Timm staining were performed to evaluate changes of the hippocampal morphology, so as to evaluate VPA's therapeutic effect. Proteins in hippocampus of VPA-treated and un-treated rats were separated and identified. The differentially expressed proteins were analyzed and classified globally by bio-informatics software to explore the interest proteins related to the VPA's treatment. Furthermore, the expression levels of partial proteins in the postoperative hippocampus from patients with drug-resistant MTLE were detected, to validate the results clinically.
     Results:
     1.The seizure rate in 10mg/kg pilocarpine group was 0%, in 30mg/kg group was 30%, in 50mg/kg group was 60%, in 100mg/kg group was 10%. The most suitable dosage of pilocarpine was 50 mg/kg. The chronic MTLE rate was 63.3%. In chronic MTLE rats, there were spontaneous focal motor seizures observed; the EEG shown typical epileptiform discharge; a widespread cell loss and degeneration, reactive gliosis and plasticity of neurons were noted in the hippocampus by nissl staining, and Timm staining found abnormal mossy fiber terminal staining increased in inner molecular layer of dentate gyrus.
     2. The 2-DE patterns of different stage's hippocampus with chronic MTLE of immature rats were established.110 differentially expressed proteins were identified, which could be divided into several main groups based on their functions:cytoskeleton modification, cell junction, energy metabolism, synaptic plasticity and neurotransmitter release, heat shock proteins, signal pathway regulatory molecules, and etc. The expression levels of several differentially expressed proteins were verified by western blot technique, and the results were coincidence with the proteome analysis.
     3. The administration of VPA in the early stage could control the spontaneous seizures in the immature MTLE rats. The results of nissl and Timm staining shown that VPA could prevent the neurons loss and the abnormal mossy fiber sprouting which conformed the neuroprotective effects of VPA. The synapse-related proteins synapsin-1, dynamin-1 and neurogranin were differentially expressed between the VPA-treated group and un-treated group. The western blot results both in the MTLE rats and human hippocampus were similar to the changes noted in 2-DE.
     Conclusion:
     1. This study successfully established a chronic MTLE model of immature rat, which was well coincidence with human chronic temporal epilepsy in seizure pattern, EEG recording and hippocampus pathology. This may conduce to further studies involving etiology or possible intervention of early stage's hippocampus damage induced adult chronic MTLE
     2. The consecutive and dynamic 2-DE patterns of hippocampus in immature rats with MTLE were established firstly in this study. The 110 differentially expressed proteins identified by 2-DE in combination with MALDI-TOF-MS may be closely related to the mechanism of temporal lobe epilepsy, which provided important clues to elucidate the pathophysiological mechanisms of chronic MTLE and to identify an optimum medication intervention for the development of pharmacological therapies targeted at MTLE.
     3. The administration of VPA in the early stage could obtain seizure free based on the immature MTLE rat models, what provided an optimum medication intervention time of anti-epileptic drugs. The synapse-related proteins synapsin-1、dynamin-1 and neurogranin involved in the pathogenesis of chronic MTLE and the pharmacological effects of VPA, which probable developed into the focus of the study related to intractable epilepsy in the future.
引文
[1]左启华.小儿神经系统疾病(二版).第二版.北京:人民卫生出版社,2002年:216.
    [2]Boeckeler K, Adley K, Xu X, et al. The neuroprotective agent, valproic acid, regulates the mitogen-activated protein kinase pathway through modulation of protein kinase A signalling in Dictyostelium discoideum. Eur J Cell Biol, 2006,85(9-10):1047-1057.
    [3]Bumanglag AV, Sloviter RS. Minimal latency to hippocampal epileptogenesis and clinical epilepsy after perforant pathway stimulation-induced status epilepticus in awake rats. J Comp Neurol,2008, 510(6):561-80.
    [4]de Lanerolle NC, Kim JH, Williamson A, et al. A retrospective analysis of hippocampal pathology in human temporal lobe epilepsy:evidence for distinctive patient subcategories. Epilepsy,2003,44(5):677-87.
    [5]Muramatsu R, Ikegaya Y, Matsuki N, et al. Early-life status epilepticus induces ectopic granule cells in adult mice dentate gyrus. Exp Neurol. 2008;211(2):503-510.
    [6]Coulter DA. Chronic epileptogeoic cellular alterations in thel imbic system after status epilepticus. Epilepsia,1999,40(suppll):S23-33.
    [7]Pereno GL, Beltramino CA, Balaszczuk V. Kainic acid-induced early genes activation and neuronal death in the medial extended amygdala of rats. Exp Toxicol Pathol.2010 Feb 23. [Epub ahead of print]
    [8]Mazzuferi M, Palma E, Martinello K, et al. Enhancement of GABA(A)-current run-down in the hippocampus occurs at the first spontaneous seizure in a model of temporal lobe epilepsy. Proc Natl Acad SciU S A.2010;107(7):3180-5.
    [9]Scorza FA, Arida RM, Naffah-Mazzacoratti Mda G, et al. The pilocarpine model of epilepsy:what have we learned? An Acad Bras Cienc,2009, 81(3):345-65.
    [10]Matos G, Tsai R, Baldo MV, et al. The sleep-wake cycle in adult rats following pilocarpine-induced temporal lobe epilepsy. Epilepsy Behav.2010 Feb 2. [Epub ahead of print]
    [11]Goffin K, Nissinen J, Van Laere K, et al. Cyclicity of spontaneous recurrent seizures in pilocarpine model of temporal lobe epilepsy in rat. Exp Neurol, 2007,205(2):501-5.
    [12]Erakovic V, Zupan G, Varljen J, et al. Electroconvulsive shock in rats: changes in superoxide dismutase and glutathione peroxidase activity. Brain Res Mol Brain Res,2000,76(2):266-74.
    [13]Dos Santos JQ Jr, Longo BM, Blanco MM, et al. Behavioral changes resulting from the administration of cycloheximide in the pilocarpine model of epilepsy. Brain research,2005,1066(1-2):37-48.
    [14]Chun SB, Kochan LD, Delorenzo RJ, et al. Chronic inhibition of Ca2+/calmodulin kinase Ⅱ activity in the pilocarpine model of epilepsy. Brain research,2000,875(1-2):66-77.
    [15]Bender RA, Baram TZ. Epileptogenesis in the developing brain:what can we learn from animal models? Epilepsia,2007,48(5):2-6.
    [16]Hung PL, Lai MC, Yang SN, et al. Aminophylline exacerbates status epilepticus-induced neuronal damages in immature rats:a morphological, motor and behavioral study. Epilepsy Res,2002,49(3):218-225
    [17]Cavalheiro EA, Silva DF, Turski WA, et al. The susceptibility of rats to pilocarpine-induced seizures is age-dependent. Brain Res,1987, 465(1-2):43-58
    [18]Sanabria Ydel C, Arganaraz GA, Lima E, et al. Neurogenesis induced by seizures in the dentate gyrus is not related to mossy fiber sprouting but is age dependent in developing rats. Arq Neuropsiquiatr,2008,66(4):853-860.
    [19]Mathew J, Paul J, Nandhu MS, et al. Increased excitability and metabolism in pilocarpine induced epileptic rats:Effect of Bacopa monnieri. Fitoterapia. 2010 Feb 1. [Epub ahead of print]
    [20]Lothman EW, Bertram EH. Epileptogenic effects of status epileptica. Epilepsia,1993,34Suppl:S59-70.
    [21]Raza M, Blair RE, Sombati S, et al. Evidence that injury-induced changes in hippocampal neuronal calcium dynamics during epileptogenesis canse acquired epilepsy. Proeeedings of the National Academy of Science of the USA(PNAS),2004,101 (50):17522-17527.
    [22]Marinho MM, de Sousa FC, de Bruin VM, et al. Effects of lithium, alone or
    associated with pilocarpine, on muscarinic and dopaminergic receptors and on phosphoinositide metabolism in rat hippocampus and striatum. Neurochem Int,1998,33(4):299-306.
    [23]Turski WA, Cavalheiro EA, Schwarz M, et al. Limbic seizures produced by pilocarpine in rats:behavioral, electroencephalographic and neuropat-hological study. Behav Brain Res,1983,9(3):315-335.
    [24]Cavalheiro EA, Silva DF, Turski WA, et al. The susceptibility of rats to pilocarpine-induced seizures is age-dependent.Brain Res,1987,465(1-2): 43-58.
    [25]Clifford DB, Olney JW, Maniotis A, et al. The functional anatomy and pathology of lithium-pilocarpine and high-dose pilocarpine seizures. Neuroscience,1987,23(3):953-968.
    [26]Ndode-Ekane XE, Hayward N, Grohn O, et al. Vascular changes in epilepsy: functional consequences and association with network plasticity in pilocarpine-induced experimental epilepsy. Neuroscience,2010,166(1): 312-32.
    [27]Danzer SC, He X, Loepke AW, et al. Structural plasticity of dentate granule cell mossy fibers during the development of limbic epilepsy. Hippocampus, 2010,20(1):113-24.
    [28]Mouri G, Jimenez-Mateos E, Engel T, et al. Unilateral hippocampal C A3-predominant damage and short latency epileptogenesis after intra-amygdala microinjection of kainic acid in mice.Brain Res,2008, 1213:140-151.
    [29]Mohamed A, Wyllie E, Ruggieri P, et al.Temporal lobe epilepsy due to hippocampal sclerosis in pediatric candidates for epilepsy surgery. Neurology,2001,56(2):1643-1649.
    [30]Deller T, Haas CA, Freiman TM, et al. Lesion-induced axonal sprouting in the central nervous system.Adv Exp Med Biol,2006,557:101-121.
    [31]Hanaya R, Boehm N, Nehlig A. Dissociation of the immunoreactivity of synaptophysin and GAP-43 during the acute and latent phases of the lithium-pilocarpine model in the immature and adult rat.Exp Neurol,2007, 204(2):720-732
    [32]Zhang LX, Smith MA, Li XL, et al. Apoptosis of hippocampal neurons after
    amygdala kindled seizures.Brain Res Mol Brain Res,1998,55(2):198-208
    [33]Ratzliff AH, Howard AL, Santhakumar V, et al. Rapid deletion of mossy cells does not result in a hyperexcitable dentate gyrus:implications for epileptogenesis.J Neurosci,2004,24(9):2259-2269
    [34]Cross DJ, Cavazos JE. Synaptic reorganization in subiculum and CA3 after early-life status epilepticus in the kainic acid rat model.Epilepsy Res,2007, 73(2):156-165
    [35]Holmes GL, Sarkisian M, Ben-Ari Y, et al. Mossy fiber sprouting after recurrent seizures during early development in rats.J Comp Neurol,1999, 404(4):537-553
    [36]Acharya MM, Hattiangady B, Shetty AK. Progress in neuroprotective strategies for preventing epilepsy.Prog Neurobiol,2008,84(4):363-404
    [37]Zhou YD, Lee S, Jin Z, et al. Arrested maturation of excitatory synapses in autosomal dominant lateral temporal lobe epilepsy. Nat Med,2009; 15 (10):1208-14.
    [38]Pitkanen A, Nissinen J, Lukasiuk K, et al. Association between the density of mossy fiber sprouting and seizure frequency in experimental and human temporal lobe epilepsy. Epilepsia,2000,41Suppl 6:S24-9.
    [39]Pierce JP, Melton J, Punsoni M, et al. Mossy fibers are the primary source of afferent input to ectopic granule cells that are born after pilocarpine-induced seizures. Exp Neurol,2005,196(2):316-31.
    [40]Stief F, Zuschratter W, Hartmann K, et al. Enhanced synaptic excitation-inhibition ratio in hippocampal interneurons of rats with temporal lobe epilepsy. Eur J Neurosci,2007,25(2):519-28.
    [41]Kienzler F, Norwood BA, Sloviter RS. Hippocampal injury, atrophy, synaptic reorganization, and epileptogenesis after perforant pathway stimulation-induced status epilepticus in the mouse. J Comp Neurol,2009, 515(2):181-96.
    [42]Sander JW. Some aspects of prognosis in the epilepsies:a review. Epilepsia, 1993,34(6):1007-1016.
    [43]Scharfman HE, Goodman JH, Du F, et al. Chronic changes in synaptic responses of entorhinal and hippocampal neurons after amino-oxyacetic acid (AOAA)-induced entorhinal cortical neuron loss. J Neurophysiol,1998, 80(6):3031-46.
    [44]Huang CC, Chang YC. The long-term effects of febrile seizures on the hippocampal neuronal plasticity-clinical and experimental evidence. Brain Dev,2009,31(5):383-7.
    [45]Schulze WX, Usadel B. Quantitation in Mass-Spectrometry-Based Proteomics. Annu Rev Plant Biol,2010 Feb 3. [Epub ahead of print]
    [46]Liu XY, Yang JL, Chen LJ, et al. Comparative proteomics and correlated signaling network of rat hippocampus in the pilocarpine model of temporal lobe epilepsy. Proteomics,2008,8(3):582-603.
    [47]Yang JW, Czech T, Felizardio M, et al. Aberrant expression of cytoskeleton proteins in hippocampus from patients with mesial temporal lobe epilepsy. Amino Acids,2006,30(4):477-93.
    [48]Shim KS, Lubec G Drebrin, A dendritic spine protein, is manifold decreased in brains of patients with Alzheimer's disease and Down syndrome. Neurosci Lett,2002,324(3):209-12.
    [49]Weitzdoerfer R, Fountoulakis M, Lubec G. Reduction of actin-related protein complex in fetal Down syndrome brain. Biochem Biophys Res. Commun, 2002,293(2):836-41.
    [50]Hendriksen H, Datson NA, Ghijsen WE, et al. Altered hippocampal gene expression prior to the onset of spontaneous seizures in the rat post-status epilepticus model. Eur J Neurosci,2001,14(9):1475-84.
    [51]唐北沙,张玉虎.癫痫的分子遗传学研究进展.中华医学遗传学杂志,2002,19(6):505-7.
    [52]Cox AG, Winterbourn CC, Hampton MB. Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling. Biochem J.2009; 425(2):313-25.
    [53]Joshi G, Aluise CD, Cole MP, et al. Alterations in brain antioxidant enzymes and redox proteomic identification of oxidized brain proteins induced by the anti-cancer drug adriamycin:implications for oxidative stress-mediated chemobrain. Neuroscience,2010 Jan 20. [Epub ahead of print]
    [54]Matsuda T, Takahashi-Yanaga F, Yoshihara T, et al. Dictyostelium Differentiation-Inducing Factor-1 Binds to Mitochondrial Malate Dehydrogenase and Inhibits Its Activity. J Pharmacol Sci,2010 Feb 20.
    [Epub ahead of print]
    [55]Timofeev I, Bazhenov M, Avramescu S, et al. Posttraumatic Epilepsy:The Roles of Synaptic Plasticity. Neuroscientist,2009 Apr 9. [Epub ahead of print]
    [56]Sarac S, Afzal S, Broholm H, et al. EAAT-1 and EAAT-2 in temporal lobe and hippocampus in intractable temporal lobe epilepsy. APMIS,2009,117 (4):291-301.
    [57]Kapur J. Is epilepsy a disease of synaptic transmission? Epilepsy Curr,2008, 8(5):139-41.
    [58]Wong M. Stabilizing dendritic structure as a novel therapeutic approach for epilepsy. Expert Rev Neurother,2008,8(6):907-15.
    [59]Graves TD. Ion channels and epilepsy. QJM,2006,99(4):201-17.
    [60]Corbett JM, Dunn MJ, Posch A, et al. Posotional reproducibility of protein spots in two-dimensional polyacrylamide gel electrophoresis using immobilized pH gradients isoelectric focusing in the first dimension:An interlaboratory comparison. Electrophoresis,1994,15(8-9):1205-1211.
    [61]Pereno GL, Beltramino CA. Timed changes of synaptic zinc, synaptophysin and MAP(2) in medial extended amygdala of epileptic animals are suggestive of reactive neuroplasticity. Brain Res,2010 Feb 6. [Epub ahead of print]
    [62]Fletcher DA, Mullins RD. Cell mechanics and the cytoskeleton. Nature, 2010,463(7280):485-92.
    [63]Fygenson DK, Needleman DJ, Sneppen K. Variability-based sequence alignment identifies residues responsible for functional differences in alpha and beta tubulin. Protein Sci,2004,13(1):25-31.
    [64]Ouyang Y, Yang XF, Hu XY, et al. Hippocampal seizures cause depolymerization of filamentous actin in neurons independent of acute morphological changes. Brain Res,2007,1143:238-46.
    [65]Schuller E, Gulesserian T, Seidl R, et al. Braint-complex polypeptide 1 (TCP-1) related to its natural substrate betal tubulin is decreased in Alzheimer's disease. Life Sci,2001,69(3):263-70.
    [66]Little E, Tocco G, Baudry M, et al. Induction of glucose-regulated protein (glucose-regulated protein 78/BiP and glucose-regulated protein 94) and heat
    shock protein 70 transcripts in the immature rat brain following status epilepticus. Neuroscience,1996,75(1):209-19.
    [67]Oku T, Kaneko Y, Murofushi K, et al. Phorbol ester-dependent phosphorylation regulates the association of p57/coronin-1 with the actin cytoskeleton. J Biol Chem,2008,283(43):28918-25.
    [68]Dryden SC, Nahhas FA, Nowak JE, et al. Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol Cell Biol,2003,23(9):3173-85.
    [69]Bakolitsa C, Cohen DM, Bankston LA, et al. Structural basis for vinculin activation at sites of cell adhesion. Nature,2004,430(6999):513-5.
    [70]Mylvaganam S, Zhang L, Wu C, et al. Hippocampal seizures alter the expression of the pannexin and connexin transcrip tome. J Neurochem,2010, 112(1):92-102.
    [71]Voss LJ, Jacobson G, Sleigh JW, et al, Excitatory effects of gap junction blockers on cerebral cortex seizure-like activity in rats and mice. Epilepsia, 2009,50(8):1971-8.
    [72]Talhouk RS, Zeinieh MP, Mikati MA, et al. Gap junctional intercellular communication in hypoxia-ischemia-induced neuronal injury. Prog Neurobiol,2008,84(1):57-76.
    [73]Beheshti S, Sayyah M, Golkar M, et al. Changes in hippocampal connexin 36 mRNA and protein levels during epileptogenesis in the kindling model of epilepsy. Prog Neuropsychopharmacol Biol Psychiatry.2010 Feb 12. [Epub ahead of print]
    [74]Samoilova M, Wentlandt K, Adamchik Y, et al. Connexin 43 mimetic peptides inhibit spontaneous epileptiform activity in organotypic hippocampal slice cultures. Exp Neurol,2008,210(2):762-75.
    [75]DeRosa AM, Mui R, Srinivas M, et al. Functional characterization of a naturally occurring Cx50 truncation. Invest Ophthalmol Vis Sci,2006,47 (10):4474-81.
    [76]Fioravante D, Liu RY, Netek AK, et al. Synapsin regulates Basal synaptic strength, synaptic depression, and serotonin-induced facilitation of sensorimotor synapses in Aplysia. J Neurophysiol,2007,98(6):3568-80.
    [77]Hilfiker S, Benfenati F, Doussau F, et al. Structural domains involved in the
    regulation of transmitter release by synapsins. J Neurosci,2005, 25(10):2658-69.
    [78]Gylterud Owe S, Bogen IL, Walaas SI, et al. Ultrastructural quantification of glutamate receptors at excitatory synapses in hippocampus of synapsin I+II double knock-out mice. Neuroscience,2005,136(3):769-77.
    [79]Haberek G, Tomczyk T, Zuchora B, et al. Proconvulsive effects of the mitochondrial respiratory chain inhibitor-3-nitropropionic acid. Eur J Pharmacol,2000,403(3):229-233.
    [80]Mancuso M, Filosto M, Mootha VK, et al. A novel mitochondrial tRNAPhe mutation causes MERRF syndrome. Neurology,2004,62(11):2119-2121.
    [81]Yamamoto HA, Mohanan PV. Effect of alpha-ketoglutarate and oxaloacetate on brain mitochondrial DNA damage and seizures induced by kainic acid in mice. Toxicol Lett,2003,143(2):115-122.
    [82]Finsterer J. Mitochondriopathies. Eur J Neurol,2004,11 (3):163-186.
    [83]Guo F, Sun F, Yu JL, et al. Abnormal expressions of glutamate transporters and metabotropic glutamate receptor 1 in the spontaneously epileptic rat hippocampus. Brain Res Bull,2010,81(4-5):510-6.
    [84]Ueda S, Masutani H, Nakamura H, et al. Redox Control of Cell Death. Antioxidants & Redox Signaling,2002,4(3):405-414.
    [85]刘朝巍,张涛,杨卓.氧化应激损伤线粒体参与癫痫病理过程.中国病理生理杂志,2008,24(1):198-200.
    [86]Zhang Y, Marcillat O, Giulivi C, et al. The oxidative inactivation of mitochondrial electron transport chain components and ATPase. J Biol Chem, 1990,265(27):16330-6.
    [87]Byme E, Trounce I, Dennett X, et al. Progressive form MERRF phenotype in a patient with combined respiratory complex I and IVdeficiencies. J Neurol Sci,1988,88(1-3):327-337
    [88]Kunz WS, Kudin AP, Vielhaber S, et al. Mitochondrial complex I deficiency in the epileptic focus of patients with temporal lobe epilepsy. Ann Neurol, 2000,48(5):766-73.
    [89]Xi ZQ, Sun JJ, Wang XF, et al. HSPBAP1 is found extensively in the anterior temporal neocortex of patients with intractable epilepsy. Synapse, 2007,61(9):741-7.
    [90]Gupta YK, Briyal S. Protective effect of vineatrol against kainic acid induced seizures, oxidative stress and on the expression of heat shock proteins in rats. Eur Neuropsychopharmacol,2006,16(2):85-91.
    [91]Yang T, Hsu C, Liao W, et al. Heat shock protein 70 expression in epilepsy suggests stress rather than protection. Acta Neuropathol,2008, 115(2):219-30.
    [92]Ammon-Treiber S, Grecksch G, Angelidis C, et al. Pentylenetetrazol-kindling in mice overexpressing heat shock protein 70. Naunyn Schmiedebergs Arch Pharmacol,2007,375(2):115-21.
    [93]Saitoh H, Hinchey J. Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J Biol Chem,2000,275 (9):6252-8.
    [94]Kaminska B, Gozdz A, Zawadzka M, et al. MAPK signal transduction underlying brain inflammation and gliosis as therapeutic target. Anat Rec (Hoboken),2009,292(12):1902-13.
    [95]Origlia N, Arancio O, Domenici L, et al. MAPK, beta-amyloid and synaptic dysfunction:the role of RAGE. Expert Rev Neurother,2009,9(11):1635-45.
    [96]Hu B, Liu C, Branlett H, et al. Changes in trk-ERK1/2-CREB/Elk-1 pathways in hippocampal mossy fiber organjzation after traumatic brain injury. Cereb Blood Flow Metab,2004,24(8):934-943.
    [97]Home MM, Guadagno TM. A requirement for MAP kinase in the assembly and maintenance of the mitotic spindle. J Cell Biol,2003,161 (6):1021-8.
    [98]Hoeffer CA, Sanyal S, Ramaswami M. Acute induction of conserved synaptic signaling pathways in Drosophila melanogaster. J Neurosci,2003, 23(15):6362-72.
    [99]Demand J, Luders J, Hoehfeld J. The carboxy-terminal domain of Hsc70 provides binding sites for a distinct set of chaperone cofactors. Mol Cell Biol, 1998,18(4):2023-8.
    [100]Loscher W. Valproate enhances GABA turnover in the substantia nigra. Brain Res,1989,501(1):198-203.
    [101]Bazil CW, Pedley TA. Advances in the medical treatment of epilepsy. Annu Rev Med,1998,49:135-62.
    [102]Landmark CJ. Targets for antiepileptic drugs in the synapse. Med Sci
    Monit,2007,13(1):RA1-7.
    [103]Meshki MH, Subhash MN, Lakshamana K, et al. Sodium valproate induced alterations in monoamine levels in different regions of the rat brain. Neurochem,1999,15(3):67-72.
    [104]Marson AG, Williamson PR, Clough H, et al. Carbamazepine versus valproate monotherapy for epilepsy[J]. Epilepsia.2002;43(6):505-513.
    [105]Leite JP, Cavalheiro EA. Effects of conventional antiepileptic drugs in a model of spontaneous recurrent seizures in rats. Epilepsy Res,1995,20 (2):93-104.
    [106]Madsen KK, Clausen RP, Larsson OM, et al. Synaptic and extrasynaptic GABA transporters as targets for anti-epileptic drugs. J Neurochem,2009; 109 Suppll:139-44.
    [107]Sutula T, Zhang P, Lynch M, et al. Synaptic and axonal remodeling of mossy fibers in he hilus and supragranular region of the dentate gyrus in kainate-treated rats. J Comp Neurol,1998,390(4):578-594.
    [108]Elmer E,Kokaia M,Kokaia Z,et al.Delayed Kindling development after rapidly recurring seizures:relation to mossy fiber sprouting and neurotrophin, GAP-43 and dynorphin gene expression. Brain Res,1996,712:19-34.
    [109]Lopantsev V, Both M, Draguhn A. Rapid plasticity at inhibitory and excitatory synapses in the hippocampus induced by ictal epileptiform discharges. Eur J Neurosci,2009,29(6):1153-64.
    [110]McPherson PS, Czernik AJ, Chilcote TJ, et al. Interaction of Grb2 via its Src homology 3 domains with synaptic proteins including synapsin I. Proc Natl Acad SciU S A,1994,91(14):6486-90.
    [111]Garcia-Hernandez A, Bland BH, Facelli JC, et al. Septo-hippocampal networks in chronic epilepsy. Exp Neurol,2010,222(1):86-92.
    [112]Chen PS, Peng GS, Li G, et al. Valproate protects dopaminergic neurons in midbrain neuron/glia cultures by stimulating the release of neurotrophic factors from astrocytes.Mol Psychiatry,2006,11(12):1116-1125.
    [113]Brandt C, Gastens AM, Sun M, et al.Treatment with valproate after status epilepticus:Effect on neuronal damage, epileptogenesis and behavioral alterations in rats. Neuropharmacology,2006,51(4):789-804.
    [114]Wilot LC, Bernardi A, Frozza RL, et al. Lithium and valproate protect
    hippocampal slices against ATP-induced cell death. Neurochem Res,2007, 32(9):1539-46.
    [115]Loscher W, Vetter M. In vivo effects of aminooxyacetic acid and valproic acid on nerve terminal GABA levels in discrete brain areas of the rat. Biochem Pharmacol,1985,34(10):1747.
    [116]Kwan P, Brodie MJ. Epilepsy after the first drug fails:substitution or add-on? Seizure,2000,9(7):464-8.
    [117]Cavazos JE, Cross DJ. The role of synaptic reorganization in mesial temporal lobe epilepsy. Epilepsy Behav,2006,8(3):483-93.
    [118]Fukata Y, Adesnik H, Iwanaga T, et al. Epilepsy-related ligand/receptor complex LGI1 and ADAM22 regulate synaptic transmission. Science,2006, 313(5794):1792-5.
    [119]Schwartzkroin PA. Hippocampal slices in experimental and human epilepsy. Adv Neurol,1986,44:991-1010.
    [120]Miiller CJ, Bankstahl M, Groticke I, et al. Pilocarpine vs. lithium-pilocarpine for induction of status epilepticus in mice:development of spontaneous seizures, behavioral alterations and neuronal damage. Eur J Pharmacol,2009,619(1-3):15-24.
    [121]Sgobio C, Ghiglieri V, Costa C, et al. Hippocampal synaptic plasticity, memory, and epilepsy:effects of long-term valproic acid treatment. Biol Psychiatry,2010,67(6):567-74.
    [122]Zhang MM, Xiao C, Yu K, et al. Effects of sodium valproate on synaptic plasticity in the CA1 region of rat hippocampus. Food Chem Toxicol,2003, 41(11):1617-23.
    [123]Greengard P, Browning MD, McGuinness TL, et al. Synapsin I, a phosphoprotein associated with synaptic vesicles:possible role in regulation of neurotransmitter release. Adv Exp Med Biol,1987,221:135-153
    [124]Fournier NM, Darnbrough AL, Wintink AJ, et al. Altered Synapsin I immunoreactivity and fear behavior in male and female rats subjected to long-term amygdala kindling.Behav Brain Res,2009,196(1):106-115
    [125]Marti E, Ferrer I, Blasi J. Transient increase of synapsin I immunoreactivity in the mossy fiber layer of the hippocampus after transient forebrain ischemia in the Mongolian gerbil. Brain Res,1999,824(2):153-160
    [126]Hosaka M, Hammer RE, Sudhof TC. A hosphor-switch controls the dynamic association of synapsins with synaptic vesicles. Neuron,1999,24 (2):377-387
    [127]Christopher K, Broadse K. Genetic studies in Drosophila:vesicle pools and cytoskeleton-based regulation of synaptic transmission. Neuror-Port, 2000,11(18):45-53
    [128]Chi P, Greengard P, Ryan TA. Synapsin dispersion and reclustering during synaptic activity. Nat Neurosci,2001,4(12):1187-1193
    [129]Goodship J, Garcia CC, Blair HJ, et al. Deficiency of synapsin-1, a synaptic vesicle protein, causes epilepsy. J MED Genet,2003,40:21
    [130]Terada S, Tsujimoto T, Takei Y, et al. Impairment of inhibitory synaptic transmission in mice lacking synapsin-1. J Cell Biol,1999,145(5): 1039-1048.
    [131]Garcia CC, Blair HJ, Seager M, et al. Identification of a mutation in synapsin I,a synaptic vesicle protein, in a family with epilepsy. J MED Genet, 2004,41(3):183-186.
    [132]Evergren E, Tomilin N, Vasylieva E, et al. A pre-embedding immunogold approach for detection of synaptic endocytic proteins in situ. J Neurosci Methods,2004,135(1-2):169-74.
    [133]Witke W, Podtelejnikov AV, Di Nardo A, et al. In mouse brain profilin I and profilin II associate with regulators of the endocytic pathway and actin assembly. EMBO J,1998,17(4):967-76.
    [134]Kubota Y, Putkey JA, Shouval HZ, et al. IQ-motif proteins influence intracellular free Ca2+in hippocampal neurons through their interactions with calmodulin. J Neurophysiol,2008,99(1):264-76.
    [135]Huang KP, Huang FL, J ger T, et al. Neurogranin/RC3 enhances long-term potentiation and learning by promoting calcium-mediated signaling. J Neurosci,2004,24(47):10660-9.
    [136]Gao Y, Tatavarty V, Korza G, et al. Multiplexed dendritic targeting of alpha calcium calmodulin-dependent protein kinase Ⅱ, neurogranin, and activity-regulated cytoskeleton-associated protein RNAs by the A2 pathway. Mol Biol Cell,2008,19(5):2311-27.
    [1]Wilikins MR, Pasquali C, Appel RD, et al. From Proteins to Proteomes: Large Scale Protein Identification by Two-Dimensional Electrophoresis and Amino Acid Analysis. Biotechnology,1996,14(1):61-65.
    [2]Premsler T, Zahedi RP, Lewandrowski U, et al. Recent advances in yeast organelle and membrane proteomics. Proteomics.2009; 9(20):4731-43.
    [3]Pienaar IS, Daniels WM, Gotz J. Neuroproteomics as a promising tool in Parkinson's disease research. J Neural Transm,2008,115(10):1413-30.
    [4]Bayes A, Grant SG. Neuroproteomics:understanding the molecular
    organization and complexity of the brain. Nat Rev Neurosci,2009,10(9): 635-46.
    [5]Sun F, Cavalli V. Neuroproteomics approaches to decipher neuronal regeneration and degeneration. Mol Cell Proteomics,2010,9(5):963-75.
    [6]Andrade EC, Krueger DD, Nairn AC. Recent advances in neuroproteomics. Curr Opin Mol Ther,2007,9(3):270-81.
    [7]Focking M, Boersema PJ, O'Donoghue N, et al.2-D DIGE as a quantitative tool for investigating the HUPO Brain Proteome Project mouse series. Proteomics,2006,6(18):4914-4931.
    [8]Goldman D, Merril CR, Ebert MH. Two-dimensional gel electrophoresis of cerebrospinal fluid proteins. Clin Chem,1980,26(9):1317-22.
    [9]Blennow K, Hampel H, Weiner M, et al. Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol,2010,6(3):131-44.
    [10]Westman-Brinkmalm A, Ruetschi U, Portelius E, et al. Proteomics/ peptidomics tools to find CSF biomarkers for neurodegenerative diseases. Front Biosci,2009,14:1793-806.
    [11]Pan S, Zhu D, Quinn JF, et al. A combined dataset of human cerebrospinal fluid proteins identified by multi-dimensional chromatography and tandem mass spectrometry. Proteomics,2007,7(3):469-73.
    [12]Yang JW, Czech T, Lubec G. Proteomic profiling of human hippocampus. Electrophoresis,2004,25(7-8):1169-74.
    [13]Tsugita A, Kawakami T, Uchida T, etal. Proteomic analysis of mouse brain: two dimensional electrophoresis profiles of tissue proteins during the course of aging. Electrophoresis,2000,21(9):1853-1871.
    [14]Jenkins LW, Peters GW, Dixon CE, et al. Conventional and functional proteomics using large format two-dimensional gel electrophoresis 24 hours after controlled cortical impact in postnatal day 17 rats. J Neurotrauma,2002, 19(6):715-40.
    [15]Ramos-Ortolaza DL, Bushlin I, et al. Quantitative neuroproteomics of the synapse. Methods Mol Biol,2010,615:227-46.
    [16]Ramos-Ortolaza DL, Bushlin I, Abul-Husn N, et al. Quantitative neuroproteomics of the synapse. Methods Mol Biol,2010,615:227-46.
    [17]Elias GM, Funke L, Stein V, et al. Synapse-specific and developmentally
    regulated targeting of AMPA receptors by a family of MAGUK scaffolding proteins. Neuron,2006,52(2):307-20.
    [18]Perlson E, Jeong GB, Ross JL, et al. A switch in retrograde signaling from survival to stress in rapid-onset neurodegeneration. J Neurosci,2009,29 (31):9903-17.
    [19]Ham BM, Jayachandran H, Yang F, et al. Novel Ser/Thr protein phosphatase 5 (PP5) regulated targets during DNA damage identified by proteomics analysis. J Proteome Res,2010,9(2):945-53.
    [20]Filiou MD, Bisle B, Reckow S, et al. Profiling of mouse synaptosome proteome and phosphoproteome by IEF. Electrophoresis.2010 Mar 22. [Epub ahead of print].
    [21]Trinidad JC, Thalhammer A, Specht CG, et al. Quantitative analysis of synaptic phosphorylation and protein expression. Mol Cell Proteomics,2008, 7(4):684-96.
    [22]Mann M, Jensen ON. Proteomic analysis of post-translational modifications. Nat Biotechnol,2003,21(3):255-61.
    [23]Witze ES, Old WM, Resing KA, et al. Mapping protein post-translational modifications with mass spectrometry. Nat Methods,2007,4(10):798-806.
    [24]Meller R, Thompson SJ, Lusardi TA, et al. Ubiquitin proteasome-mediated synaptic reorganization:a novel mechanism underlying rapid ischemic tolerance. J Neurosci,2008,28(1):50-9.
    [25]Khidekel N, Ficarro SB, Clark PM, et al. Probing the dynamics of O-GlcNAc glycosylation in the brain using quantitative proteomics. Nat Chem Biol,2007,3(6):339-48.
    [26]Kanninen K, Goldsteins G, Auriola S, et al. Glycosylation changes in Alzheimer's disease as revealed by a proteomic approach.Neurosci Lett, 2004,367(2):235-40.
    [27]Liu M, Li CF, Chen HS, et al. Differential expression of proteomics models of colorectal cancer, colorectal benign disease and healthy controls. Proteome Sci,2010,8(1):16.
    [28]Baracskay P, Kiglics V, Kekesi KA, et al. Status epilepticus affects the gigantocellular network of the pontine reticular formation. BMC Neurosci, 2009,10:133.
    [29]Oli MW, Hayes RL, Robinson G, et al. Traumatic brain injury biomarkers: from pipeline to diagnostic assay development. Methods Mol Biol.2009, 566:293-302.
    [30]Ottervald J, Franzen B, Nilsson K, et al. Multiple sclerosis:Identification and clinical evaluation of novel CSF biomarkers. J Proteomics.2010 Jan 20. [Epub ahead of print]
    [31]Zhou Y, Bhatia I, Cai Z, He QY, et al. Proteomic analysis of neonatal mouse brain:evidence for hypoxia-and ischemia-induced dephosphorylation of collapsin response mediator proteins. J Proteome Res,2008,7(6):2507-15.
    [32]Liu XY, Yang JL, Chen LJ, et al. Comparative proteomics and correlated signaling network of rat hippocampus in the pilocarpine model of temporal lobe epilepsy. Proteomics,2008,8(3):582-603.
    [33]Peryl A, Krapfenbauer K, SlavcY, etal. Protein profiles of medulloblastoma cell lines DAOY and D283:Identification of tumor-related proteins and principles. Proteomics,2003,3(9):1781
    [34]Prasannan L, Misek DE, Hinderer R, et al. Identification of beta-tubulin isoforms as tumor antigens in neuroblastoma. Clin Cancer Res,2000,6(10): 3949-56.
    [35]Mattow J, Schmidt F, Hohenwarter W, et al. Protein identification and tracking in two-dimensional electrophoretic gels by minimal protein identifiers. Proteomics,2004,4(10):2927-41.
    [36]Jungblut PR, Schaible UE, Mollenkopf HJ, et al. Comparative proteome analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains:towards functional genomics of microbial pathogens. Mol Microbiol, 1999,33(6):1103-17.
    [37]Lovestone S, Giintert A, Hye A, et al. Proteomics of Alzheimer's disease: understanding mechanisms and seeking biomarkers. Expert Rev Proteomics, 2007,4(2):227-38.
    [38]Blennow K, Hampel H, Weiner M, et al. Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol,2010,6(3):131-44.
    [39]Zabel C, Mao L, Woodman B, et al. A large number of protein expression changes occur early in life and precede phenotype onset in a mouse model for huntington disease. Mol Cell Proteomics,2009,8(4):720-34.
    [40]Boutell JM, Wood JD, Harper PS, et al. Huntingtin interacts with
    cystathionine beta-synthase. Hum Mol Genet,1998,7(3):371-8.
    [41]Taurines R, Dudley E, Grassl J, et al. Proteomic research in psychiatry. J Psychopharmacol.2010 Feb 16. [Epub ahead of print]
    [42]Cirelli C, Pfister-Genskow M, McCarthy D, et al. Proteomic profiling of the rat cerebral cortex in sleep and waking. Arch Ital Biol,2009,147(3):59-68.
    [43]Johnston-Wilson NL, Sims CD, Hofmann JP, et al. Disease-specific alterations in frontal cortex brain proteins in schizophrenia, bipolar disorder, and major depressive disorder. The Stanley Neuropathology Consortium. Mol Psychiatry,2000,5(2):142-9.
    [44]Fu WJ, Stromberg AJ, Viele K, et al. Statistics and bioinformatics in nutritional sciences:analysis of complex data in the era of systems biology. J Nutr Biochem.2010 Mar 15. [Epub ahead of print]
    [45]Pocklington AJ, Cumiskey M, Armstrong JD, et al. The proteomes of neurotransmitter receptor complexes form modular networks with distributed functionality underlying plasticity and behaviour. Mol Syst Biol, 2006,2: 2006.0023.
    [46]Coba MP, Pocklington AJ, Collins MO, et al. Neurotransmitters drive combinatorial multistate postsynaptic density networks. Sci Signal,2009,2 (68):ra19.
    [47]Abul-Husn NS, Bushlin I, Moron JA, et al. Systems approach to explore components and interactions in the presynapse. Proteomics,2009,9 (12): 3303-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700