用户名: 密码: 验证码:
京津冀地区亚微米气溶胶特征及其变化的观测分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气亚微米气溶胶的物理化学特性是认识区域尺度大气颗粒物引起大气能见度下降,造成灰霾天气,云凝结核形成等的基础。亚微米气溶胶及其化学组份的质量浓度和粒径分布特点的观测研究,是理解二次气溶胶形成、变化过程,探讨灰霾成因不可缺少的条件。
     京津冀地区作为我国华北区域高污染环境的代表,了解该地区亚微米气溶胶的形成和变化过程,研究区域灰霾的成因,制定区域污染的防控措施是解决其大气污染问题的关键。本论文的研究工作分别在北京,固城和武清三个观测点,利用国际先进的大气气溶胶化学组份、粒径分布以及数谱分布观测系统,对高污染背景-京津冀地区亚微米气溶胶进行高时间分辨率,长期,连续的观测。归纳该区域亚微米气溶胶及其化学组份的整体浓度水平,分析有机气溶胶的形成及其来源,研究新粒子生成事件中二次气溶胶形成、变化过程,探讨气溶胶老化过程与区域灰霾形成的联系。为气候变化模式的完善,粒子核化与增长模式的建立与评价提供数据和理论支持。
     北京观测点从2007年6月至2009年6月开展了亚微米气溶胶理化特性的长期、系统观测。固城分别在2006年12月和2007年5月开展两次观测实验,武清在2009年7,8月进行了相应的观测实验。观测结果显示,京津冀地区亚微米气溶胶及其化学组份在浓度水平上变化很大,平均浓度水平明显高于发达国家浓度水平。其中北京亚微米气溶胶平均浓度为60μg/m3,有机物27μg/m3,硫酸盐13μg/m3,硝酸盐11μg/m3,铵盐7μg/m3,氯化物1.5μg/m3。固城冬季气溶胶平均浓度达79μg/m3,春季平均浓度为24.4μg/m3。武清夏季气溶胶平均浓度20μg/m3,明显低于北京夏季平均浓度。所有观测事实显示有机物在大气气溶胶中占有较高的比例。
     亚微米气溶胶化学组份质量浓度的日变化特征表现为傍晚到凌晨高,白天偏低。在北京,有机物中午出现浓度峰值,固城和武清没有发现类似的现象。气溶胶及化学组份的粒径分布特点显示出四季均以粒径小于2.5微米的细粒子为主,北京冬季气溶胶超细粒子占的比重较其他季节偏多,而有机气溶胶的粒径分布范围较无机气溶胶要宽。气象条件对亚微米气溶胶质量浓度和粒径分布特点具有一定的影响。稳定的气象条件有利于亚微米气溶胶的累积,降水对气溶胶质量浓度具有非常明显的去除效果,风速增加对气溶胶质量浓度的降低作用明显。
     环境有机气溶胶按其来源不同大体分为碳氢类有机气溶胶,部分氧化有机气溶胶和完全氧化有机气溶胶三类。其中,碳氢类有机气溶胶主要来源于本地燃烧源的排放,氧化有机气溶胶与区域污染的排放和传输存在着密切的关系。北京冬季二次有机气溶胶氧化程度较其他季节偏弱,有机气溶胶氧化性与环境臭氧的变化存在一定的联系。
     观测期间,区域型新粒子生成事件时有发生,尤其在春季发生的频率更大。冬季发生新粒子生成事件的频率较小。北京新粒子生成事件在冷空气过境后,降水后和污染天气条件下均可以观测到。其中,亚微米气溶胶化学组份在粒子的形成和增长过程中扮演着不同的角色。有机物和硫酸盐在粒子形成、增长过程中,起着关键性的作用,而硝酸盐几乎不参与粒子成核,在粒子增长初期,硝酸盐的贡献也较少,在粒子老化阶段有一定的贡献。有机物在粒子长大初期质量浓度的增长速率一般高于硫酸盐的增长速率,而硫酸盐在粒子长大的后期增长较快。
     高温,高湿和相对稳定的气象条件容易使新生成的气溶胶粒子吸湿增长,凝结、积聚最后形成老化气溶胶。随着硫酸盐、硝酸盐气溶胶吸湿增长过程的发生,有机气溶胶也随之凝结增长,二次可溶性有机气溶胶可能在其中起到了一定的作用。老化气溶胶主要化学组份粒径分布谱的峰值粒径均在500nm-600nm之间。老化气溶胶高浓度水平以及粒子在积聚模态大量堆积的分布特点是造成区域霾形成的重要原因。
     根据气溶胶的化学组成研究北京大气气溶胶酸性特点。结果表明,除2008年8月,9月气溶胶呈中性外,其余的观测时段,北京大气气溶胶均表现出不同程度的酸性,冬季酸性最强,秋季酸性最弱。
The physical and chemical feature of sub-micron aerosol is the basis to understand metropolitan low visibility, haze and CCN formation in the regional scale. Monitoring for chemical components and the size distribution of these sub-micro particles can help us to study on the secondary aerosol formation and evolution process. It is also the necessary condition for insighting into the reason of haze in city.
     BIV (Beijing and its vicinity) is the represent for north of China. It is suffered from the serious air pollution. In order to solve the issue of air pollution, it is an urgent task to know the formation and evolution of sub-micron aerosol, the reason of haze, and make the controlling measures. Three observation stations were set up for the long-term measurements of the chemical components, size distribution and number concentration of sub-micro aerosol. Based on the measured data, the total condition of these stations, the sources of different organic aerosol, formation process of secondary sub-micron, the relationship between aged aerosol and haze were further discussed in this study. All of these results can supply the valuable parameters for both climate change model and particle nuclear and growth model.
     From June 2007 to June 2009, measurements of physical and chemical characteristics for sub-micro aerosol have been taken in Beijing. Two campaigns in December 2006 and May 2007were explored in Gucheng station. One campaign in July 2009 was made in Wuqing station. It shows that the concentration of sub-micron aerosol in BIV is higher than that in the cities in developed countries significantly. The average concentration of sub-micron aerosol in Beijing is 60μg/m3, which contains 27μg/m3 organics, 13μg/m3 Sulfate,11μg/m3 nitrate, 7μg/m3 ammonium and 1.5μg/m3 chloride. For Gucheng, the average concentration in winter and spring is 79μg/m3 and 24.4μg/m3 respectively. For Wuqing, the average concentration of sub-micron aerosol is 20μg/m3, which is lower than that in Beijing. During all of these measurements, it is concluded that organics is the dominant components in the sub-micron aerosol.
     The diurnal cycle of sub-micron and the chemical components shows high concentration from evening to early morning, and low concentration in daytime. In Beijing, additional peak in noon was found for organics, but wasn’t found in Gucheng and Wuqing, The accumulation mode particles in sub-micron aerosol is higher than others in different season. In winter, there are more aitken mode particles than other season. The size distribution for organics is wider than inorganic species. The sub-micron mass concentration and the size distribution can also be influenced by meteorological factors. Both Precipitant and high wind speed can reduce the mass concentration effectively, but the wind direction impact little on the mass concentration.
     It is classified into three kind of organic aerosol according to the sources, which is hydrocarbon organic aerosol (HOA), less oxidized organic aerosol (OOA II) and more oxidized organic aerosol (OOA I). It is shown that most of HOA come from local combustion emission and the oxidized organic aerosol come from regional pollutants transportation and gas-particle transformation. Sulfate and Nitrate correlate well with OOA I in winter, but they correlate well with but OOA II in other seasons.
     During measurements, regional new particle formation events (NPFs) were observed frequently. Especially in spring, more NPF events were observed than other seasons, and less NPF events were observed in winter. The NPF events occurred not only after cold wind blow, precipitant but also in high air pollution background. The chemical components in sub-micron aerosol play different roles in this kind of events. Organics and sulfate are the necessary components in the particle formation and growth, but nitrate doesn’t involve into the formation and early growth process. Generally speaking, during the earlier growth of particles, the growth rate of organics is higher than that of sulfate, but during the later growth of particles, sulfate grows faster than organics.
     The higher temperature, humidity and stable meteorological situation are very benefit for particles hygroscopic growth, condensation and coagulation, and the aged aerosol were formed accordingly. With the classical hygroscopic growth of nitrate and sulfate, organics also experience the condensation growth, and the secondary soluble organics may play some roles in this growth. The size distribution of aged aerosol is always dominant by accumulation mode particles with peak size at 500-600 nm. The high concentration and the accumulation mode features of aged aerosol are the main reason for haze.
     The acidity of aerosol varied in Beijing varies in different seasons and months. Except August and September in 2008, which are neutral aerosol, all the others measurements show that the aerosol in Beijing are acid. Especially in winter, it is strong acid than other season. In fall, the aerosol acidity is weaker.
引文
(USEPA), U. S. E. P. A. (1999), Determination of the strong acidity of atmospheric fine particles (<2.5 mm) EPA-625/R-96/010a Cent. of the Environ. Res. Inf, Cincinnati, Ohio.
    A.Baron, P., and K. Willeke (2005), Aerosol measurement Principles, Techniques, and Applications, John Wiley & Sons.
    Alfarra (2004a), Insights into Atmospheric Organic Aerosols Using An Aerosol Mass Spectrometer, Univ. of Manchester, U. K.
    Alfarra, M. R., et al (2004b), Characteristics of urban and rural organic particulate in the Lower Fraser Valley using two Aerodyne aerosol mass spectrometers, Atmos. Environ., 38, 5745-5758.
    Allan J D, et al. (2003), Quantitative sampling using an Aerodyne aerosol mass spectrometer 1. Techniques of data interpretation and error analysis, Journal of geophysical research, 108, 4090, doi:4010.1029/2002JD002358.
    Allan J D, et al. (2004), Submicron aerosol composition at Trinidad Head, California, during ITCT 2K2: Its relationship with gas phase volatile organic carbon and assessment of instrument performance, Journal of geophysical research, 109, doi:10.1029/2003JD004208.
    Allen, J., and R. Gould (1981), Mass spectrometric analyzer for individual aerosol particles, Rev Sci Instrum, 52, 804-809.
    Andersen, H. V., et al. (1999), Measurements of ammonia concentrations, fluxes, and dry deposition velocities to a spruce forest 1991-1995, Atm. Environment, 33, 1367-1383.
    Bahreini R, J. J., Wang J, Flagan RC, Seinfeld JH, Jayne JT,Worsnop DR (2003), Aircraft-based aerosol size and composition measurements during ACE-Asia using an Aerodyne aerosol mass spectrometer., J Geophys Res-Atmos, 108:8645, doi:8610.1029/2002JD003226.
    Bates, T., et al. (2005), Dominance of organic aerosols in the marine boundary layer over the Gulf of Maine during NEAQS 2002 and their role in aerosol light scattering, J Geophys Res, 110:D18202, doi:10.1029/2005JD005797.
    Birmili, W., et al. (2003), The Hohenpeissenberg aerosol formation experiment (HAFEX): A long-term study including sizeresolved aerosol, H2SO4, OH, and monoterpenes measurements, Atmos.Chem. Phys, 3, 361-376.
    Brendan, M. M., et al. (2008), Collection Efficiencies in an Aerodyne Aerosol Mass Spectrometer as a Function of Particle Phase for Laboratory Generated Aerosols, Aerosol Science and Technology, 42, 884–898.
    Broekhuizen K, C. R.-W., Leaitch WR, Li S-M (2005), Closure between measured and modeled cloud condensation nuclei(CCN) using size-resolved aerosol compositions in downtown Toronto.Atmos Chem Phys Discuss Abbatt JPD, 5, 6263–6293.
    Cabalo, J., et al. (2000), Two-color laser induced evaporation dynamics of liquid aerosols probed by time-of-flight mass spectrometry, Aerosol Science and Technology, 33(1-2), 3-19.
    Canagaratna, M. R., et al. (2004), Chase studies of particulate emissions from in-use New York city vehicles, Aerosol Sci.Technol., 38, 555-573, 510.1080/02786820490465504.
    Canagaratna, M. R., et al. (2007), Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer, Mass Spec.Rev., 26, 185– 222.
    Chan, M. N., et al. (2011), Influence of aerosol acidity on the chemical composition of secondary organic aerosol from-caryophyllene, Atmos. Chem. Phys, 11, 1735-1751.
    Clarke, A. D., et al. (1999), Particle production near marine clouds: Sulfuric acid and predictions from classical binary nucleation, Geophys. Res. Lett, 26(16), 2425-2428.
    Clarke, A. D., et al. (2004), Size distributions and mixtures of dust and black carbon aerosol in Asian outflow: Physiochemistry and optical properties, J.Geophy.Res, 109, D15S09, doi:10.1029/2003JD004378.
    Clement, C. F., et al. (2002), Particle production in the outflow of a mid-latitude storm, J. Geophys. Res, 107(D21), 4559, doi:10.1029/2001JD001352.
    Conant WC, V. T., Rissman TA, Varutbangkul V, Jonsson HH, Nenes A, Jimenez JL, Delia AE, Bahreini R, Roberts GC, Flagan RC, Seinfeld JH (2004), Aerosol-cloud drop concentration closure in warm cumulus, J Geophys Res Atmos, 109:D13204.
    Crosier, J., et al. (2007), Chemical composition of summertime Aerosol in the Po Valley (Italy), North Adriatic and Black Sea, Q.J.R.Meterol.Soc, 133(S1), 61-75.
    Dal Maso, M., et al. (2005), Formation and growth of fresh atmospheric aerosols: eight years of aerosol size distribution data from SMEAR II, Hyytia¨la¨, Finland, Boreal Environ. Res, 10(5), 323–336.
    Dall'Osto, M., et al. (2005), Studies of aerosol at a coastal site using two aerosol mass spectrometry instruments and identification of biogenic particle types, Atmos Chem Phys Discuss, 5, 10799–10838.
    Delia, A. E. (2004), Real-Time Measurements of Non-Refractory Particle Composition and Interactions at Forested Sites.
    Dockery, D., et al. (1993), An association between air pollution and mortality in six US cities, N. Engl. J.Med., 329, 1753-1759.
    Dominici, F., et al. (2006), Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases, JAMA, 295, 1127-1134.
    Doyle, G. J. (1961), Self-nucleation in the sulfuric acid-water system, J. Chem. Phys, 35(3), 795- 799.
    Drewnick, F., et al., ( 2004), Measurement of ambient aerosol composition during the PMTACS-NY 2001 using an aerosol mass spectrometer. Part I: mass concentrations, Aerosol Sci. Technol, 38 (S1), 92–103.
    Duan, F. K., et al. (2006), Concentration and chemical characteristics of PM2.5 in Beijing China: 2001-2002, Sci.Total Environ., 355, 264-275.
    Duan, F. K., et al. (2004), Identification and estimate of biomass burning contribution to the urban aerosolorganic carbon concentrations in Beijing, Atmos.Environ, 38, 1275-1282.
    Finlayson-Pitts, B. J., and J. N. Pitts (1999), Chemistry of the Upper and Lower Atmosphere, Academic Press,San Diego.
    Flagan, R. (1993), Measurement challenges in Atmospheric Chemistry, Newman L. ed.; ACS: Washington DC.
    Friedlander, S. (1971), The characterization of aerosols distributed with respect to size and chemical composition. II. Classification and design of aerosol measuring devices., J. Aerosol Sci, 2, 331-340.
    Griffin, R. J., et al. (1999), Organic aerosol formation from the oxidation of biogenic hydrocarbons, J. Geophys. Res, 104, 3555-3567.
    Guinot, B. H., et al. (2007), Beijing aerosol: Atmospheric interactions and new trends, J. Geophys. Res, 112, D14314, doi:10.1029/2006JD008195.
    Hamed, A., et al. (2010), Changes in the production rate of secondary aerosol particles in Central Europe in view of decreasing SO2 emissions between 1996 and 2006, Atmos. Chem. Phys, 10, 1071–1091.
    He, K. B., et al. (2001), The characteristics of PM2.5 in Beijing, China, Atmospheric Environment, 35, 4959-4970.
    He, L. Y., et al. (2010), Characterization of high-resolution aerosol mass spectra of primary organic aerosol emissions from Chinese cooking and biomass burning, Atmos. Chem. Phys. Discuss, 10, 21237–21257.
    Hogrefe O, et al. (2004), Semicontinuous PM2.5 sulfate and nitrate measurements at an urban and a rural location in NewYork: PMTACS-NY summer 2001 and 2002 campaigns, J Air Waste Manage Assoc, 54, 1040–1060.
    Hu, X. (2005), Observational study of wind fields, temperature fields over Beijing area in summer and winter, Universitatis Pekinensis (Acta Scientiarum Naturalium) 41 (3), 399-407.
    Iinuma, Y., et al. (2004), Aerosol-chamber study of the a-pinene/ozone reaction: influence of aerosol acidity on aerosol yields and products,, Atmos. Environ, 38, 761-773.
    IPCC (2007), In: Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)The scientific basis, contribution of working group I to the Fourth Assessment Report of the Intergovernmental Panel on climate change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
    Jacobson, M. C., et al. (2000), Organic Atmospheric Aerosols: Review and State of the Science., Rev. Geophys, 38, 267-294.
    Jacobson, M. Z. (2000), Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols, Nature, 409, 695-697.
    Jang, M., et al. (2002), Heterogeneous atmospheric aerosol production by acid-catalyzed aerosol-phase reactions, Science, 298, 814-817.
    Jayne, J. T., et al. (2000), Development of an Aerosol Mass Spectrometer for Size and CompositionAnalysis of Submicron Particles, Aerosol Science and Technology, 33:49--70.
    Jimenez, J. L., et al. (2003), New particle formation from photooxidation of diiodomethane (CH2I2), J. Geophys. Res, 108(D10)4318, doi:10.1029/2002JD002452.
    Jimenez, J. L., et al. (2009a), Evolution of Organic Aerosols in the Atmosphere, Science, 326,DOI: 10.1126/science.1180353, 1525.
    Jimenez, J. L., et al. (2009b), Evolution of Organic Aerosols in the Atmosphere, Science, 326, 1525-1529.
    John T. Jayne, D. C. L., Xuefeng Zhang, et al. (2000), Development of an Aerosol Mass Spectrometer for Size and Composition Analysis of Submicron Particles, Aerosol Science and Technology, 33:49--70.
    Koutrakis, P., et al. (1988), An improved method for measuring aerosol strong acidity-Results from a 9-month study in St. Louis, Missouri and Kingston, Tennessee, Atmos. Environ., 22, 157-162.
    Kulmala, M. (2003), How particles nucleate and grow,, Science, 302(5647), 1000–1001.
    Kulmala, M., et al. (2001), On the formation, growth and composition of nucleation mode particles, Tellus, Ser. B,, 53, 479–490.
    Kulmala, M., et al. (2005), On the growth of nucleation mode particles: Source rates of condensable vapor in polluted and clean environments, Atmos. Chem. Phys., 5, 409–416.
    Kulmala, M., et al. (2000), Stable sulphate clusters as a source of new atmospheric particles, Nature, 404(6773), 66-69.
    Kulmala, M., et al. (1998), Analysis of the growth of nucleation mode particles observed in Boreal forest, Tellus Ser. B, 50, 449-462.
    Lanz, V. A., et al. (2007), Source apportionment of submicron organic aerosols at an urban site by factor analytical modelling of aerosol mass spectra, Atmos. Chem. Phys, 7, 1503-1522.
    Lefer, B. L., and R. W. Talbot (2001), Summertime measurements of aerosol NO3- and NH4 + at a northeastern U. S. site, J. Geophys. Res, 106, 20,365-320,378.
    M.Wallace, J., and P. V.Hobbs (2006), Atmospheric Science, Second Edition, Elsevier Inc. Marcolli, C., et al. (2006), Cluster Analysis of the Organic Peaks in Bulk Mass Spectra Obtained During
    the 2002 New England Air Quality Study with an Aerodyne Aerosol Mass Spectrometer, Atmos. Chem. Phys, 6, 5649–5666.
    McLafferty, F. W., and F. Ture?ek (1993), Interpretation of Mass Spectra. , University Science Books, Sausalito, CA.
    Murphy, D. M. (2006), The design of single particle laser mass spectrometers, Mass Spec Rev, DOI 10.1002/mas.20113
    N.Bellouin, et al. (2005), Global estimate of aerosol direct radiative forcing from satellite measurements, Nature, 438, 1138-1141.
    Noble, C. A., and K. A. Prather (2000), Real-time single particle mass spectrometry: A historical review of a quarter century of the chemical analysis of aerosols, Mass Spectrometry Reviews, 19(4), 248-274.
    O’Dowd, et al. (2002), A dedicated study of New Particle Formation and Fate in the Coastal Environment (PARFORCE): Overview of objectives and achievements, Geophys. Res.-Atmos., 107, 8108.
    Paatero, P. a. T. (1994), Positive Matrix Factorization: a nonnegative factor model with optimal utilization of error estimates of data values, Environmetrics, 5, 111–126.
    Pope CA, et al. (2002), Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution., JAMA, 287, 1132-1141.
    Richter, A., et al. (2005), Increase in tropospheric nitrogen dioxide over China observed from space, Nature, 437, 129-132.
    RupakhetiM, et al. (2005), An intensive study of the size and composition of submicron atmospheric aerosols at a rural site in Ontario, Canada., Aerosol Sci Technol, 39, 722–736.
    Salcedo, D., et al. (2006), Characterization of ambient aerosols in Mexico City during the MCMA-2003 campaign with Aerosol Mass Spectrometry : Results from the CENICA Supersite, Atmos Chem Phys, 6, 925–946.
    Schneider J, et al. (2004), Online mass spectrometric aerosol measurements during theMINOScampaign (Crete, August 2001), Atmos Chem Phys, 4, 65–80.
    Schneider J, H. S., Hock BN,Weimer S, Borrmann S, Fiebig M, Petzold A, Busen R, Ka¨rcher B ( 2005a.), Aircraft-based operation of an aerosol mass spectrometer: Measurements of tropospheric aerosol composition., J Aerosol Sci 37, 839–857.
    Shen, X. J., et al. (2011), First long-term study of particle number size distributions and new particle formation events of regional aerosol in the North China Plain, Atmos Chem Phys, 11, 1565-1580.
    Sinha, M. P., et al. (1982), Particle analysis by mass spectrometry, J Colloid Interface Sci, 87, 140-153.
    Smith-Palmer, T., and B. R. Wentzell (1986), Ambient acid aerosol in rural Nova Scotia, Water Air Soil Pollut, 30, 837- 843.
    Smith, J. N., et al. (2005), Chemical composition of atmospheric nanoparticles during nucleation events in Atlanta, J. Geophys.Res, doi:10.1029/2005JD005912.
    Spengler, J. D., et al. (1990), Acid air and health, Environ. Sci. Technol, 24, 946-955.
    Streets, D. G., et al. (2003), An Inventory of Gaseous and Primary Aerosol Emissions in Asia in the Year 2000, J. Geophys. Res, 108, doi:10.1029/2002JD003093.
    Sullivan, R., and K. Prather (2005), Recent advances in our understanding of atmospheric chemistry and climate made possible by on-line aerosol analysis instrumentation, Anal Chem, 77, 3861–3886.
    Sun, J. Y., et al. (2010), Highly time- and size-resolved characterization of submicron aerosol particles in Beijing using an aerodyne aerosol mass spectrometer, Atmos.Environ., 2010(44), 131-140.
    Sun, Y., et al. (2004), The air-borne particulate pollution in Beijing-concentration, composition, distribution and sources, Atmospheric Environment, 38, 5991–6004.
    Surratt, J., et al. (2007), Effect of acidity on secondary organic aerosol formation from isoprene, EnvironSci Technol, 41(15), 5363-5369.
    Takami A, et al. (2005), Chemical composition of fine aerosol measured by AMS at Fukue Island, Japan during APEX period, Atmos Environ, 39, 4913–4924.
    Takegawa N, et al. (2005), Characterization ofan Aerodyne Aerosol Mass Spectrometer (AMS): Intercomparison with other aerosol instruments, Aerosol Sci Technol, 39, 760–770.
    Takegawa, N., et al. (2009), Variability of submicron aerosol observed at a rural site in Beijing in the summer of 2006, J. Geophys. Res, doi:10.1029/2008JD010857, in press.
    Topping D, et al. (2004), Aerosol chemical characteristics from sampling conducted on the Island of Jeju, Korea during ACE-Asia, Atmos Environ, 38, 2111–2123.
    Ulbrich, I. M., et al. (2009), Interpretation of organic components from Positive Matrix Factorization of aerosol mass spectrometric data, Atmos. Chem. Phys, 9, 2891–2918.
    Van Donkelaar, A., et al. (2006), Estimating ground-level PM2.5 using aerosol optical depth determined from satellite remote sensing, J. Geophys. Res, 111, D21201,doi:21210.21029/22005JD006996.
    Volkamer R, et al. (2006), Secondary organic aerosol formation from anthropogenic air pollution: Rapid and higher than expected, Geophysical Research Letters, 33, L17811.
    W.L.Lin, et al. (2009), Characteristics of gaseous pollutants at Gucheng, a rural site southwest of Beijing, Journal of geophysical research, 114, doi:10.1029/2008JD010339.
    Wang, G. H., et al. (2006), Molecular, seasonal and spatial distributions of organic aerosols from fourteen Chinese cities, Environ. Sci. Technol, 40, 4619-4625.
    Wang, Q. Q., et al. (2007), Impact of biomass burning on urban air quality estimated by organic tracers: Guangzhou and Beijing as cases, Atmospheric Environment, 41 (37), 8380-8390.
    Wang, Y. Q., et al. (2009), TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data, Environmental Modelling & Software, 24, 938–939.
    Weber, R. J., et al. (1996), Measured atmospheric new particle formation rates: Implications for nucleation mechanisms, Chem. Eng. Comm, 151, 53-64.
    Weber, R. J., et al. (1997), Measurements of new particle formation and ultrafine particle growth rates at a clean continental site, J. Geophys.Res, 102(D4), 4375- 4385.
    Weber, R. J., et al. (1999), New particle formation in the remote troposphere: A comparison of observations at various sites, Geophys.Res. Lett., 26(3), 307- 310.
    Weller, R., and A. Lampert (2008), Optical properties and sulfate scattering efficiency of boundary layer aerosol at coastal Neumayer Station, Antarctica, J.Geophy.Res, 113, D16208, doi:16210.11029/12008JD009962.
    Whitby, K. T. (1978), The Physical Charateristics of Sulfate Aerosol Atmos. Environ, 12, 135.
    Wiedensohler, A., et al. (2009), Rapid Aerosol Particle Growth and Increase of Cloud Condensation Nucleus Activity by Secondary Aerosol Formation and Condensation: A case study for Regional Air Pollution inNortheastern China, Journal of Geophysical Research - Atmospheres, 114, D00G08, 2009. DOI: 2010.1029/2008JD010884
    Wu, Z., et al. (2007), New particle formation in Beijing, China: Statistical analysis of a 1-year data set, Journal of Geophysical Research - Atmospheres, 112, D09209, doi:09210.01029/02006JD007406.
    Yang, M., et al. (2009), Attribution of aerosol light absorption to black carbon, brown carbon, and dust in China– interpretations of atmospheric measurements during EAST-AIRE, Atmos. Chem. Phys, 9, 2035–2050.
    Yao, X., et al. (2003), Size distributions and formation of ionic species in atmospheric particulate pollutants in Beijing, China: 1- inorganic ions, Atmos. Environ, 37, 2991-3000.
    Yokouchi, Y., and Y. Ambe (1985), Aerosols Formed from the Chemical Reaction of Monoterpenes and Ozone, Atmos. Env., 19, 1271-1276.
    Yue, D., et al. (2009), Characteristics of aerosol size distributions and new particle formation in the summer in Beijing, Journal of geophysical research, 114, D00G12, doi:10.1029/2008JD010894.
    Yue, D. L., et al. (2010), The roles of sulfuric acid in new particle formation and growth in the mega-city of Beijing, Atmos. Chem. Phys, 10, 4953–4960.
    Zhang, Q., et al. (2005a), Deconvolution and quantification of hydrocarbon-like and oxygenated organic aerosols based on aerosol mass spectrometry, Environ. Sci. Technol, 39(13), 4938-4952.
    Zhang, Q., et al. (2005b), Time- and size-resolved chemical composition of submicron particles in Pittsburgh: Implications for aerosol sources and processes, Journal of geophysical research, 110, doi:10.1029/2004JD004649.
    Zhang, Q., et al. (2007), Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes, Geophys. Res. Lett, 34,L13801, doi:10.1029/2007GL029979.
    Zhang, X. Y., et al. (2009), Changes of atmospheric composition and optical properties over Beijing, Blletin of the American Meteorological Society, 90(11), 1633-1651.
    Zhang, X. Y., et al. (2008), Carbonaceous aerosol composition over various regions of China during 2006, J. Geophys. Res., 113, doi:10.1029/2007JD009525.
    Zheng, M., et al. (2005), Seasonal trends in PM2.5 source contributions in Beijing, China, Atmos. Environ, 39, 3967-3976.
    Ziemba, L. D., et al. (2007), Aerosol acidity in rural New England: Temporal trends and source region analysis, J.Geophy.Res, 112, D10S22, doi:10.1029/2006JD007605.
    王明星(1991),大气化学,气象出版社.
    王峰威, et al. (2010),大气气溶胶酸度的研究进展,环境污染与防治,第32卷第l期, 67-72.
    王玮, et al. (2001),北京市沙尘暴天气大气气溶胶酸度和酸化缓冲能力,环境科学, 22(5), 25-28.
    何凌燕, et al. (2005),北京大气气溶胶PM2.5中的有机示踪化合物,环境科学学报, 25(1), 23-29.
    胡敏, et al. (2009),北京大气细粒子和超细粒子理化特征、来源及形成机制,科学出版社,北京.
    胡敏, et al. (2005),北京冬、夏季颗粒物及其离子成分质量浓度谱分布,环境科学, 26(4), 1-6.
    唐孝炎, et al. (2006),大气环境化学(第二版),高等教育出版社.
    温梦婷,胡敏(2007),北京餐饮源排放细粒子理化特征及其对有机颗粒物的贡献,环境化学, 28(11), 2620-2625.
    赵云良(2005),餐饮源排放颗粒有机物和典型城市大气颗粒物化学组成及特征,北京大学, 42-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700