用户名: 密码: 验证码:
大范围新型激光告警系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
面对日益严重的激光威胁,世界各国都在加速发展激光告警技术的研究和激光告警装备的研制。根据用于地面大型军事目标激光告警的军事预研项目——“大范围新型激光告警系统的研制”的要求,本文对该系统研制过程中涉及到的若干技术问题作了较为深入的研究,主要研究成果如下:
     通过对激光在大气传输中散射效应的分析,运用米氏散射理论,推导出了大气散射激光辐照度随离轴距离变化的数学模型,通过数值计算和理论分析,得到了1.06μm激光在都市郊区大气模型条件下的散射信号时域特征:大气散射激光的最大辐照度随离轴距离的增大近似地按反比规律缓慢下降;大气能见度的不同只会影响散射强度的大小,而不影响散射强度的分布规律等。这些特征为1.06μm激光散射告警器的研制提供了理论依据。
     由于告警系统的虚警概率随散射告警器数目的增多而增大,为了降低大范围新型激光告警系统的虚警概率,针对炮火闪光、太阳反射光等干扰因素在一定的时间内具有单次性的特点,设计了一种计数并计时工作的积累检测器,提出了一种将多元相关探测和该积累检测器相结合的检测模型,并采用激光威胁等级判断告警方式,有效地降低了散射告警器的虚警概率。
     在研究和归纳比较激光波长相干探测各种方案的优缺点,以及通过深入分析劈尖干涉条纹的定域和条纹间距与入射激光波长关系的基础上,提出了在直射告警器中采用基于劈尖干涉的激光波长探测新方案。采用线阵型电荷耦合器件(CCD)将等厚干涉条纹转换为时域周期信号,运用离散傅里叶变换(DFT)求解条纹间距,便可计算出激光波长。为提高对波长的探测精度,推导出了相应的DFT离散误差修正公式,仿真实验结果验证了其有效性。
     为提高直射告警器的反应速度,减少运算时间,提出了使用数字滤波器法快速探测制导激光波长的设计思想,并推导出了数字滤波算法的迭代公式,研制出了能快速探测多种制导激光波长的数字滤波器,有效地提高了告警器的反应速度。
     针对CCD器件非均匀性引入的固有噪声对探测入射激光微弱信号的不良影响,在分析CCD器件非均匀性产生机理的基础上,提出了在直射告警器中使用非均匀性校正技术的方案,达到了提高系统灵敏度和增大其作用距离的目的。
     通过分析激光波长、重频、能量变化率等技术参数在描述和判别激光威胁源时的不确定性,提出了基于模糊决策的激光威胁源识别的设计思想。运用模糊决策理论,建立了激光能量、波长、重频等技术参数的模糊化数学模型,设计出了基于激光威胁源识别的模糊决策规则库,实现了对激光威胁源的准确识别。
As laser menace is increasing quickly, laser warning technologies are being researched and the laser warning equipments are being rapidly developed all over the world. To meet the demand of the military project, "Development of a Novel Laser Warning System Used for Large-Sized Land Targets", some problems regarding the laser warning system are studied in this dissertation. Some valuable results are obtained which are summarized as follows:
     By analyzing the scattering effects caused by the transmission of laser through the atmosphere and using Mie's scattering theory, the mathematical model that presents the relation between laser irradiance of atmospheric scattering is derived. The time domain characteristics of the scattering signal distribution of 1.06μm laser under the condition of city suburb model are obtained by theoretical analysis and numerical calculation. That is, the maximum intensity of aerial scattering laser decreases slowly with the abaxial distance of detector and is inversely proportional to the distance; and the aerial visibility only affects the scattering intensity, instead of the distribution of scattering intensity. These characteristics provide the theoretical basis for the development of the scattering laser warning system at 1.06μm.
     Due to the fact that the false alarm probability increases with the number of warning unit and interference factors such as gunfire flash and reflection light of the sun are of single time characteristics, a accumulating detector that has the function of counting and timing is designed and a detecting model that combines multiple-unit correlation detection and the aforementioned accumulating detector is presented. As a consequence, such system can effectively reduce false alarm probability by using threat grade warning.
     On the basis of extensive study and summarization various coherent detecting methods, a new scheme to measure laser wavelength is presented by analyzing the localization of the interference stripes of optical wedge and the relation of the stripes'interval to the incident laser wavelength. When parallel laser beam is perpendicularly incident onto an optical wedge, some equal-width stripes occur on the surface of the wedge whose space period can be transformed into time domain period by linear charge coupled device (CCD). The incident laser wavelength can be calculated from the intervals of the stripes obtained by Discrete Fourier Transform (DFT). In order to improve the measuring precision of the laser wavelength, the modified formula, which has a universal purpose, of the DFT's discrete error is derived. The validity of the method is validated by experimental results.
     A method of quick measuring several missile-guiding laser wavelengths is proposed by digital filters so as to raise the response speed and reduce the computing time of laser warning receiver. In the signal processing of laser warning receiver, the digital filters that are designed by using the digital filter iterative formula derived from DFT can quickly detect several missile-guiding laser wavelengths. The method can effectively raise the response speed.
     Considering the effects of the inherent noise caused by the non-uniformity of CCD on the detection of weak signal of incident laser, the generation mechanism and the correction algorithms of the non-uniformity of CCD are studied. The idea that the techniques of non-uniformity correction are applied in laser warning receiver is proposed to improve its detection sensitivity and increase its action distance.
     The idea of fuzzy-decision-based laser menace source recognition is presented on the basis of analyzing the uncertainty of the technical parameters, such as the laser energy, the laser wavelength and the repetitive frequency, to recognize menace source. The mathematical fuzzy models of laser technique parameters, such as the laser energy, the laser wavelength and the repetitive frequency, are set up, and fuzzy rule library of laser menace source recognition is designed by using fuzzy decision theory. Therefore, laser menace source can be identified correctly.
引文
[1]张承铨主编.国外军用激光仪器手册.北京:兵器工业出版社,1989.
    [2]西南技术物理研究所情报室编.最新军用激光特种文献选编.西南技术物理研究所,1998.
    [3]R.P.Main. Military lasers in Europe. Lasers and Application, Vol.3, No.6, pp85-89,1984.
    [4]J.T.Lin. New laser sources. in Southcon/88 Conference Record, Orlando, Florida, pp.178-183,1998.
    [5]陆彦文,陆启生等.军用激光技术.北京:国防工业出版社,1999.
    [6]魏光辉,杨培根.激光技术在兵器工业中的应用.北京:兵器工业出版社,1995.
    [7]阎吉祥.激光武器.北京:国防工业出版社,1996.
    [8]R. Ninneman, M. Vigil, and D. Founds. Projected technology needs for an operational space based laser system. AIAA-2001-2863
    [9]Ivan Ng. A free electron laser weapon for sea archer. Naval postgraduate school. December 2001.
    [10]D.H.Pollock主编,黄印权译,陈光余校.光电对抗系统一红外与光电系统手册第7卷.航天工业总公司八三五八所翻译出版,1999.
    [11]李世祥.光电对抗技术.长沙:国防科技大学出版社,2000.
    [12]孙晓泉.激光对抗原理与技术.北京:解放军出版社,2000.
    [13]K.Harden. Overview of electro-optics countermeasures. International Defense Review, No.2,1995.
    [14]C.I.Coleman. Laser threat Warning. Proceedings of the Conference on Military Microwaves, Brighton. England. pp.21-26,1986.
    [15]D.H. Pollack. An introduction to electro-optical warfare. Signal. Vol.38, No.8, pp.35-38,1984.
    [16]付伟.军用激光技术的发展现状.电光与控制.,No.1,pp.23-30,1996.
    [17]李振国,赵勋杰.激光对抗技术与装备概述.光电对抗与无源干扰,No.4,PP.11-13,1999.
    [18]刘京郊.光电对抗技术与系统.北京:中国科学技术出版社.2004.
    [19]Perkin-Elmer will build first military laser warning receiver. Aviation Week & Space Technology. pp.81,1988.
    [20]S. Nested, M. Bohm. Device for determining to direction of incident optical radiation. U. S. Patent 4,625,108,1986-11-25.
    [21]T. Halldorsson, S. Manhart, E. A. Seiffarth. Laser detection device. U. S. Patent 4,674,874,1987-06-23.
    [22]EP0,506,641. Laser warning device and module for use in such a laser warning device.1992-09-30
    [23]EP0,304,360. Arrangement for the detection of light pulses with a very low false alarm rate for use in laser detection.1989-02-22
    [24]DE3,323,828. Laser detection device.1985-01-10
    [25]DE3,525,518. Laser warning sensor with direction detection.1986-07-10
    [26]DE3513350. Laser radiation warning sensor utilizing polarization.1986-06-26
    [27]DE3,609,834. Method and device for interfering with electromagnetic radiation. 1987-09-24
    [28]USP4,682,024. Laser radiation warning sensor utilizing polarization. 1987-07-21
    [29]USP5,229,540. Tank alerting system.1993-07-20
    [30]USP5,260,563. Compact laser warning receiver.1993-11-09
    [31]付伟.光纤前端的激光告警系统.红外与激光技术.Vol.24,No.2,PP.17-23,1995
    [32]付伟.对德国MBB公司激光告警系统的技术分析.红外与激光工程.Vol.25,No.1,pp.2-7,1996.
    [33]付伟.光电对抗概论.锦州:信息产业部电子第五十三研究所,2000.
    [34]Tracor receives trio of laser warning awards. Journal of Electronic Defense, pp22,1990.
    [35]Paul T. Ballard. Detecting Laser illumination for military countermeasures. Laser Focus. No.4, pp.72-80,1981.
    [36]R. Crane Jr. Laser detection by coherence discrimination. Optical Engineering. Vol.18, No.2,pp.212-217,1989.
    [37]W.T.Krobn.. Coherent radiation detecting apparatus. U.S. Patent 4,600,307, 1986.
    [38]E.T. Seibert. Analyzer for coherent radiation. U.S. Patent 4,309,108, 1982-01-05.
    [39]C.J.Duffey and D.Hickman. A temporal coherence-based optical sensor. Sensors and Actuators. Vol.18, pp.17-31,1989.
    [40]C.J.Duffey and D.Hickman. An imaging system based on temporal coherence differences. Journal of Physics D:Applied Physics. Vol.21, pp.S66-S58,1988.
    [41]P.Sutton. A novel electro-optical remote-sensing technique based on bandpass coherence processing. Journal of Physics D:Applied Physics. Vol.22, pp.379-384,1989.
    [42]J.Jannson, T.Jannson, and E.Wolf. Spatial coherence discrimination in scattering, Optics Letters, Vol.13, No.2, pp.1060-1062,1988.
    [43]杨在富,钱焕文,高光煌.激光告警技术发展现状.激光技术.Vol.28,No.1,pp.98-102,2004.
    [44]Orazio Svelto. Principles of Lasers (Third Edition). New York:A Division of Plenum Publishing Corporation.1989.
    [45]李学正,杨哲民.用全息技术探测激光来袭方向.激光技术.Vol.11,No.3,pp.29-33,1987.
    [46]M.T.Allen, R.E.Preston, C.G.Simi. Pulsed radiation classifier and related method. U.S.Patent 5,786,888,1998-07-28
    [47]武树斌.激光侦察中的光谱识别与信号检测技术.西安电子科技大学.[硕士学位论文],2000.
    [48]张琢.激光干涉测试技术及应用.北京:机械工业出版社,1998.
    [49]Shih, L.N.Phong, and P.Laou. Methods for wavelength discrimination of monochromatic light beams. U.S.Patent 5,703,357,1997.
    [50]C.Reiser and C.C.Jenson. Battlefield laser wavemeter. DE91-007485,1991.
    [51]Feng Zhao, Koichi Sayano. Subpicometer accuracy laser wavelength sensor using multiplexed bragg gratings. IEEE Photonics technology letters. Vol.9, No.11,pp.1493-1495,1997.
    [52]J. Hernandez-Cordero, V. A. Kozlov, and T. F. Morse. Highly accurate method for single-mode fiber laser wavelength measurement. IEEE Photonics technology letters. Vol.14, No.1, pp.83-85,2002.
    [53]Zeng Xiaodong, Wu Shubin and An Yuying. Wavelength measurement using dual photodetectors. SPIE. Vol.4223, pp.153-155,2000.
    [54]W.J.Shi, Y.N.Ning. Novel wavelength measurement scheme using a stabilized interferometric system. SPIE. Vol.2895, pp.64-67
    [55]Graham H.Cross and Ellen E.Strachan. Diode laser wavelength tracking using an integrated dual slab waveguide interferometer. IEEE Photonics technology letters. Vol.14, NO.7, pp.950-952,2002.
    [56]H.Lamela, J.R.Lopez, E.Garcia, and M.A.Ferreras. Optoelectronic
    instrumentation systems in an autonomous unmanned aerial vehicle (AUAV). pp.1342-1345, IEEE 0-7803-4503-7/98,1998.
    [57]Dariu M.Gavrila. A multi-sensor approach for the protection of vulnerable traffic participants the PROTECTOR project. IEEE Instrumentation and Measurement Technology Conference. Budapest, Hungary, May 21-23,2001. pp.2044-2048.
    [58]Rifka Cohen, David Forrai, and James Maier. A tool for infrared countermeasures assessment. pp.110-117, IEEE 0-7803-6262-4/00,2000.
    [59]Ron Weinland, Jay Romania. Integrated Family of Test Equipment (IFTE) Electro-Optic Test Facility (EOTF). pp.72-77, IEEE 0-7803-4420-0/98,1998.
    [60]Chris Paul, Geoff Zeiler, Mary Nolan. Integrated support system for the self protection system. pp.155-160, IEEE0-7803-7837-7/03,2003.
    [61]Leonardo Zan, Gilberto Latini, and Evasio Piscina. Landslides early warning monitoring system. pp.188-190, IEEE 0-7803-7536-X,2002.
    [62]Jan Sparbert, Klaus Dietmayer, and Daniel Streller. Lane detection and street type classification using laser range image.2001 IEEE Intelligent Transportation Systems Conference Proceedings-Oakland(CA), USA-August 25-29,2001
    [63]Mark L.Delong, Bradley D.Duncan. Laser threat discrimination based on volume holographic memory. pp.831-838, IEEE CH35797-95,1995
    [64]V.A.Manasson, L.S.Sadovnik. Laser warning receiver based on coherence discrimination. pp.869-873, IEEE 7CH35934-96,1996.
    [65]Dave H.Hilland, Gary S.Phipps. Satellite threat warning and attack reporting. pp.207-217, IEEE 0-7803-4311-5/98,1998.
    [66]Roland L.Bowles. Windshear detection and avoidance airborne systems survey. Proceedings of the 29th Conference on Decision and Control. Hawaii, December 1990. pp.708-736.
    [1]赵凯华,钟锡华.光学(下册).北京:北京大学出版社,251-254,1984.
    [2]G.Mie. Annalen der Physik.1908,4(25):377
    [3]Van de Hulst H C. Light Scattering by Small Particles. New York:Wiley,1957, 2-5
    [4]Kerker M. The Scattering of Light and Other Electromagnetic Radiation. New York:Academic,1-3,1969
    [5]C F Bohren, D R Huffman. Absorbtion and Scattering of Light by Small Particles. New York:Wiley,2-6,1983
    [6]J.S.Accetta and D.L.Shumker. The Infrared and Electro-Optical Systems Handbook, Volume 7. Bellingham:SPIE Optical Engineering Press,1993.
    [7]孙晓泉.激光对抗原理与技术.解放军出版社,2000.
    [8]M.玻恩,E.沃耳夫.光学原理(下册).上海:科学出版社,843-863,1981
    [9]B.E.祖耶夫,M.B.卡巴诺夫.光信号在地球大气中的传输.北京:科学出版社,1993.
    [10]石丸.随机介质中波的传播和散射.北京:科学出版社,1986.
    [11]宋正方.应用大气光学基础.北京:气象出版社,1990.
    [12]尹宏.大气辐射学基础.北京:气象出版社,1993.
    [13]王之江.光学技术手册(上).北京:机械工业出版社,1987.
    [14]付伟.激光告警中的信号探测原理.光电对抗与无源干扰.No.1,5-15,2001.
    [15]张建奇,方小平.红外物理.西安:西安电子科技大学出版社,2004.
    [16]吴成明,吴振森.离轴球形粒子对高斯波束的散射.电波科学学报.Vol.10,No.4,18-24,1995.
    [17]王龙,张国俊,邹继伟,孙晓泉.大气中激光散射信号的特征分析.应用激光.Vol.22,No.5,487-490,2002.
    [18]安毓英,曾小东.光电探测原理.西安:西安电子科技大学出版社,206-210,2003.
    [19]杨晔,张镇西,蒋大宗.Mie散射物理量的数值计算.应用光学.Vol.18,No.4,17-19,1997.
    [1]魏光辉,杨培根.激光技术在兵器工业中的应用.兵器工业出版社,1995.
    [2]孙晓泉.激光对抗原理与技术.解放军出版社,2000.
    [3]EP0,304,360. Arrangement for the detection of light pulses with a very low false alarm rate for use in laser detection.1989-02-22
    [4]DE3,323,828. Laser detection device.1985-01-10
    [5]J.M. Lemair, A. Belissant, and J.P. Fauchard. Light pulse detecting system with highly reduced false alarm rate usable for laser detection. U.S. Patent 4897538, 1990.
    [6]Hall D L. Mathematical Technique of Multisensor Data fusion. Artech House, 1992.
    [7]Bar-Shalom Y, Fortmann T E. Tracking and Data Association. Academic Press, Orlando,1988.
    [8]Blackman S S. Multiple-target tracking with radar applications. Dedham, Artech House,1996
    [9]Houles A, Bar-Shalom Y. Multisensor tracking of a Maneuvering target in clutter. IEEE Trans. AES. Vol.25, No.2, pp.176-189,1989.
    [10]Klein L A. A boolean algebra approach to multiple sensor voting fusion. IEEE Trans. AES. Vol.29, No.2, pp.317-327,1993.
    [11]Varshney P K, Chair Z. Optimal data fusion in multiple sensor systems. IEEE Trans. on AES. Vol.22, No. 1,pp.98-101,1986.
    [12]Elias-Fuste A R. CFAR data fusion center with inhomogeneous receivers. IEEE Trans. on AES. Vol.28, No.1 pp.276-284,1992.
    [13]康耀红.多传感器目标检测和跟踪的数据融合理论.西安电子科技大学.[博士学位论文],1995
    [14]杨宜禾,岳敏,周维真.红外系统(第二版).国防工业出版社,1995.
    [15]安毓英,曾小东.光电探测原理.西安:西安电子科技大学出版社pp.206-210,2003.
    [16]高稚允,高岳,张开华.军用光电系统.北京:北京理工大学出版社,pp.225-244,1996.
    [17]陈遵银,韩兆福,徐伟勤.目标探测概率估算模型.实用测试技术.No.1,pp.12-14,2001.
    [1]孙晓泉.激光对抗原理与技术.解放军出版社,2000.
    [2]魏光辉,杨培根.激光技术在兵器工业中的应用.兵器工业出版社,1994.
    [3]Paul T. Ballard. Detecting Laser illumination for military countermeasures. Laser Focus. No.4, pp.74-80,1981.
    [4]K.Harden. Overview of electro-optics countermeasures. International Defense Review, No.2,1995.
    [5]Zeng Xiaodong, Wu Shubin and An Yuying. Wavelength measurement using dual photodetectors. SPIE. Vol.4223, pp.154-155,2000.
    [6]J. Hernandez-Cordero, V. A. Kozlov, and T. F. Morse. Highly accurate method for single-mode fiber laser wavelength measurement. IEEE Photonics technology letters. Vol.14, No.1, pp.84-85,2004.
    [7]Graham H.Cross and Ellen E.Strachan. Diode laser wavelength tracking using an integrated dual slab waveguide interferometer. IEEE Photonics technology letters. Vol.14, NO.7, pp.950-952,2004.
    [8]S. Nested, M. Bohm. Device for determining to direction of incident optical radiation. U. S. Patent 4625108,1986.
    [9]T. Halldorsson, S. Manhart, and E. A. Seiffarth. Laser detection device. U. S. Patent 4674874,1987.
    [10]R.Crane Jr. Laser detection by coherence discrimination. Optical Engineering. Vol.18, No.2,pp.214-217,1989.
    [11]W.T.Krobn. Coherent radiation detecting apparatus. U.S. Patent 4,600,307, 1986.
    [12]E.T. Seibert. Analyzer for coherent radiation. U.S. Patent 4309108,1984.
    [13]C.J.Duffey and D.Hickman. A temporal coherence-based optical sensor. Sensors and Actuators. Vol.18, pp.17-31,1989.
    [14]J.Jannson, T.Jannson, and E.Wolf. Spatial coherence discrimination in scattering, Optics Letters, Vol.13, No.2, pp.1060-1062,1988.
    [15]Orazio Svelto. Principles of Lasers (Third Edition). New York:A Division of Plenum Publishing Corporation.1989.
    [16]Shih, L.N.Phong, P.Laou. Methods for wavelength discrimination of monochromatic light beams. U.S.Patent 5703357,1997.
    [17]付伟.光电对抗概论.信息产业部电子第五十三研究所,2000.
    [18]德国专利DE3609834
    [19]欧洲专利EP0506641
    [20]德国专利DE3323828
    [21]付伟.光纤前端的激光告警系统.红外与激光技术.Vol.24,No.2,pp.17-23,1995
    [22]付伟.对德国MBB公司激光告警系统的技术分析.红外与激光工程.Vol.25,No.1,pp.4-7,1996.
    [23]M.波恩,E.沃耳夫著,杨葭荪译.光学原理.科学出版社.1987
    [24]石顺祥,张海兴,刘劲松.物理光学与应用光学.西安电子科技大学出版社,2000.
    [25]吴强,郭光灿.光学.中国科学技术大学出版社,1996.
    [26]郑君理,杨为理,应启珩.信号与系统.高等教育出版社,1997.
    [27]胡广书.数字信号处理.清华大学出版社,1998.
    [1]孙晓泉.激光对抗原理与技术.解放军出版社,2000.
    [2]魏光辉,杨培根.激光技术在兵器工业中的应用.兵器工业出版社,1995.
    [3]郑君理,杨为理,应启珩.信号与系统.高等教育出版社,1997.
    [4]胡广书.数字信号处理.清华大学出版社,1998.
    [5]Markel J D. FFT pruning. IEEE Trans. Audio Electroacoust. Vol.19, No.4, pp.305-311,1971.
    [6]Skinner D P. Pruning the decimation-in-time FFT algorithm. IEEE Trans. On ASSP. Vol.24, No.4, pp.196-194,1976.
    [7]Digital Signal Processing Applications with the TMS320 Family:Theory, Algorithms, and Implementations, Volume 6. Texas Instruments,1994.
    [8]Texas Instruments. TMS320C5X User's Guide.1991.
    [9]R. Ninneman, M. Vigil, and D. Founds. Projected technology needs for an operational space based laser system. AIAA-2001-2863
    [10]Ivan Ng. A free electron laser weapon for sea archer. Naval postgraduate school. December 2001.
    [11]付伟.光电对抗概论.信息产业部电子第五十三研究所,2000.
    [12]张雄伟,曹铁勇.DSP芯片的原理与开发应用.电子工业出版社,2000.
    [1]于前洋.增大激光侦察告警系统作用距离的方法.光机电信息,No.6,pp.14-18,2001.
    [2]葛强胜,龚赤坤.车载式激光告警器探测性能分析计算.激光与红外.Vol.33,No.3,pp.176·177,2003.
    [3]孙晓泉.激光对抗原理与技术.解放军出版社,2000.
    [4]吴裕斌,曹丹华.CCD成像器件的不均匀性测试.华中理工大学学报.Vol.26,No.8,pp.58-60,1998.
    [5]Scribner D A., Kruer M R. Spatial noise in staring focal plane arrays, SPIE. Vol.930, pp.55-63,1988.
    [6]Milton A F, Barone F R, and Kruer M R. Influence of Nonuniformity on Infrared Focal Plane Array Performance. Optical Engineering. Vol.24, pp855-862,1985.
    [7]Scribner D A, Kruer M R, and Gridley C J. Measurement, Characterization, and Modeling of Noise in Staring Infrared Focal Plane Arrays. SPIE. Vol.782, No.147-161,1987.
    [8]陈锐,谈新权.红外图像非均匀性校正技术研究.光电子技术.Vol.21,No.3,pp.189-193,2001.
    [9]周慧鑫.红外焦平面阵列非均匀性校正算法研究.西安电子科技大学博士学位论文,2004.
    [10]Cao Zhiguo, Sang Nong. Digital implementation of nonuniformity correction for IRFPAs. SPIE. Vol.3698, pp.807-815,1999.
    [11]宋万杰,罗丰,吴顺军.CPLD技术及其应用.西安电子科技大学出版社,1999.
    [12]江孝国,祁双喜,王婉丽等.CCD输出信号的低噪声处理电路研究.光电子·激光.Vol.12,No.11,pp.1126-1129,2001.
    [13]www.burr-brown.com (VSP3010.pdf)
    [14]东方人华,王建坤.MAX+PLUSII入门与提高.清华大学出版社,2004.
    [15]常丹华.基于CPLD技术的CCD驱动时序产生方法.仪表技术与传感器.No.3,pp.25-28,2001.
    [1]付伟.光电对抗概论.信息产业部电子第五十三研究所,2000.
    [2]康耀红.多传感器目标检测和跟踪的数据融合理论.西安电子科技大学.[博士学位论文],1995
    [3]White F. A model for data fusion. SPIE Conference on Sensor Fusion, Orlando, FL.1988.
    [4]Hall D L. Mathematical Technique of Multisensor Data fusion. Artech House, 1992
    [5]Hall D L. Mathematical Technique of Multisensor Data fusion. Artech House, 1992.
    [6]Blackman S S. Multiple-target tracking with radar applications. Dedham, Artech House,1996
    [7]Houles A, Bar-Shalom Y. Multisensor tracking of a Maneuvering target in clutter. IEEE Trans. AES. Vol.25, No.2, pp.176-189,1989.
    [8]Tanaka T and Sugeno M. Stability analysis and design of fuzzy control systems. Fuzzy sets and systems. No.45, pp.135-156,1992.
    [9]何新贵.模糊知识处理的理论与技术(第二版).国防工业出版社,1998.
    [10]王立新著,王迎军译.模糊系统与模糊控制教程.北京:清华大学出版社,pp.70-90,2003.
    [11]魏光辉,杨培根.激光技术在兵器工业中的应用.兵器工业出版社,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700