用户名: 密码: 验证码:
超声/磁场下合成铝基原位复合材料微结构及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着铝合金在航空航天、汽车、高速列车、电子等领域的广泛应用,对铝合金材的性能提出了更高的要求。材料复合化是继合金化之后的又一重要强化手段。尤其是原位内生颗粒增强铝基复合材料,由于其本身的优点已经成为复合材料领域的研究热点。如何控制原位内生增强颗粒在基体中的尺寸、形貌、分布是复合材料制备中的关键,也是目前复合材料向产业化应用的瓶颈之一。因此,通过优化原位反应体系、制备工艺来控制复合材料的组织和性能具有重要的理论意义与现实意义。论文的思路基于以下三点:一、通过稀土钇的作用,细化基体合金的晶粒,提高其综合性能;二、通过优化反应体系及声磁场等手段对复合材料的组织实现控制,包括增强颗粒的尺寸、分布、形貌;三、将稀土钇与声磁耦合场协同作用,达到复合材料高强高塑性的目的。
     研究了稀土钇对基体合金7055A1、6070A1的影响,结果表明,稀土钇可有效细化基体合金的晶粒,且稀土的最佳添加量为0.25wt.%。当稀土加入量超过0.25wt.%时,晶粒反而粗化,且稀土化合物粗化,形貌变为长针状。
     对Al-K2TiF6、Al-K2ZrF6-Na2B4O7、Al-K2TiF6-KBF4反应组元进行工艺优化,并分别制备了Al3Ti/6070Al、Al2O3/Al、TiB2/7055Al复合材料。对于Al-K2TiF6反应组元,合理的工艺为先复合再添加Mg等合金元素完成合金化,且反应时间不应超过10 min,反应温度控制在730-750℃为宜。对于Al-K2ZrF6-Na2B4O7反应组元,反应温度为850℃,其反应机理为反应-溶解-析出。对于Al-K2TiF6-KBF4反应组元,合理的工艺为先加Mg再复合,反应温度为850℃,反应时间不宜超过20 min。
     在超声场下制备了Al3Ti/6070AL、Al2O3/Al、TiB2/7055Al复合材料。实验结果表明,Al3Ti/6070Al、Al2O3/Al复合材料,随着超声功率、作用时间的增加颗粒数量减少,认为其机理为驻波场机理及声空化机理。对于Al3Ti/6070Al复合材料超声的最佳功率为1.6kW,最佳作用时间为3 min,A13Ti颗粒的尺寸由原来的2-5μm细化至1μm左右,形貌变为小块状、粒状;对于Al2O3/Al复合材料超声的最佳功率为0.60 kW,最佳作用时间为2 min,超声显著提高了复合材料A1203颗粒的收得率;利用水淬法研究了超声场下混合盐法制备TiB2/7055Al复合材料的过程机制,认为反应过程可分为四个阶段,超声场在第二阶段对反应过程起到了显著的促进作用,TiB2颗粒随超声功率的增加而逐渐细化,特别是当超声功率达到1.6kW时,出现大量纳米级TiB2颗粒。
     在低频旋转磁场下,研究了Al3Ti/6070Al、TiB2/7055A1复合材料的制备工艺。结果表明,对于Al3Ti/6070Al复合材料,随着励磁电流、频率的不同可得到颗粒均匀分布及梯度分布两种不同类型的复合材料,认为,当励磁电流200A、频率小于5Hz、作用时间为3-5 min时,得到尺寸细小、熔体内外分布相对均匀的Al3Ti/6070Al复合材料;而增大频率或电流时,作用时间必须相应减少;增大励磁电流、频率以及作用时间均能得到A13Ti颗粒呈梯度分布的复合材料。基于上述实验,推测采用磁场连续作用方式制备复合材料时,熔体中存在二次流。利用水淬法采用间歇作用方式,研究了低频旋转磁场下TiB2/7055Al复合材料的过程机制,认为磁场在反应初期对反应过程起到了有益的促进作用。制备TiB2/7055Al复合材料时,磁场频率对复合材料微观组织影响不大,当频率较小(<5Hz)时TiB2颗粒尺寸无明显的变化,只有当频率达到5 Hz时,颗粒尺寸趋向一致,颗粒形貌发生明显的“圆钝化”。
     在声磁耦合场下制备了Al3Ti/6070Al、TiB2/7055Al复合材料。结果表明,声场耦合场下所得的A13Ti颗粒尺寸细小,分布均匀。当超声功率为1.6 kW时,约72.4%的A13Ti增强颗粒处于0.2~0.5μm之间,处于0.8-1.2μm之间的颗粒减少至约1.6%。声场耦合场下制备Al3Ti/6070Al时,颗粒尺寸随粉末加入量的增加有一定程度的增大,颗粒形貌由粒状、小块状逐步向块状、片层状或短棒状发展。声磁耦合场下连续作用合成TiB2/7055Al时,超声功率为0.8 kW即能观察到大量纳米级TiB2颗粒,尺寸约为80-100 nm,纳米TiB2颗粒呈团聚状态。声磁耦合场下间歇作用合成TiB2/7055Al时,得到均匀分布的亚微米TiB2增强颗粒。
     添加稀土钇基体力学性能结果表明,7055A1合金的强度、硬度随稀土钇加入量的增加而下降,伸长率上升;6070A1合金的强度、伸长率均随钇含量的增加先增大后减小。复合材料的力学性能结果表明,超声场下A12O3/Al复合材料的抗拉强度、伸长率随超声功率、超声时间的增加先增大后减小,最佳作用参数分别为0.6 kW、2 min;耦合场下Al3Ti/6070Al、TiB2/7055Al复合材料拉伸性能均优于单一场;声磁耦合场与稀土协同作用可显著抑制复合材料伸长率随体积分数的下降。
With increasingly application in the aerospace, automotive, high-speed trains, electronics and other fields, aluminum alloys with higher properties are required. Compounding is another important strengthening method expect for alloying. In-situ particle reinforced aluminum matrix composites due to its own merit, have become a hot research in the composites field. How to control the size, morphology and distribution of in-situ reinforced particles in the matrix is the key techniques in the preparation of composites and also is currently one of the bottlenecks for industrialization application. Therefore, the control of the microstructure and properties of the composites by selecting the reaction systems and optimizing processing conditons have important theoretical and practical significance. The frame of the paper is based on the following three ideas:1. refine the grain of the matrix alloy in order to improve its comprehensive properties by adding rare earth yttrium; 2. control the microstructure of the composites, including the size, distribution and morphology of the particles by optimizing the reaction system or applying ultrasonic and magnetic fields; 3. achieve high strength and high englation by combining with above-mentioned methods.
     The effects of rare earth yttrium on mircrostructure of 7055A1,6070A1 matrix alloys were investigated. The results show that the addition of the rare earth yttrium can effectively refine the grains and the optimal addition amount of rare earth is 0.25% (mass fraction). When the yttrium addition is more than 0.25%, grain coarsening takes place. Moreover, yttrium-containing compound also coarsen and the morphology become long needle-like.
     The process optimization for Al-K2TiF6, Al-K2ZrF6-Na2B4O7 and Al-K2TiF6-KBF4 component were studied, and Al3Ti/6070Al, A12O3/Al, TiB2/7055Al composites were fabricated. The results show that the reasonable process for Al-K2TiF6 component are synthesis first then alloying with Mg, reaction time less than 10 min and temperature 850℃. For Al-K2ZrF6-Na2B4O7 component, the proper reaction temperature is 850℃, and its reaction mechanism is reaction-solution-precipitation. For Al-K2TiF6-KBF4 component, the best process are alloying with Mg first then synthesis, reaction temperature 850℃and reaction time less than 20 min.
     Al3Ti/6070Al, Al2O3/Al, TiB2/7055Al composites were successfully prepared under ultrasonic field. The experiment results show that as the ultrasonic power and reaction time increase, the number of particles in Al3Ti/6070Al and Al2O3/Al composites is significantly reduced, which can be explained by standing wave mechanism and cavitation mechanism. For Al3Ti/6070Al composites, the optimal ultrasonic power is 1.6 kW, and the best reaction time is 3 min; The Al3Ti particles size is reduced from 2-5μm to about 1μm, and the morphology becomes smaller and granular; For Al2O3/Al composites, the optimal ultrasonic power and reaction time are 0.60 kW,2 min, respectively; The Al2O3 recoveries of the composites can be significantly improved under ultrasonic field. The preparation of TiB2/7055Al composite process mechanism was studied by water quenching. The whole reaction process can be divided into four stages, and the second stage of the reaction process under the ultrasonic field has played a significant role in reaction promoting. TiB2 particles gradually refined with the increase of ultrasonic power. Especially, when the ultrasonic power reaches 1.6 kW, a large number of nano-scale TiB2 particles are observed.
     The preparations of Al3Ti/6070Al, Al2O3/Al, TiB2/7055Al composites under low frequency magnetic field were studied. The results indicate that for Al3Ti/6070Al composites, two different type composites including uniform distribution and gradient distribution can be obtained with the change of excitation current and frequency. When the excitation current is 200 A, the frequency is less than 5Hz, the reaction time is 3-5 min, small sized particles and uniform distribution Al3Ti/6070Al composites can be prepared; meanwhile, gradient distribution composites can be prepared by increasing frequency or current and correspondingly reducing reaction time. Based on the above experiments, it can be conjectured that secondary flow exists in the melt while preparing composites by the continuous action mode under magnetic field. Through water quenching in the intermittent action mode, the process mechanism of TiB2/ 7055Al composites under low-frequency magnetic stirring was studied. The in situ reaction is accelerated at the early stage with assistance of magnetic filed. When the frequency is small (<5 Hz), the size of TiB2 particle size has no significant change. As long as the frequency is over 5Hz, the size of particle tends to be the same, and morphology is passivated.
     The Al3Ti/6070Al and TiB2/7055Al were synthesized under coupled field by using the optimized parameters from single field. The results show that the Al3Ti particles have tiny sizes and well distributed under the coupled field. To be more precisely, when the power of ultrasonic is 1.6 kW, the size of Al3Ti in range of 0.2-0.5μm is about 72.4% to total number. At the same time, nonetheless, the prercentage of particles in range of 0.8-1.2μm have a considerablely decrease to about 1.6%. The size of Al3Ti grows larger as the amount of powder addition increases. Further, morphologies of the particles are changed from small block and granular to large block, piece or short rodlike with assistance of coupled field. When TiB2/7055Al composite fabricated under the coupled field with continuously action mode, a large number of nanoscale TiB2 particles can be observed with 0.8 kW of ultrasonic. The size of inhomogeneous distribution particles is in range of 80-100 nm. While TiB2/7055Al fabricated under the coupled field with intermittently action mode, submicron scale TiB2 particles with uniformly distributed can be obtained.
     The mechanical properties of 7055A1 alloy show that the tensile strength and hardness are decreased with increase of yttrium addition, while elongation is increased. The tensile strength and elongation of 6070A1 are increased at first then decreased with increase of yttrium additon. The tensile strength and elongation of Al2O3/Al composites synthesized under ultrasonic field is increased and then decreased with increase of ultrasonic power and action time, and their optimal parameter are 0.6 kW,2 min, respectively. The tensile properties of Al3Ti/6070Al、TiB2/7055Al composites fabricated under coupled field are better than that single field. The decreased elongation of composites is significantly restrained by interaction of coupled field and rare earth with increase of volume fraction.
引文
[1]Yu Peng, Deng Chengji, Ma Nangang, et al. A new method of producing uniformly distributed alumina particles in Al-based metal matrix composite [J]. Materials Letters,2004,58:679-682.
    [2]田治宇.颗粒增强金属基复合材料的研究及应用[J].金属材料与冶金工程,2008,36(1):3-6.
    [3]宋永刚,郑晶,谭梅凤.颗粒增强铝基复合材料的制备和组织分析[J].南京师范大学学报(工程技术版),2006,6(4):53-58.
    [4]欧阳柳章,罗承萍,隋贤栋,骆灼旋.原位生成制备A1203增强铝基复合材料[J].中国有色金属学报.2000,10(2):159-162.
    [5]Tjong S C, Ma Z Y. Microstructural and mechanical characteristics of in situ metal matrix composites [J]. Materials Science and Engineering A,2000, A29:49-113.
    [6]Aikin R M, Jr. The mechanical properties of in-situ composites [J]. JOM,1997,35-39.
    [7]Koczak M J, Kumar K S. In situ process for producing a composite containing refractory material [P]. U S Patent 4808372,1989.
    [8]Tjong S C, Ma Z Y, Li R K Y. The dynamic mechanical response of A12O3 and TiB2 particulate reinforced aluminum matrix composites produced by in-situ reaction [J]. Materials Letters,1999, 38:39-44.
    [9]顾根大,陈玉勇,安阁英.铈对铝铜合金固液界面形态和稳定性的影响[J].中国稀土学报,1987,5(2):41.
    [10]孙伟成,张淑荣,候爱芹等.稀土在铝合金中的行为[M].北京:兵器工业出版社,
    [11]阮海琼,金头男,杨军军等.含稀土Er的A1-Zn-Mg合金的组织与性能[J].北京工业大学学报,2004,30(4):483-487.
    [12]赖人铭,熊计,赵国忠等.稀土元素La对6063铝合金组织和性能的影响[J].轻合金加工技术,2007,35(10):28-58.
    [13]Wang S H, Zhou H P, Kang Y P. The influence of rare earth elements on microstructures and properties of 6061 aluminum alloy vacuum-brazed joints [J]. Journal of Alloys and Compounds, 2003,352:79-83.
    [14]陈越.稀土在铝及铝合金中的应用[J].上海有色金属,1998,19(3):136-140.
    [15]韩奎,毛协民,欧阳志英等.稀土元素在铸铝熔体除气净化过程中的行为[J].特种铸造及有色合金,2004(2):61-62.
    [16]杨军军,聂祚仁,付静波等.稀土在铝合金中的作用及研究进展[J].北京工业大学学报,2002,28(4):500-505.
    [17]谢优华,陆政,戴圣龙.Al-6Mg-0.2Sc铝合金高温力学行为研究[J].材料工程,(3):49-52.
    [18]Jia Wenxu. Effects of Gd addition on microstructure and shape memory effect of Cu-Zn-Al alloy[J]. Journal of Alloys and Compounds,2008,448:331-335.
    [19]胡晓菊,高洪吴,李长茂等.微量元素对Mg-Al-Zn系合金铸态组织及性能的影响[J].上海有色金属,2004,25(3):100-105
    [20]Li Huizhong, Liang Xiaopeng, Li Fangfang,et al. Effect of Y content on microstructure and mechanical properties of 2519 aluminum alloy [J]. Transactions of Nonferrous Metals Society of China,2007,17:1194-1198.
    [21]李杨勇,王金惠,刘莹颖,夏长清,孙振起.微量钇、饵对2519合金组织性能的影响[J].矿冶工程,2008,28(1):75-77.
    [22]曹大力,石忠宁,杨少华等.稀土在铝及铝合金中的作用[J].稀土,2006,25(5):88-93.
    [23]Song M, Chen K H, Huang L P. Effect of Ce and Ti on the microstructures and mechanical properties of Al-Cu-Mg-Ag alloy [J]. Rare Metals,2007,26(1):28-32.
    [24]崔春翔著.材料合成与制备[M].华东理工大学出版社,2010,01.
    [25]Davies P, Kellie J L F, Wood J V. Development of cast aluminum MMC[J]. Key Engineering Materials,1993,77:357-362.
    [26]Yang Z G, Long S G. Damage analysis for particle reinforced metal matrix composite by ultrasonic method[J]. Transactions of Nonferrous Metals Society of China,2006,16:652-655.
    [27]Eskin G I, Yu P, Makarov G S. Effect of cavitation melt treatment on the structure refinement and property improvement in cast and deformed hypereutectic Al-Si alloys [J]. Materials Science Forum,1997,242:65-70.
    [28]李英龙等.功率超声对Al-Si合金组织合性能的影响[J].中国有色金属学报.1999,9(4):719-723.
    [29]赵忠兴,穆光华等.超声波对铸造合金组织和性能的影响[J].铸造,1996,(3):21.
    [30]Tjong S C, Chen F. Wear behavior of as-cast Zn-A127/SiC particulate metal matrix composites under lubricated sliding condition[J]. Metallurgical and Matericals Transaction A,1997,28A(9): 1951-1955.
    [31]Wan H, Pan J, Yang D M. In-situ aluminium matrix composites prepared by ultrasonic vibration [A]. Tenth International Conference on Composite Meterials, Canada:1995,14-18.
    [32]潘蕾,陶杰,吴申庆等.高能超声作用下两种锌基复合材料的制备及研究[J].铸造,2005,54(12):1219-1222.
    [33]丁加善,赵玉涛,张松利等.超声化学原位合成(Al2O3+Al3Zr)p/A356复合材料[J].特种铸造及有色合金,2008,28(5):385-388.
    [34]Asai Shigeo. Birth and Recent Activities of Electromagnetic Processing of Materials [J]. ISIJ International,1989,29(12):981-992.
    [35]Bassyouni T A. Effect of electromagnetic forces on aluminum cast structure [J]. Light Metals, 1983,33(12):733-741.
    [36]Molodov D A, Bhaumik S, Molodova X, et al. Annealing behaviour of cold rolled aluminum alloy in a high magnetic field [J]. Scripta Materialia,2006,54:2161-2164.
    [37]訾炳涛,巴启先,崔建忠等.强脉冲电磁场对金属凝固组织影响的研究[J].物理学报,2000, 49(5):1010-1013.
    [38]班春燕,巴启先,崔建忠等.磁场作用下铝合金的微观结构[J].东北大学学报,2002,23(8):779-781.
    [39]班春燕,韩逸,龙春仙等.直流磁场对7075铝合金组织结构的影响[J].2特种铸造及有色合金,2005,26(1):15-16.
    [40]王春江,王强等.利用强磁场控制SiCp/Al复合材料增强颗粒分布状态[J].铸造,2007,56(5):467-471.
    [41]张秋明.电磁搅拌法制备铝/电气石复合材料的研究[D].硕士学位论文.大连:大连理工大学,2001,18-19.
    [42]陆模文,胡文祥.有机磁合成化学研究进展[J].1997,17:289-294.
    [43]周朝华,苏致兴.磁场对聚合物立体构型影响的研究[J].高等化学学报,1981,(3):372-376.
    [44]张高科,陈虹.材料制备及加工中的磁化学研究及应用[J].硅酸盐通报,2002,(1):34-37.
    [45]王志华,谢辉.磁场在材料制备中的应用[J].铸造技术,2006,27(9):1002-1004.
    [46]王国全,吴中云.磁化学与磁医学[M].北京:兵器工业出版社,1997.
    [47]Zhang Z T, Li J, Yue H Y, Zhang J, et al. Microstructure evolution of A356 alloy under compound field[J]. Journal of Alloys and Compounds,2009,484:458-462.
    [48]Shao Z W, Le Q C, Zhang Z Q, et al. A new method of semi-continuous casting of AZ80 Mg alloy billets by a combination of electromagnetic and ultrasonic fields [J]. Materials and Design, 2011,32(8-9):4216-4224
    [49]Tsunekawa Y, Suzuki H, Genma Y. Application of ultrasonic vibration to in situ MMC process by electromagnetic melt stirring [J]. Materials and Design,2001,22:467-472.
    [50]赵玉厚,严文,周敬恩.原位Al3Ti粒子增强ZL101铝基复合材料[J].有色金属学报,2000,10(S1):214-217.
    [51]陈子勇,陈玉勇,安阁英.金属基复合材料的熔体直接反应合成工艺[J].材料导报,1997,11(1):62-63.
    [52]张二林,曾松岩,曾晓春,李庆春.接触反应法制备颗粒增强型金属基复合材料[J].材料导报,1996,1:68-74.
    [53]方信贤.熔体直接反应法制备TiB2/A1复合材料的显微组织和力学性能[J].机械工程材料,2009,33(11):31-38.
    [54]Wood J V, Davies P, Kellie J L F. Properties of reactively cast aluminum TiB2 alloys [J]. Materials Science and Technology,1993,9(10):833-840.
    [55]田晓风,肖伯律,樊建中等.纳米SiC颗粒增强2024铝基复合材料的力学性能研究.稀有金属,2005,29(4):521-525.
    [56]陈东,乐永康,白亮等.原位TiB2/7055铝基复合材料的力学性能与阻尼性能.功能材料,2006,37(10):1599-1602.
    [57]白亮,陈东,马乃恒等.原位生成TiB2/6351复合材料的组织与性能.材料热处理,2007,36(12):30-33.
    [58]吕一中,崔岩,曲敬信.金属基复合材料在航空航天领域的应用[J].北京工业职业技术学院学报,2007,6(3):1-4.
    [59]吴利英,高建军,靳武刚.金属基复合材料的发展及应用[J].化工新型材料,2002,30(10):32-35.
    [60]Dhandapani S P, Jayaram V, Surappa M K. Growth and microstructure of Al2O3-SiC-Si(A) composites prepared by reactive infiltration of Silion carbide performs [J]. Acta Metallurgica et Materialia,1994,42(3):649-656.
    [61]陈绍杰.复合材料与A380客机[J].航空制造技术,2002,(9):27-29.
    [62]陈文.先进铝合金在A380上的应用[J].航空维修与工程,2002,(2):40-41.
    [63]丁向群,何国求,陈成澍等.轿车用铝合金的研究应用进展[J].同济大学学报(自然科学版),2005,33(11):1504-1508.
    [64]石其年,熊惟皓.铝合金在汽车中的应用与发展[J].材料与表面处理技术,2006,(12):55-58.
    [65]丁晓东.铝合金型材在电子专用设备上的应用[J].电子工业专用设备,1999,28(2):45-48.
    [66]丁晓东.铝合金型材及其在电子设备上的应用[J].新技术新工艺,2001,(2):30-31.
    [67]马强,张敏刚,柴跃生.原位TiB2/Al复合材料制备工艺研究[J].太原科技大学学报,2006,27(1):6-10.
    [68]张大童,李元元,龙雁.铝基复合材料研究进展[J].轻合金加工技术,2000,28(1):5-10
    [69]Lerf R, Morris D G. Mechanical alloying of Al-Ti alloys [J]. Materials Science and Engineering: A,1990,128(1):119-127.
    [70]惠林海,耿浩然,王守仁.A13Ti金属间化合物的研究进展.机械工程材料,2007,31(9):1-6.
    [71]张国定,赵吕正.金属基复合材料[M].上海:上海交通大学出版社,1996.
    [72]Wu C M L, Han G W. Synthesis of an Al2O3/Al co-continuous composite by reactive melt infiltration [J]. Materials Characterization,2007,58(5):416-422.
    [73]Tee K L, Lu L, Lai M O. In situ processing of Al-TiB2 composite by the stir-casting technique [J]. Journal of Materials Processing Technology,1999,89-90:513-519.
    [74]Dusan Bucevac, Vladimir Krstic. Microstructure-mechanical properties relations in SiC-TiB2 composite [J]. Materials Chemistry and Physics,2012,133(1):197-204.
    [75]杨通,梁艳峰,董晟全(TiB2+Al3Ti)/Al-4.5Cu原位复合材料的相结构与力学性能[J].铸造技术,2005,26(10):887-891.
    [76]谢田甜.纳米γ-A1203粉体的低成本制备和热处理工艺研究[D].硕十学位论文.浙江:浙江大学,2006,06.
    [77]Kosti E, Kiss S J, Zec S, et al. Transition of γ-Al2O3 into a-Al2O3 during vibro milling [J]. Powder Technology,2000,107:48-53.
    [78]Fang Xiya, Yi Danqing, Wang Bin, et al. Effect of yttrium on microstructures and mechanical properties of hot rolled AZ61 wrought magnesium alloy[J]. Transactions of Nonferrous Metals Society of China,2006,16:1053-1058.
    [79]Okamoto H. Al-Y (Aluminum-Yttrium) [J]. Journal of Phase Equilibria and Diffusion,2007, 29(1):114.
    [80]李海,郑子樵,王芝秀.含少量Ag的7055铝合金组织与性能[J].中南大学学报(自然科学版),2004,35(1):1-5.
    [81]郭旭涛,李培杰,熊玉华等.稀土在铝、镁合金中的应用[J].材料工程,2004,(8):60-64.
    [82]Chelkowski A, Talik E, Szade J, Solid solubility of rare earths in aluminium [J]. Journal of the Less-Common Metals,1988,141(2):213-218.
    [83]Zuo Yubo, Cui Jianzhong, Dong Jie, et al. Effect of low frequency electromagnetic field on the constituents of a new super high strength aluminum alloy [J]. Journal of Alloys and Compounds,2005,402:149-155.
    [84]Saccone A, Cacciamani G, Maccio D, et al. Contribution to the study of the alloys and intermetallic compounds of aluminium with the rare-earth metals [J]. Intermetallics,1998,6: 201-215.
    [85]刘贵立,李荣德.铸造锌铝合金稀土变质机理的电子理论研究[J].物理学报,2003,52(9):2264.
    [86]冯银成,李落星,刘杰.自然时效对6061铝合金显微组织和力学性能的影响[J].机械工程材料,2011,35(3):18-21.
    [87]黄学锋,高原,吴鹏等.稀土铒(Er)改性6063铝合金铸态微观组织与性能[J].金属热处理,36(2):21-24.
    [88]Lakshmi S, Lu L, GuPto M. In-situ Preparation of TiB2 reinforced Al based composites [J]. Journal of Materials Proeessing Technology,1998,73:160-166.
    [89]刘云云.原位自生TiB2增强铸铝101的研究[D].硕十学位论文.北京:北京交通大学,2009,36-38.
    [90]Birol Y. Production of Al-Ti-B grain refining master alloys from Na2B4O7 and K2TiF6 [J]. Journal of Alloys and Compounds,2008,458:271-276.
    [91]Gao J W, Shu D, Wang J, et al. Effects of Na2B4O7 on the elimination of iron from aluminum melt [J]. Scripta Materialial,2007,57:197-200.
    [92]高振昕.耐火材料显微结构[M].北京:冶金工业出版社,2002:38-45.
    [93]周传华,马淑兰,李国勋等.新型低温铝电解质体系的研究——氧化铝的溶解度与溶解速度[J].有色金属,1998,50(2):81-84.
    [94]Jonas Fjellstedt, Anders E W Jarfors. On the precipitation of TiB2 in aluminum melts from the reaction with KBF4 and K2TiF6 [J]. Materials Science and Engineering A,2005,413-414: 527-532.
    [95]罗启全.铝合金熔炼与铸造[M].广东:广东科技出版社.2002.
    [96]Wang Xiaoming, Jha A, Brydson R. In-situ fabrication of Al3Ti particle reinforced aluminum alloy metal-matrix composites [J]. Materials Science and Engineering A,2004,364(1/2): 339-345.
    [97]Yu Huashun, Chen Hongmei, Sun Liming, et al. Preparation of Al-Al3Ti in situ composites by direct reaction method [J]. Rare Metals,2006,25(1):32-36.
    [98]Karabi Das, Narnaware L K. Synthesis and characterization of Al-4.5% Cu/Al3Ti composites: Microstructure and ageing behaviors[J]. Materials Science and Engineering A,2008,497: 25-30.
    [99]Tee K L, Lu L, Lai M O. Improvement in mechanical properties of in-situ Al-TiB2 composite by incorporation of carbon [J]. Materials Science and Engineering A,2003,339:227-231.
    [100]Mandal A, Chakraborty M, Murty B S. Effect of TiB2 particles on sliding wear behaviour of Al-4Cu alloy [J]. Wear,2007,262:160-166.
    [101]Kumara S, Chakraborty M, Subramanya Sarma V. Tensile and wear behaviour of in situ Al-7Si/TiB2 particulate composites [J]. Wear,2008,265:134-142.
    [102]Zhao Yutao, Zhang Songli, Chen Gang, et al. Effects of molten temperature on the morphologies of in situ Al3Zr and ZrB2 particles and wear properties of (Al3Zr+ZrB2)/Al composites [J]. Materials Science and Engnering A,2007,457:156-161.
    [103]张树瑜,柴跃生.原位颗粒增强铝基复合材料形核机制及转变动力学[J].材料导报,2002,16(8):68-70.
    [104]乐永康,张建平,陈东.原位反应合成TiB2的生长行为[J].特种铸造及有色合金,2008,28(2):102-105.
    [105]闫卫平,荣福杰,宋国金等.混合盐法制备TiB2/Al复合材料的研究现状[J].铸造,2006,55(11):1114-1117.
    [106]白晓清,赫冀成.超声波作用下微粒凝集过程参数的研究[J].东北大学学报,2001,22(4):413-416.
    [107]潘金生.材料科学基础[M].北京:清华大学出版社,1998:583-585.
    [108]Auradi V, Kori S A.. Influence of reaction temperature for the manufacturing of Al-3Ti and Al-3B master alloys[J]. Journal of Alloys and Compounds,2008,453:147-156.
    [109]Duschanek H, Rogl P. The Al-B (Aluminum-Boron) system [J]. Journal of Phase Equilibria, 1994,15(5):543-552.
    [110]Zupanic F, Spaic S, Krizman A. Contribution to ternary system Al-Ti-B [J]. Materials science and technology,1998,14(7):601-605.
    [111]Lakshmi S, Lu L, Gupta M. In situ preparation of TiB2 reinforced Al based composites [J]. Journal of Materials Processing Technology,1998,73(1-3):160-163.
    [112]张虎,高文理张工林等.Ti-54Al-xB合金中TiB2的形貌演变及生长机理[J].金属学报,2002,38(7):699-702.
    [113]Sivaprasada K, Kumaresh Babua S P, Natarajana S, et al. Study on abrasive and erosive wear behaviour of Al 6063/TiB2 in situ composites [J]. Materials Science and Engineering A,2008, 498:495-500.
    [114]Jensen M S, Pezzotta M, Zhang Z L. Degradation of TiB2 ceramics in liquid aluminum [J]. Journal of the European Ceramic Society,2008,28:3155-3164.
    [115]Yue N L, Lu L, Lai M O. Application of thermodynamic calculation in the in-situ process of Al/TiB2 [J]. Composite Structures,1999,47:691-694.
    [116]张忠涛.外场对铝熔体异相粒子运动及其凝固行为影响研究[D].博十学位论文,大连:大连理工大学,2009,16-19.
    [117]夏启斌,李忠,邱显扬等.六偏磷酸钠对蛇纹石的分散机理研究[J].矿业工程,2002,22(2):53-56.
    [118]徐国财,张立德.纳米复合材料[M].北京:材料科学与工程出版中心,2001:101-105.
    [119]赵玉涛.A1-Zr-O体系反应生成颗粒增强复合材料的组织结构与性能研究[D].博士学位论文.南京:东南大学,2001,04.
    [120]冯若.声化学及其应用[M].合肥:安徽科技出版社,1990.
    [121]钱祖文.非线性声学[M].北京:科学出版社,1992.350-370.
    [122]王俊.用高能超声法制备的MMCp及其细观力学行为[D].博士学位论文.南京:东南大学,1997,51.
    [123]陶杰,赵玉涛,潘蕾等.金属基复合材料制备新技术导论[M].北京:化学工业出版社,2007.
    [124]王俊,陈锋,孙宝德.高能超声在制备颗粒增强金属基复合材料中的作用[J].上海交通大学学报,1999,33(7):813-816.
    [125]潘蕾,陶杰,陈照峰等.高能超声在颗粒/金属熔体体系中的声学效应[J].材料工程,2006,(1):35-42.
    [126]刘荣光,李晓谦,胡仕成.铝合金熔体中超声空化效应和气泡运动过程模拟[J].中国铸造装备与技术,2007,(6):16-19.
    [127]蒋日鹏,李晓谦,刘荣光等.功率超声对纯铝的细晶机制及作用区域研究[J].特种铸造及有色合金,2008,28(7):560-563.
    [128]Griffiths D, McCartney D G. The effect of electromagnetic stirring on macrostructure and macrosegregation in the aluminum alloy 7150 [J]. Matericals science and engineering A,1997, 222:140-148.
    [129]李桂荣,王宏明,赵玉涛等.低频电磁场F原位合成Al-Zr-O系复合材料机制研究[J].材料科学与工艺,2008,16(2):158-162.
    [130]谢处方,饶克谨.电磁场与电磁波[M].北京:人民教育出版社,1979.
    [131]Yamaguchi M, Yamamoto I, Ishikawa F. Thermodynamic theory of magnetic field effects on chemical equilibria and application to metal-hydrogen systems [J]. Journal of Alloys and Compounds,1999,253-254:191-194.
    [132]方达宪.流体力学[M].南京:东南大学出版社,2012.
    [133]Lloyd D J. The solidification microstructure of particulate reinforced aluminum/SiC composites [J]. Composite Science and Technology,1989,35(2):159-179.
    [134]康志成,毛大垣,邓卡玲.铝熔体粘度测量的研究[J].湖南有色金属,2001,17(2):18-20.
    [135]张习刚.电磁搅拌行为的研究[J].铸造技术,2010,31(7):932-934.
    [136]江志文,任忠鸣,钟云波等.金属液中稳恒电磁力场作用下颗粒迁移特性的初步研究[J].上海有色金属.2000,21(1):1-4.
    [137]翟秀静,符岩,李鸿斌等.旋转磁场用于原铝净化的研究[J].东北大学学报(自然科学版),2002,23(11):1083-1085.
    [138]Spizer K H, Dubke M, Schwerdtfeger K. Rotationgal eletromagnetic stirring in continuous casting of round strands [J]. Metallurgical Transactions B,1986,17(1):119-131.
    [139]王渠东,丁文江,金俊泽.离心铸造过共晶A1-Si合金自生表面复合材料[J].复合材料学报,1998,15(3):7-11.
    [140]陈刚,孙国雄.固-液反应法制备a-Al2O3(p)/Al-Cu复合材料的研究[J].热加工工艺,1997,(4):14-16.
    [141]冯艳丽,陈东风.高频磁场下熔体夹杂迁移行为的研究[J].科技信息.2011,(23):484-485.
    [142]钟云波,孟宪俭,倪丹.旋转磁场净化钢液的实验研究[J].上海金属.2006,28(2):9-14.
    [143]钟云波.电磁力场作用下液态金属中非金属颗粒迁移规律及其应用研究[D].博士学位论文.上海:上海大学,2000,16-20.
    [144]王晓莉,王静,伏思静等.碳化钛颗粒增强铁基表面复合材料的研究[J].热加工工艺,40(16):69-74.
    [145]刘建伟,解念锁.表面复合材料制备技术与应用[J].科技创新导报,2009,32:206.
    [146]杨世洲,丁义超.原位合成VC颗粒增强铁基表面复合材料的研究[J].西华大学学报(自然科学版),2009,28(4):96-99.
    [147]Moreau R. Magnetohydrodynamics [M]. Dordrecht:Kluwer,1990,36-49.
    [148]胡文瑞.宇宙磁流体力学[M],北京:科学出版社,1987.
    [149]吴其芬,李桦.磁流体力学[M].长沙:国防科技大学出版社,2007.
    [150]任兵芝.电磁搅拌大方坯连铸结晶器内电磁场与流场及温度场耦合过程数值模拟[D].硕十学位论文.东北:东北大学,2008,48-52.
    [151]Chen Kanghua, Liu Hongwei, Zhang Zhuo, et al. The improvement of constituent dissolution and mechanical properties of 7055 aluminum alloy by stepped heat treatments [J]. Journal of Materials Processing Technology,2003,142:190-196.
    [152]Zhang Ya, Zeng Xiaoqin, Liu Liufa, et al. Effects of yttrium on microstructure and mechanical properties of hot-extruded Mg-Zn-Y-Zr alloys [J]. Materials Science and Engneering A,2004, 373:320-327.
    [153]钟建华,张聚国,刘金明.稀土对6063铝合金组织性能的影响[J].表面技术,2004,33(5):27-29.
    [154]Li Huizhong, Liang Xiaopeng, Li Fangfang, et al. Effect of Y content on microstructure and mechanical properties of 2519 aluminum alloy [J]. Transactions of Nonferrous Metals Society of China,2007,17:1194-1198.
    [155]Xu Guofu, Mou Shenzhou, Yang Junjun. Effect of trace rare earth element Er on Al-Zn-Mg alloy [J]. Transactions of Nonferrous Metals Society of China,2006,16:598-603.
    [156]Xiao D H, Wang J N, Ding DY, et al. Effect of rare earth Ce addition on the microstructure and mechanical properties of an Al-Cu-Mg-Ag alloy [J]. Journal of Alloys and Compounds, 2003,352:84-88.
    [157]Saccone A, Cacciamani G, Maccio D, et al. Contribution to the study of the alloys and intermetallic compounds of aluminium with the rare-earth metals [J]. Intermetallics,1998,6: 201-215.
    [158]高耸.高能超声对A1-Ti-B中间合金的影响规律研究[D].硕士学位论文.上海:上海交通大学,2008,20-50.
    [159]田保红,周洪雷,刘勇.真空热压烧结Al2O3/Cu-Cr复合材料的组织与性能[J].特种铸造及有色合金,2009,29(2):166-169.
    [160]Bacon D J, Kocks U F, Scattergood R O. Effect of dislocation self-interaction on the Orowan Stress [J]. Philosophical Magazine,1972,28:1241-1263.
    [161]陈剑锋,武高辉,孙东立等.金属基复合材料的强化机制[J].航空材料学报,22(2):49-53.
    [162]Verhoeven J D. Fundamentals of Physical Metallurgy [M]. New York:John Wiley & Sons Inc, 1975.
    [163]Nakamura M, Kimura K. Elastic constants of TiAl3 and ZrAl3 single crystals [J]. Journal of Material Science,1991,26:2208.
    [164]崛茂德.钛在铝中的固溶度[J].轻金属,1984,(7):377-381.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700