用户名: 密码: 验证码:
基于电渣重熔的大型铸锭成型关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,我国装备制造业水平进一步提高,装备制造业的一个突出技术发展趋势是极端制造,其中一个方向是朝着超大发展,电力、石化、冶金等领域装备大型化、复杂化对大型铸锻件行业提出了更高要求,未来10-15年将是中国推进工业化的关键时期,电力、石化、冶金、船舶等行业都将继续快速发展,孕育着对大型铸锻件的空前需求,而我国在大型铸锻件的自主技术水平与生产能力上严重不足,与此对应的却是国际上大型铸锻件明显的供不应求,依靠国外大型铸锻件,价格高昂,交货周期长,而且关键时候,国外对我国的技术封锁,且限制出口。因此大力发展我国自主技术的优质大型铸锻件,具有十分重要意义。
     由于大型铸锻件产品的自身特点,要求优质的大型钢锭必须含杂质元素少;气体和夹杂物含量低;化学成分均匀,即偏析要小。而实际上,钢锭越大,这些要求越难实现,反而会有更多的缺陷产生。
     电渣重熔工艺具有设备要求低,且同时具有以下优点:金属纯净、组织致密、成分均匀、表面光洁,在具有优良产品性能的同时,工艺的稳定性与质量的重现性高,且生产灵活,可生产各种锭型。电渣重熔工艺还有两个重要特点,即:电渣冶金的连续性与可叠加性,电渣重熔可通过更换自耗电极连续生产,以及可通过多台设备同時连续生产一个大型构件,这些特性决定了电渣重熔工艺在生产大型铸锻件上可以发挥重要作用!
     但是简单的将电渣重熔系统扩大用于生产大型铸件,会面临着一些问题,如电效率降低,电渣长时间工作的稳定性,由于结晶器增大而带来的控制顺序凝固作用减弱,中心缩孔、疏松,电极更换时造成的工艺参数波动等,这些对铸件质量及其稳定性均会造成影响,因此有必要对电渣重熔生产大型铸件进行深入研究。
     基于以上目的,本文提出了两种全新的基于电渣重熔工艺生产大型铸锭的方案,并设计了用于现在常用的抽锭式电渣重熔连铸设备的通用自动控制系统,具体内容如下:
     (1)研究、设计了采用电渣重熔复合技术生产大型铸锭的方案,利用数模模拟与试验验证的方法,分析了该方案的可行性。通过数值模拟的结果显示,在电渣重熔过程中,自耗电极的末端将产生电流密度高的高温区,它具有使芯锭表层快速熔化的能力,有利于芯锭与熔融金属液的复合,为大型铸锭的生产创造条件;加大重熔电流或电压、增加电极在电渣中的插入深度、减小自耗电极与芯锭之间的距离等措施有利于实现芯锭与熔融金属液的复合,但在具体操作时,需要考虑操作的可行性与对设备的耐受性。
     (2)研究设计了一种电渣浇铸实现大型铸锭的方案。该方案采用有衬电渣炉实现金属的熔化与提纯,以获得纯净的优良金属液,并可获得较高的功率因数,具有明显的节电效果。这些金属液在滑动水口的控制下,汇集并贮存于中间包内保温,用于大型铸锭的浇铸。为了解决浇铸过程中的缩孔、疏松等问题,提出在金属结晶过程中,利用高压气体的压力以及合适的振动制度以使铸件的结晶向有利的方向发展。
     (3)针对常用的抽锭式电渣重熔连铸设备,设计了一种通用自动控制系统,用于抽锭全过程的自动控制、参数记录及质量监控。该系统采用PLC作自动控制执行器,工控机作上位机,实现电渣重熔工艺参数的设定、重熔过程的记录、监控以及打印。自动控制系统着重解决了电极的进给、金属液位的检测与稳定、铸锭的抽出等的自动控制。该系统实现了对一个完整大锭重熔全过程的自动控制,对于铸件质量的稳定、提高生产率、降低劳动强度具有重要意义,且具有通用性,亦可用于电渣企业实现技术改造与升级。
In recent years, equipment manufacturing industry of China has achieved to a higher level. One of its technology tendency is the extreme manufacturing. And the development of large scale is one of its directions. For the equipments become large-scale, complex, the power, petrochemical and metallurgical industries has put forward higher requirement on large-scale casts forging profession. It's a crucial period for industrialization of China in the next 10-15 years, the power, petrochemical, metallurgy, shipbuilding and other industries will continue to develop rapidly, and there are unprecedented demand for large casting and forging. However, in our country, the lack of autonomous technology and shortage of production capacity is serious, and the international demand is significant larger than supply. For the high prices, long delivery cycle, and the critical time, foreign to our technological blockade, and export restrictions when depend on foreign supply. Developing our own technology in high-quality casting and forging has great significance.
     Because of the characteristics of large scale casting and forging products, requiring a large steel ingot must contain less quality of impurity elements, gas and inclusion content is low; chemical composition is uniformity, which means segregation is small. In fact, the greater the ingot is, the more difficult to achieve these requirements, and there also will be more defects.
     Electroslag remelting (ESR) process has low equipment requirements, and also has the following advantages:metal pure, dense, homogeneous, smooth surface, with excellent performance, process stability and reproducibility is high, and production is flexibility, also can produce a variety of spindle types. ESR has two important features:the continuity and additivity. Large scale casting of ESR can be produced continously by replacing the consumable electrode, remelt simultaneously via multiple devices. These characteristics makes the ESR process to play an important role in the production of large castings and forgings!
     However, expand the ESR system simply to product large scal castings, some problems will be faced, such as lower electrical efficiency and lower slag's stability after long working hours, weaker control ability for progressive solidification after the mold size increased, center shrinkage, porosity, fluctuations in process parameters caused by replacement of electrode, etc. This will lead to deterioration of the casting quality and stability. So it is necessary to study the production of large castings using ESR process.
     Based on above purposes, two new techniques of the production of large scale ingot based on ESR process were proposed in this paper, and a universal automatic control system for the pumping ESR ingot casting equipment was designed, the details are as follows:
     (1) studied and designed a large scale ingot production program, in which ESR composite technology was applied. And using digital simulation and experimental verification to analyze the feasibility of this program. The numerical simulation results show that, during the ESR process, at the end of the consumable electrode will produce a high temperature area with high current density, which has the capacity of speeding up the melting of the core ingot. That will benefit the core ingot and molten liquid metal compound, to create the conditions for the production of large ingots. Increasing the melting current, voltage, the depth of electrode insertion in the slag, or reducing the distance of electrode-ingot will benefit to the compound of core ingot and molten metal fluid, but in actual production, the feasibility and operation of the device tolerance has to be taken into account.
     (2) studied and designed a large scale ingot production program using ESR cast. The program using lined electric slag furnace to for the metal melting and purification, obtaining pure liquid metal with higher power factor. This program reached a significant energy-saving effect. Under the control of the slide gate, the liquid metal for large ingot casting stored in the middle of the bag to keep heat. In order to solve the shrinkage in the casting process and osteoporosis and other issues, high-pressure gas and vibration system will be applied in order to makes the appropriate crystallization of castings to the favorable direction.
     (3) for the common type pumping ESR ingot casting equipment, a universal automatic control system was designed for the control of whole pumping spindle process of, parameter records and quality monitoring and control. In the system, PLC was used as actuators, industrial computer was used as host computer for the parameters setting and ESR remelting process parameters recording, monitoring, and printing. The automatic control system solving the electrode feeding automatically, the detection of liquid metal level and its stability, and the cast ingot's drawing out automatically. This control system can meet the completely automatic control of whole process of a large ingot remelting, the program is important to the stability of the casting quality, increasing productivity, reducing labor intensity, and it also can be used to achieve business's transformation and slag upgrade.
引文
[1]李正邦.电渣冶金原理及应用[M].北京:冶金工业出版社,1996
    [2]李正邦.电渣冶金的理论与实践[M],北京:冶金工作出版社,2010
    [3]李正邦.电渣冶金的回顾于展望[J].特殊钢,1999,5:1-6
    [4]中信重工老总任沁新.大型铸锻件将是全球性极为稀缺的战略资源[J].中国铸造装备与技,2009(1):29
    [5]向大林.我厂大型电渣重熔技术的研发历程及超大型电渣重熔技术的应用前景.电渣冶金学术会议论文集,2008
    [6]一重集团核心技术20年不落后,打造世界级铸锻钢基地,http://www.ccnews.gov.cn/ xinwen/dbxw/zxzl/pages/19df31d1-2837-46cf-8ad0-539d5e707e35.aspx,2009
    [7]李正邦,洪彦若,张祖贤等.电渣熔铸[M].北京:国防工业出版社,1981
    [8]姜周华,刘喜海,赵林等Mn18Cr18N护环钢电渣重熔技术开发.特殊钢,1999,20(增刊):82-84
    [9]姜周华.电渣冶金的物理化学及传输现象[M].东北大学出版社,2000
    [10]饶磊.电渣熔铸中电极熔化过程及工艺参数优化研究[D].南昌大学,2005
    [11]Suarez, F. S. Proceedings on the fifth international symposium on electro-slag other special melting technologies[J]. G. K. Carnegiemellon Institute of Research, Pittsburgh,1975: 126-143
    [12]Sun R.C., Pridegen J.W., Proceeding of the fifth international symposium on electroslag and other special melting technologies[J], by Bhat, G.K. Carnegiemellon Institute of Research, Pittsburgh,1969,223-232
    [13]Ballantyna A.S., Proceeding of the fifth international symposium on electroslag and other special melting technologies[J], by Bhat, G.K. Carnegiemellon Institute of Research, Pittsburgh,1975:345-351
    [14]Paton B.E., Proceeding of the fifth international symposium on electroslag and other special melting technologies[J], by Bhat, G.K. Carnegiemellon Institute of Research, Pittsburgh, 1975,410-448
    [15]李正邦.电渣冶金的发展历程、现况及趋势[C].2010年全国电渣冶金技术研讨会论文集,2010:1-12
    [17]Kichling W, Neut Hetle. Hfg seite[M].565-572
    [19]李正邦,李谊大.全国电渣冶炼第二届会议资料选编[M].1964,301-330
    [20]陈开忠.HR-2钢电渣工艺及夹杂物去除研讨[J].特钢技术,2006,12(3):36-37
    [21]李正邦,张家雯,车向前.电渣重熔钢中非金属夹杂物含量及成分的控制[J].钢铁研究学报,1997,9(2):7-12
    [22]饶磊,张莹,耿茂鹏.工艺参数对电渣熔铸熔滴形成过程的影响研究[J].铸造技术,2010,31(2):154-157
    [23]饶磊,李小龙,张莹等.基于神经网络及遗传算法的电渣熔铸优化系统设计[J].特种铸造及有色合金,2010,30(2):117-119
    [24]上海重型机器厂.国外电渣重熔[M].上海科学技术情报研究所,1978,2:121-122
    [25]姜周华,姜兴渭.电渣重熔过程传热特性的实验研究.东北工学院学报,1988,2:184-189
    [26]Sun R. C., Pridegen J. W., Proc. Second Int. Symp. on ESR[D]. Pittsburgh,1969
    [27]Szekely J. Proceeding of sixth international vacuum metallurg conference on special melting[J],1979:484-492
    [28]Jeanfils C.F., Chen J.B., Proceeding of sixth international vaccum metallurgy conference on special melting[J],1979:543-545
    [29]赵准.双电渣轧辊复合技术的研究[D].南昌大学,2008
    [30]王书奎.电渣重熔钢锭温度场和应力场数值模拟及Mn18Crl8钢铸态热塑性与组织研究[D].东北大学,1996
    [31]姜周华,姜兴渭.电渣重熔系统渣池发热分布的数学模型[J].东北工学院学报,1988,1: 63-69
    [32]扬小军.电碴熔铸中渣池热电场的有限元数值模拟研究[D].南昌大学.2003
    [33]饶磊,耿茂鹏,马新生.电渣熔铸中电极端部形状对渣池热电场模拟的影响[J].铸造技术,2004,25(5):341-343
    [34]马新生,耿茂鹏,饶磊等.电渣熔铸渣池热电场有限元模拟的前置处理[J].铸造.2004.11:917-919
    [35]马新生,耿茂鹏,饶磊等.基于ANSYS平台上的渣池热电场模拟边界条件的处理[J].铸造技术.2004.12:887-890
    [36]杨小军,耿茂鹏,马新生等.电渣熔铸渣池温度场数值模拟研究及解法改进[J].南昌大学学报:工科版,2003,25(1):5-9
    [37]魏秀琴,周浪等.电渣熔铸中熔池深度及其控制的计算机模拟研究[J].南昌大学学报,1994,21(4):21-25
    [38]Zhou Lang,Wei Xiuqin. A Cellualar Automaton Approach to Modeling of Phase Transformation in Quenching of Steels. Proc of the 18th Heat Treating Society Conference. Chicago,1998.700
    [39]饶磊,耿茂鹏,马新生等.真假双电极熔铸实验的模拟分析及讨论[J].中国铸造装备与技术,2005,4:20-22
    [40]饶磊,耿茂鹏,马新生等.电渣熔铸中渣池中心高温区的模拟与实验研究[J].铸造技术,2006(1):5-7
    [41]李正邦.电渣冶金与电渣熔铸在中国的发展[J].铸造,2004,53(11):855-861
    [42]F.H. Harlow, J.E. Welch. Numerical Caluclation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface. The Physics of Fluids,1965,8(12):2182-2189
    [43]陆秋敏.电渣重熔工艺中渣金两相流动、传热及凝固的研究[D].东北大学硕士学位论文,2009
    [44]占小红.Ni-Cr二元合金焊接熔池枝晶生长模拟[D].哈尔滨工业大学博士学位论文,2008
    [45]陈元元,刘喜海,李宝宽.电渣重熔钢锭凝固过程数学模拟软件[J].钢铁研究学报,2005,17(6):30-33,42
    [46]安阁英.铸件形成理论[M].北京:机械工业出版社,1989
    [47]刘东戎.Ti-Al合金锭凝固组织形成的数值模拟[D].哈尔滨工业大学博士学位论文.2006
    [48]丁恒敏.铸造合金的微观组织模拟[D].华中科技大学博士学位论文.2005
    [49]M.Rappaz, Ph. Thevoz.Solute Diffusion Model for Equiaxed Dendritic Growth:Analytical Solution. Acta Metallurgica,1987,35(12):2929-2933
    [50]W. Kurz, B. Giovanola, R. Trivedi.Theory of Microstructural Development during Rapid Solidification. Acta Metall. Mater.,1986,34(5):823-830
    [51]R. Trivedi. Growth of Dendritic Needles from a Supercooled Melt. Acta Metall,1970,18(3): 287-296
    [52]J. S. Langer, H. Muller-krumbhaar. Theory of Dendritic Growth-Ⅰ. Elements of a Stability Analysis. Acta Metall,1978,26(11):1681-1687
    [53]J. S. Langer, H. Muller-krumbhaar. Theory of Dendritic Growth-Ⅱ. Instabilities in the Limit of Vanishing Surafce Tension. Acta Metall,1978,26(11):1689-1695
    [54]H. Muller-krumbhaar, J. S. Langer. Theory of Dendritic Growth-Ⅲ. Eeffcts of SurafceTension. Acta Metall,1978,26(11):1697-1708
    [55]A. Ramani, C. Beckermann. Dendrite Tip Growth Velocities of Settling NH4CI Equiaxed Crystals. Scripta Materialia,1997,36(6):633-638
    [56]C. Beckermann, Q. Li and X. Tong. Microstructure Evolution in Equiaxed Dendritic Growth. Science and Tecnology of Advanced Materials,2001,2:117-126
    [57]Q. Li, C. Beckermann. Modeling of Free Dendritic Growth of Succinonitrile-acetone Alloys with Thermosolutal Melt Convection. Journal of Crystal Growth,2002,236:482-498
    [58]赵军.基于CA法的熔池凝固过程模拟初探.哈尔滨工业大学硕士学位论文.2006
    [59]H. Cerjak, K. E. Easterling. Mathematical Modeling of Weld Phenomena. Pressed by The Institute of Materials.London,1992
    [60]裴鹿成,王仲奇.蒙特卡罗方法及其应用[M].海洋出版社.北京,1998
    [61]M. P. Anderson, D. J. Srolovitz and G.S. Grest. Computer Simulation of Grain growth-I. Kinetics. Acta Metal,1984,32(5):783-791
    [62]M.P.Anderson,D.J.Srolovitz and G.S.Grest.Computer Simulation of Grain growth-V. Abnormal Grain Growth.Acta Metal,1985,33(12):2233-2247
    [63]尧军平,李海敏.电渣熔铸钢锭微观组织的模拟[J].铸造技术,2008,29(12):1670-1673.
    [64]饶磊,李小龙,耿茂鹏等.电渣熔铸过程中铸锭微观晶粒生长模拟研究[J].铸造,2010,59(6):594-596
    [65]师江伟,杨涤心,倪峰.电渣重熔的发展及其趋势.特钢技术,2004(3):58-61
    [66]陆锡才.电渣炉重熔技术最新进展[J].工业加热,2002,(2):31-32
    [67]孟繁德.电渣重熔的设备选型和工艺选择[J].上海钢研,2000,(2):21-27
    [68]傅杰.第一代和第二代电渣冶金技术的发展[J].特殊钢,2010,(1):18-23
    [69]张国宝.努力打造大型铸锻件生产基地[J].装备制造,2008,(4):48-51
    [70]http://news.xinhuanet.com/mil/2009-04/21/content_11227626.htm
    [71]H. Hinze, et al., Third International Symposium on Electroslag and Other Special Melting Technology, Part II,1971:159-168
    [72]Special Melting, INTECO Technologies,2008, (7):13-27
    [73]Hoyle G. Electroslag Processes Principles and Practice[M]. London:Applied Science Publishers LTD,1983
    [74]世界最大电渣重熔炉——上海重机200吨级电渣重熔炉,http://ruanbingzhai.blog. 163.com/blog/static/139451147201012011338652/
    [75]李正邦.电渣熔铸[M].北京:国防工业出版社,1981
    [76]Paton E O. Electric Welding Institute.Medovar Memorial Symposium. Kyiv
    [77]傅杰.第二代电渣冶金技术与重大装备制造.2010年全国电渣冶金技术研讨会论文集,2010:13-21
    [78]商艳青.装备制造业实现崛起[J].国际技术装备与贸易,2010,(1):46-47
    [79]傅杰.大型锭电渣重熔技术在我国的发展http://www.csteelnews.com/101698 /68300.html
    [80]电渣重熔装备迎发展契机助高端铸锻件国产,http://cn.china.cn/article/d825688,f7bf6b, d2254_9910,1.html
    [81]http.7/www.bokee.net/company/weblog_viewEntry/3976699.html
    [82]姜周华,董艳伍,臧喜民等.新一代电渣冶金技术的开发.2010年全国电渣冶金技术研讨会论文集,2010:22-30
    [83]耿茂鹏,赵准,饶磊等ANSYS的金属表面电渣加热的试验与模拟[J].南昌大学学报:工科版,2008,30(1):36-39
    [84]徐万里,耿茂鹏,赵准等.金属表层电渣加热的实验模拟研究[J].热加工工艺,2008,37(18):56-60
    [85]孔祥谦.有限单元法在传热学中的应用[M].北京:科学出版社,1981.7
    [86]王国强.实用工程数值模拟技术及其在ANSYS上的实践[M].西安:西北工业大学出版社,2001,1
    [87]山口修広著,柯文正译.电学公式应用手册[M].台北:正文书局,1982
    [88]钱壬章,俞昌铭,林文贵等.传热分析与计算[M].北京:高等教育出版社,1987
    [89]J.舍克里著,彭一川等译.冶金中的流体流动现象[M].北京:冶金工业出版社,1985
    [90]Hwang J. H, Kim I. S, Sed Y. S. Numerical simulation of liquid sloshing in three-dimensional tanks[J]. Computers & Structures,1992,44:339-342
    [91]Machange R, Canot E. High-order schemes in boundary element methods for transient non-linear free surface problems[J]. Int. J. Numer. Method Fluids.1997,24:1049-1072
    [92]Grilli S. T, Guyenne P, Dias F. A fully non-linear model for three-dimensional overturning waves over an arbitrary bottom[J]. Int. J. Numer. Method Fluids,2001,35:829-867
    [93]王君卿,徐超.大型变曲面导叶电渣熔铸工艺模拟及应用[J].铸造,1999,(3):23-28
    [94]车向前.电渣熔铸薄壁金属管过程的数值模拟研究[D].北京:冶金钢铁总院,1995
    [95]魏季和,任永莉.电渣重熔体系内磁场的数学模型[J].金属学报,1995,31(2)B051-B060
    [96]魏季和,任永莉.电渣重熔体系内熔渣流场的数学模拟[J].金属学报,1994,30(11):B481-B490
    [97]Diladwari AH, SzekelyJ. Metallurgical Transaction[J],1978,9B, (1):77-87
    [98]John F. Eliott. Pro.5th inter. Symp. on ESR and other special Metal Tech Part[D].1975: 69-76
    [99]郭培民,张家雯,李正邦.电渣重熔体系渣池运动分析及数学模型发展[J].钢铁研究,1997,(4):15-19
    [100]张亚欧,谷志飞,宋勇等ANSYS7.0有限元分析实用教程[M].北京:清华大学出版社,2004
    [101]林岚.钢铁厂工业炉设计参考手册资料(上册)[M].北京:冶金工业出版社
    [102]耿志勇,姜兴渭.电渣重熔系统渣温对输入功率的响应[J].东北工学院学报,1986,4:86-93
    [103]姚仲鹏,王瑞君.传热学[M].北京:北京理工大学出版社,2003
    [104]Cheng Y, Raha P. ILLISFD. An electro-thermal timing simulator for temperature-sensitive reliability diagnosis of CMOS chips[J]. IEEE Trans Computer-Aided Design,1998,17(8): 668-681
    [105]Szekely V, Poppe A. Electro—thermal simulation:A realization by simultaneous iteration[J]. Microelectronics,1997,28 (3):245-247
    [106]唐兴伦等ANSYS工程应用教程热与电磁学篇[M].中国铁道出版社,2001
    [107]姜义兴.温度传感器——钨铼热电偶[J].江苏化工,1996,4:40-44
    [108]刘福杰,王浩静,范立东.红外测温仪原理及其在应用中注意的问题[J].现代仪器,2007,13(4):50-51
    [109]曾强,舒芳誉,李清华等.红外测温仪的工作原理及应用[J].检测与制作,2007,1:25-26
    [110]鄢文,李楠.熔渣对铝-镁系耐火材料侵蚀的研究进展.材料导报,2008,22(1):412-414
    [111]张云鹏.中性炉衬材料在精铸上的应用[J].铸造设备研究,2005,1:48-51
    [112]张明华.塞棒和浸入式水口的设计及在连铸中的操作[J].国外耐火材料,1995,(4):12-13
    [113]石守兴.滑动水口综述[J].冶金设备,2001,(5):22-25
    [114]张丽娟,徐勇.大方坯连铸中间罐滑动水口开度控制装置的调整与应用[J].鞍钢技术,2001,(2):10-13
    [115]雷科辉,孙达昕.电渣熔铸钢水液位检测新方法——测重法[J].邵阳学院学报(自然科学版),2004,1(4):70-71
    [116]欧阳可明.压铸金属液的结晶[J].云光技术,2001,33(1):1-12
    [117](苏)阿·依·巴迪舍夫.金属和合金在压力下结晶[M].哈尔滨工业大学出版社,1987
    [118]谢盘海.计算高压下金属的熔化温度、Gruneisen系数及等温压力的新公式[J].物理学报,1982,32(8):1086-1092
    [123]知水,孙长悌.机械振动对钢锭结晶过程的影响[M].冶金工业出版社,1959
    [124]段海平等.低频振动凝固改善Sn-Sb合金偏析的机理[J].铸造,2002,53(12):1015-1018
    [125]韩富银等.振动对Zn-27A1-Si合金组织性能的影响[J].太原理工大学报,2004,35(3):324-327
    [126]王红霞,张国平,许春香.机械振动对纯Al晶粒细化及凝固收缩的影响[J].铸造设备研究,2007(1):28-31
    [127]G. A. Dornin Iron Age,1961,127, No.4,302
    [128]曾振洲.电渣炉抽锭装置的设计总结与探讨[J],工业加热,1982,(2):12-20
    [129]陈兵芽.大型曲轴电渣熔铸金属液位自动检测及控制系统的研制[D].南昌大学硕士学位论文,2002
    [130]孙彦广.工业智能控制技术与应用[M].北京:科学出版社,2007
    [131]陶永华.新型PID控制及其应用(第2版)[M].北京:机械工业出版社,2002
    [132]王达宇,何国青,宋万民等.电渣重熔过程智能控制的研究与应用[J].工业加热,2005,34(6):42-45
    [133]曾孟雄,李力,肖露等.智能检测控制技术及应用[M].北京:电子工业出版社,2008
    [134]陶永华.PID控制原理和自整定策略[J].工业仪表与自动化装置,1997,25(4):60-64
    [135]王伟.人工神经网络原理—入门与应用[M].北京:北京航空航天大学出版社,1995
    [136]胡守仁,余少波,戴葵.神经网络导论[M].长沙:国防科技大学出版社,1993,1-73
    [137]韩力群.人工神经网络理论、设计及应用[M].北京:化学工业出版社,2002,53-56
    [138]王永骥,涂健.神经元网络控制[M].机械工业出版社,1998
    [139]阎平凡,张长水.人工神经网络与模拟进化计算[M].清华大学出版社,2000
    [140]高隽.人工神经网络原理及仿真实例.北京:机械工业出版社,2003
    [141]舒怀林.PID神经元网络及其控制系统[M].国防工业出版社,2006
    [142]刁伟辽,杨玲玲.基于特征模型的参数自校正PID控制算法[J].水利电力机械,2007,(296):76-78
    [143]金燕华.一种基于新规则的模糊自校正PID控制器[J].仪器仪表用户,2008,(151):47-48
    [144]肖蕙蕙,陈忠华,李山等.基于自适应遗传算法的模糊控制器应用研究[J].现代电子技术,2011,34(1):194-199
    [145]秦雯,王淑红.基于SIMATIC S7-200的模糊变频调速恒压供水系统[J].兰州工业高专科学校学报,2005,12(2):21-24
    [146]刘明,韩希昌,朱小娟.专家PID算法在分散控制系统中的应用[J].东北电力技术,2010(2):46-48
    [147]韩兵欣,刘利贤,胡晓娟等.神经网络在PLC控制系统中的应用[J].微计算机信息,2007,(31):63-64
    [148]陈瑞,徐超,胡学军等.电渣熔铸的补缩工艺[J].铸造,1996,(11):15-17
    [149]姜兴渭.电渣熔铸工艺理论.沈阳:东北大学出版社,1979
    [150]邵青立.直径300mm电渣重熔钢锭的补缩工艺[J].特殊钢,1999,20(2):48-49
    [151]李建兴.可编程序控制器应用技术[M].北京:机械工业出版社,2004
    [152]S7-200CN可编程序控制器产品选型样本,www.ad.siemens.com.cn,2008
    [153]王磊杰,张红梅.增量式光电旋转编码器及在角减速度测量中的应用[J].机电产品开发与创新,2005,(5):115-116
    [154]张春.西门子STEP 7编程语言与使用技巧[M].北京:机械工业出版社,2009
    [155]苏昆哲.深入浅出西门子WinCC V6[M]北京:北京航空航天大学出版社,2008
    [156]SIEMENS. PC AccessGetting Started.2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700