用户名: 密码: 验证码:
双基地前视合成孔径雷达运动补偿
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在自主着陆、自主导航等应用领域,需要掌握飞行器正前方区域的地形地貌及目标情况,解决长期困扰雷达正前视高分辨成像的技术难题。双基地合成孔径雷达(SAR),通过收发平台分置,在飞行器正前方区域能够形成等距离线和等多普勒线的近似正交分割,具备前视高分辨成像的潜力,是目前雷达领域的研究热点。
     高效、高精度的运动补偿是实际应用中实现双基地前视SAR成像的关键环节。本文围绕双基地前视SAR运动补偿所涉及的信号特性、误差建模、参数估计及补偿成像等问题,主要开展了以下工作:
     1.分析了距离徙动特性、多普勒特性及高阶相位误差特性,导出了运动误差条件下的点目标二维频谱,建立了运动误差与多普勒参数的关系模型,为参数估计和运动补偿奠定了理论基础。
     2.提出了基于改进Radon变换的多普勒质心估计方法,通过传感器信息利用、灰度数据稀疏化及粗精两步Radon变换等步骤,实现了双基地前视SAR多普勒质心的快速无模糊估计;提出了基于相位迭代校正的多普勒质心估计方法,以波形熵为衡量标准,通过迭代搜索距离走动斜率,同时实现了双基地前视SAR距离走动校正和多普勒质心估计。
     3.提出了结合时间-调频斜率分布与改进Radon变换的多普勒参数估计方法,通过在时间-调频斜率域检测直线的斜率,实现了双基地前视SAR高阶相位误差估计和补偿。
     4.提出了低对比度场景下的参数估计策略,通过首先检测时频域直线的斜率得到高对比度条件下的多普勒调频率,然后根据各距离单元之间参数的关系,实现了全场景的多普勒调频率参数估计。
     5.提出了基于双曲等效模型的扩展波数域成像算法,克服了常规波数域成像算法难以嵌入二阶运动补偿的局限性,可以实现具有大距离徙动特征的双基地前视SAR成像。
     采用仿真与实测数据对上述方法和方案进行了验证,结果表明,这些方法能够满足双基地前视SAR参数估计与误差补偿精度需求,有效提高成像质量。
To get knowledge of topography and targets in front of aircraft, and solve the technical challenge which troubles forward-looking high-resolution imaging for a long time period, is an urgent issue in the field of autonomous landing and autonomous navigation. By setting the transmitter and receiver on different platforms, the orthogonal partition between equi-distance line and equi-DoppIer line can be formed in front of aircraft, thus bistatic synthetic aperture radar (SAR) has the potential of forward-looking high-resolution imaging. Hence, bistatic forward-looking SAR (BFSAR) is the focus of current research.
     Motion compensation with high efficiency and high precision is of great significance to guarantee high quality image of BFSAR. In this paper, following works involving signal properties, error model, parameter estimation and compensation methods of BFSAR are carried out,
     1. The range migration properties and Doppler properties of BFSAR are analyzed as well as high-order phase error. The point target spectrum for BFSAR with motion error is derived, and the relationships between motion error and Doppler parameter are established. The work of this part will lay theotical foundation for parameter estimation and motion compensation.
     2. Using prior information of sensors, converting intensity data into binary data and dividing Radon transform into coarse and fine Radon transform, an improved Radon-transform-based Doppler centroid estimation scheme is proposed, thus Doppler centroid without ambiguity for BFSAR can be obtained with rapid speed. By searching for range walk slope based on the minimum entropy, an iterative scheme of Doppler centroid estimation is proposed, thus the Doppler centroid can be estimated for BFSAR. Meanwhile, the range walk is corrected.
     3. Combining time-Doppler rate distribution with improved Radon transform, the high-order Doppler parameter estimation scheme is proposed. By detecting slope in time-Doppler rate domain, high-order phase error of BFSAR can be estimated and compensated.
     4. The estimation strategy of Doppler rate in low-contrast scene is proposed. According to the strategy, the Doppler rate in high-contrast scene is estimated firstly by detecting slope in time-frequency domain, and then Doppler rate in full scene can be acquired using the relationship of Doppler rates in different range bins.
     5. To overcome the problem that conventional wavenumber-domain imaging can not be combined with second-order motion compensation, the extended wavenumber domain imaging based on hyperbolic-equivalent model is proposed, and then high-resolution imaging of BFSAR with large range migration can be realized.
     Both the simulated and real data are used to verify the proposed methods, and the results show that these methods can be used to estimate Doppler parameter and compensate phase error of BFSAR, and the image quality is improved greatly.
引文
[1]袁孝康.星载合成孔径雷达导论.北京:国防工业出版社,2003,1-5.
    [2]K. Lohner. Improved azimuthal resolution of forward looking SAR by sophisticated antenna illumination function design. IEE Proceedings:Radar, Sonar and Navigation,1998, 145(2):128-134.
    [3]W. Junjie, Y. Jianyu, Y. Haiguang, et al. Optimal geometry configuration of bistatic forward-looking SAR. IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP 2009),2009:1117-1120.
    [4]W. Junjie, Y. Jianyu, H. Yulin, et al. Bistatic forward-looking SAR:Theory and challenges. IEEE Radar Conference,2009:1-4.
    [5]N. J.whills., Bistatic Radar. Norwood:Artech House,1991:210-220.
    [6]J. H. G. Ender, Signal theoretical aspects of bistatic SAR, IEEE International Geoscience and Remote Sensing Symposium(IGARSS),2003, pp.1438-1441.
    [7]C. H. Gierull, Bistatic Synthetic Aperture Radar, Defence Research and Development Canada, Ottawa TR2004.
    [8]M. Murray, Taking Reconnaissance to Another Level Another Level, Sandia National Laboratories2004.
    [9]Ingo Walterscheid, Thomas Espeter, Jens Klare, et al. Bistatic spaceborne-airborne forward-looking SAR. European Conference on Synthetic Aperture Radar (EUSAR2010), 2010:986-989.
    [10]I.Walterscheid, T. Espeter, J. Klare, et al. Potential and limitations of forward-looking bistatic SAR. IEEE International Geoscience and Remote Sensing Symposium(IGARSS), 2010:216-219.
    [11]Gerhard Krieger, Hauke Fiedler, David Hounam,et al.Analysis of System Concepts for Bi-and Multi-Static SAR Missions, IEEE International Geoscience and Remote Sensing Symposium(IGARSS),2003:770-772.
    [12]J. Balke. Bistatic Forward-looking Synthetic Aperture Radar. International Conference on Radar Systems,2004:1-5.
    [13]F. Balke.Field test of bistatic forward-looking synthetic aperture radar. IEEE International Radar Conference,2005:424-429.
    [14]J. Balke, D. Matthes, T. Mathy. Illumination constraints for forward-looking radar receivers in bistatic SAR geometries. European Radar Conference,2008:25-28.
    [15]J. Balke. SAR image formation for forward-looking radar receivers in bistatic geometry by airborne illumination. IEEE Radar conference,2008:1-5.
    [16]T. Espeter, I. Walterscheid, J. Klare, et al. Bistatic forward-looking SAR:results of a spaceborne-airborne experiment. IEEE Geoscience and Remote Sensing Letters,2011,8(4): 765-768.
    [17]Z. DaZhi, Z. Tao, H. Cheng, et al. Back-projection algorithm characteristic analysis in forward-looking bistatic SAR, CIE International Conference on Radar,2007:1-4.
    [18]Robert Wang, Otmar Loffeld, Holger Nies,et al. Image formation algorithm for bistatic forward-looking SAR. IEEE International Geoscience and Remote Sensing Symposium (IGARSS),2010:4091-4094.
    [19]X. Qiu, D. Hu, C. Ding.Some reflections on bistatic SAR of forward-looking configuration. iEEE Geoscience and Remote Sensing Letters; 2008,5(4):735-739.
    [20]Y. Yi, Z. Linrang, Y. Li, et al. Range doppler algorithm for bistatic missile-borne forward-looking SAR. Asia-Pacific Conference on Synthetic Aperture Radar(APSAR 2009), 2009:960-963.
    [21]蔡复青,何友,林雪原,等,前视双基地SAR CS成像算法.武汉大学校学报:信息科学版,2010,35(11):1300-1304.
    [22]J. Wu, J. Yang, Y. Huang, et.al. Focusing bistatic forward-looking SAR using chirp scaling algorithm, IEEE Radar Conference,2011:1036-1039.
    [23]L. Zengliang, Y. Di, L. Teng. SPECAN algorithm for forward-looking bistatic SAR. International Conference on Signal Processing(ICSP 2008),2008:2517-2520.
    [24]Jinping S, Yan L, S. M. The polar format imaging algorithm for forward-looking bistatic SAR. European Conference on Synthetic Aperture Radar (EUSAR2008),2008:l-4.
    [25]S. Hee-Sub, L. Jong-Tae. Omega-k algorithm for airborne forward-looking bistatic spotlight SAR imaging. IEEE Geoscience and Remote Sensing Letters,2009,6(2):312-316.
    [26]Hu, T. Long, T. Zeng, et al. Forward-looking bistatic SAR range migration alogrithm. CIE International Conference on Radar,2007:1-4.
    [27]J. Wu, Y. Huang, J. Yang, et.al. An omega-K imaging algorithm for bistatic forward-looking SAR with stationary transmitter, International Asia-Pacific Conference on Synthetic Aperture Radar,2011:503-504.
    [28]A. Moreira, H. Yonghong. Airborne SAR processing of highly squinted data using a chirp scaling approach with integrated motion compensation. IEEE Transactions on Geoscience and Remote Sensing,1994,32(5):1029-1040.
    [29]A.Reigber, A. Potsis, E. Alivizatos, et al. Wavenumber Domain SAR Focusing with Integrated Motion Compensation. International Geoscience and Remote Sensing Symposium, 2003:1465-1467.
    [30]谭鸽伟,邓云凯.机载SAR的运动误差的二维空变性及其补偿.电子与信息学报,2009,31(2):366-369.
    [31]潘凤艳,邢孟道,廖桂生.结合运动补偿的波数域算法.电子信息学报,2005,27(3):454-457.
    [32]A.Potsis, A. Reigber, J. Mittermayer, et al. Sub-aperture algorithm for motion compensation improvement in wide-beam SAR data processing. Electronics Letters,2001,37(23): 1405-1407.
    [33]Fornaro, E. Sansosti. Motion compensation in Scaled-FT SAR processing algorithms. International Geoscience and Remote Sensing Symposium,1999:1755-1757.
    [34]王晓峰.临近空间慢速平台SAR运动补偿技术研究:[硕士学位论文].长沙:国防科学技术大学,2007.
    [35]Blackneli, S. Quegan. Motion Compensation Using SAR Autofocus. International Geoscience and Remote Sensing Symposium(IGARSS'88),1988:699-702.
    [36]G. Fornaro. Trajectory deviations in airborne SAR:analysis and compensation. IEEE Transactions on Aerospace and Electronic Systems,1999,35(3):997-1009.
    [37]周峰.机载合成孔径雷达基于数据的运动误差分析及补偿研究:[硕士学位论文].西安:西安电子科技大学,2005.
    [38]汤子跃,张守融.双站合成孔径雷达系统原理.北京:科学出版社,2003,1-10.
    [39]B. D. Rigling, R. L. Moses. Motion measurement errors and autofocus in bistatic SAR. IEEE Transactions on Image Processing,2006,15(4):1008-1016.
    [40]Z. Ding, T. Zeng, D. Yao. Motion measurement errors in bistatic spotlight SAR. IET International Radar Conference,2009:1-4.
    [41]B. S. Motion compensation for airborne SAR based on inertial data, RDM and GPS. International Geoscience and Remote Sensing Symposium,1994:1971-1973.
    [42]H. Nies, O. Loffeld, K. Natroshvili, et al. A solution for bistatic motion compensation. International Geoscience and Remote Sensing Symposium (IGARSS),2006:1204-1207.
    [43]曹福祥.机载合成孔径雷达运动补偿研究:[博士学位论文].西安:西北工业大学,1999.
    [44]李立伟.高分辨率机载合成孔径雷达中运动补偿问题的研究:[博士学位论文].北京:北京航空航天大学,1998.
    [45]仇晓兰,丁赤彪,胡东辉.双站SAR成像处理技术.北京:科学出版社,2010:199-227.
    [46]L. Fuk-Kwok, D. N. Held, J. C. Curlander,et al. Doppler Parameter Estimation for Spaceborne Synthetic-Aperture Radars. IEEE Transactions on Geoscience and Remote Sensing,1985,GE-23(1):47-56.
    [47]S. N. Madsen. Estimating the Doppler centroid of SAR data. IEEE Transactions on Aerospace and Electronic Systems,1989,25(2):134-140.
    [48]A. M. Ortiz, O. Loffeld, S. Knedlik, et al. Comparison of Doppler centroid estimators in bistatic airborne SAR. International Geoscience and Remote Sensing Symposium 2005:1963-1966.
    [49]H. Nies, O. Loffeld, K. Natroshvili. Analysis and Focusing of Bistatic Airborne SAR Data. IEEE Transactions on Geoscience and Remote Sensing,2007,45(11):3342-3349.
    [50]R. Bamler, H. Runge. PRF-ambiguity resolving by wavelength diversity. IEEE Transactions on Geoscience and Remote Sensing,1991,29(6):997-1003.
    [51]F. Wong, I. G. Cumming. A Combined SAR Doppler centroid estimation scheme based upon signal phase. IEEE Transactions on Geoscience and Remote Sensing,1996,34(3):696-707.
    [52]I.G. Cumming, S. Li. Adding sensitivity to the MLBF doppler centroid estimator. IEEE Transactions on Geoscience and Remote Sensing,2007,45(2):279-292.
    [53]于明成,许稼,彭应宁.R-D域对比度最小化解SAR Doppler模糊.清华大学学报(自然科学版),2006,46(7):1259-1262.
    [54]于明成,许稼,彭应宁,等.大斜视SAR的多普勒参数估计.现代雷达,2008,30(2):44-48.
    [55]刘国庆,黄顺吉.星载合成孔径雷达多普勒参数的估计.电子科技大学学报,1993,22(5):459-463.
    [56]I.G. Cumming, P. F. Kavanagh, M. R. Ito. Resolving the Doppler Ambiguity for Spaceborne Synthetic Aperture Radar. International Geoscience and Remote Sensing Symposium, 1986:1639-1643.
    [57]Moreira, R. Scheiber. Doppler parameters estimation algorithms for SAR processing with the chirp scaling approach. International Geoscience and Remote Sensing Symposium, 1994:1977-1979.
    [58]Y.-K. Kong, B.-L. Cho, Y.-S. Kim. Ambiguity-free doppler centroid estimation technique for airborne SAR using the radon transform. IEEE Transactions on Geoscience and Remote Sensing,2005,43(4):715-721.
    [59]X. Huaying, Z. Hongzhong, Z. Jianxiong, et al. A Doppler centroid estimation method using the Radon transform for forward-squint SAR imaging. IEEE Radar Conference,2008:1-5.
    [60]I.G. Cumming, S. Li. Improved Slope Estimation for SAR Doppler Ambiguity Resolution. IEEE Transactions on Geoscience and Remote Sensing,2006,44(3):707-718.
    [61]B. Liu, T. Wang, Z. Bao. Doppler ambiguity resolving in compressed azimuth time and range frequency domain. IEEE Transactions on Geoscience and Remote Sensing,2008,46(11): 3444-3458.
    [62]Chris Oliver, S. Quegan. Understanding Synthetic Aperture Radar Images. Boston:Artech House,2004:35-45.
    [63]J. Curlander, R. N. McDonough. Synthetic aperture radar:systems and signal processing. New York:John Wiely & Sons,1991:61-65.
    [64]Walter G. Carrara, Ron S. Goodman, R. M. Majewski. Spotlight-Mode Synthetic Aperture Radar:Signal Processing Algorithms. Norwood, MA:Artech House,1995:203-242.
    [65]皮亦鸣,杨建宇,付毓生,等.合成孔径雷达成像原理.成都:电子科技大学出版社,2007:112-115.
    [66]W. Junfeng, L. Xingzhao. SAR Minimum-Entropy Autofocus Using an Adaptive-Order Polynomial Model. IEEE Geoscience and Remote Sensing Letters,2006,3(4):512-516.
    [67]R. L. Morrison, Jr., D. C. Munson, Jr. An experimental study of a new entropy-based SAR autofocus technique. International Conference on Image Processing,2002:441-444.
    [68]J. Dall. A new frequency domain autofocus algorithm for SAR. International Geoscience and Remote Sensing Symposium,1991:1069-1072.
    [69]J. R. Moreira, W. Keydel. New MTI-SAR approach using the reflectivity displacement method. IEEE Transactions on Geoscience and Remote Sensing,1995,33(5):1238-1244.
    [70]李刚,彭应宁,夏香根.基于改进RDM的SAR自聚焦算法.电子与信息学报,2009,31(2):349-352.
    [71]郭宇荃,杨建宇,黄钰林.基于Radon-Wigner变换的双基地SAR多普勒调频率估计.雷达科学与技术,2007,5(2):144-148.
    [72]R. L. Morrison Jr, M. N. Do, D. C. Munson Jr. MCA:A multichannel approach to SAR autofocus. IEEE Transactions on Image Processing,2009,18(4):840-853.
    [73]E. Wahl, C. V. Jakowatz Jr, P. A. Thompson, et al. New approach to strip-map SAR autofocus. International Geoscience and Remote Sensing Symposium,1994:53-56.
    [74]E. Wahl, C. V. Jakowatz Jr, P. A. Thompson, et al. New approach to strip-map SAR autofocus. International Geoscience and Remote Sensing Symposium,1994:53-56.
    [75]H. L. Chan, T. S. Yeo. Noniterative quality phase-gradient autofocus (QPGA) algorithm for spotlight SAR imagery. IEEE Transactions on Geoscience and Remote Sensing,1998,36(5): 1531-1539.
    [76]P. Samczynski, K. S. Kulpa. Coherent MapDrift Technique. IEEE Transactions on Geoscience and Remote Sensing,2010,48(3):1505-1517.
    [77]Hubert Cantalloube, Michael Wendler, Vincent GIROUX, et al. Challenges in SAR processing for airborne bistatic acquisitions. European Conference on Synthetic Aperture Radar(EUSAR2004),2004:1-4.
    [78]李燕平,张振华,邢孟道,等.机载双站SAR运动补偿研究.电子学报,2008,36(3):421-427.
    [79]刘润华,朱振波,汤子跃,等.平飞模式双站SAR运动补偿研究.武汉理工大学学报(交通科学与工程版),2009,33(3):576-579.
    [80]M. Antoniou, R. Zuo, M. Cherniakov, et al. Motion Compensation Algorithm for Passive Space-Surface Bistatic SAR. IEEE Radar Conference,2009:1-4.
    [81]许稼,彭应宁,夏香根,等.一种适用于低对比度场景合成孔径雷达成像的自聚焦方法.中国专利,1601297,2007-12-19.
    [82]Y. L. Neo, F. H. Wong, I. G. Cumming. A comparison of point target spectra derived for bistatic SAR processing. IEEE Transactions on Geoscience and Remote Sensing,2008,46(9): 2481-2492.
    [83]J. Shi, Z. Xiaoling, Y. Jianyu. Principle and methods on bistatic SAR signal processing via time correlation. IEEE Transactions on Geoscience and Remote Sensing,2008,46(10): 3163-3176.
    [84]魏钟铨,合成孔径雷达卫星.北京:科学出版社,2001:142-144.
    [85]X. Qiu, D. Hu, C. Ding. An Improved NLCS Algorithm with capability analysis for one-stationary BiSAR. IEEE Transactions on Geoscience and Remote Sensing,2008,46(10): 3179-3186.
    [86]R. Wang, O. Loffeld, Y. Neo, et al. Focusing bistatic SAR data in airborne/stationary configuration. IEEE Transactions on Geoscience and Remote Sensing,2010,48(1):452-465.
    [87]刘先华.双基地前视SAR多普勒参数估计算法研究:[硕士学位论文].成都:电子科技大学,2010.
    [88]O. Loffeld, H. Nies, V. Peters, et al. Models and useful realtions for bistatic SAR processing. IEEE Transactions on Geoscience and Remote Sensing,2004,42(10):2031-2038.
    [89]R. Wang, O. Loffeld, H. Nies, et al. Bistatic point target reference spectrum in the presence of trajectory deviations. IET Radar, Sonar and Navigation,2009,3(2):177-185.
    [90]刘喆.星机双基地SAR频域成像理论与方法研究:[博士学位论文].成都:电子科技大学,2009.
    [91]I. G. Cumming, F. H. Wong. Digital Processing of Synthetic Aperture Radar Data:Algorithms and Implementation. Norwood, MA:Artech House,2005:322-358.
    [92]Wenchao Li, Jianyu Yang, H. Yulin, et al. A Geometry-Based Doppler Ambiguity Resolver for Bistatic Forward-Looking SAR. IEEE Radar Conference,2010:339-342.
    [93]W. C. Li, J. Y. Yang, J. J. Wu, et al. An Adaptive Iterative Scheme of Doppler Centroid Estimation for Bistatic Forward-Looking SAR. IEEE Radar Conference 2010:262-265.
    [94]L. M. Murphy. Linear feature detection and enhancement in noisy images via the Radon transform.Pattern Recognit. Lett.,1986,4(4):279-284.
    [95]Wenchao Li, Yulin Huang, jianyu Yang, Junjie Wu, and Lingjiang Kong, An Improved Radon Transform-Based Scheme of Doppler Centroid Estimation for Bistatic Forward-Looking SAR. IEEE Geoscience and Remote Sensing Letters,2011,8(2):379-384.
    [96]J. Canny.A Computational Approach to Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence,1986,8(6):679-697.
    [97]N. Otsu. A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics,1979,9(1):62-66.
    [98]Wenchao Li, Jianyu Yang, Yulin Huang, and J. Wu, A Geometry-based Doppler Centroid Resolver for Bistatic Forward-Looking SAR, IEEE Geoscience and Remote Sensing Letters, 2012,9(3):388-392.
    [99]R. P. Perry, R C. Dipietro, R. L. Fante. SAR Imaging of Moving Targets. IEEE Transactions on Aerospace and Electronic Systems,1999,35(1):188-200.
    [100]Gang Li, Xiang-Gen Xia, Ying-Ning Peng, Doppler Keystone Transform:An Approach Suitable for Parallel Implementation of SAR Moving Target Imaging. IEEE Geoscience and Remote Sensing Letters,2008,5(4):573-577.
    [101]P. O'Shea. A Fast Algorithm for Estimating the Parameters of a Quadratic FM Signal. IEEE Transactions on Signal Processing,2004,52(2):385-393.
    [102]J. Sanz-Marcos, P. Prats, J. J. Mallorqui, et al. A sub-aperture range-Doppler processor for bistatic fixed-receiver SAR. European Conference on Synthetic Aperture Radar(EUSAR'06), 2006:1-4.
    [103]Frank H. Wong, Ian G. Cumming, Y. L. Neo. Focusing Bistatic SAR Data Using the Nonlinear Chirp Scaling Algorithm. IEEE Transactions on Geoscience and Remote Sensing, 2008,46(9):2493-2505.
    [104]Wenchao Li, Jianyu Yang, Yulin Huang, et al. High Order Doppler Parameter Estimation of Bistatic Forward-Looking SAR Based on CPF-Radon Transform. International Conference on Signal Processing,2010:2239-2241.
    [105]Wenchao Li, Jianyu Yang, Yulin Huang, et al. Third-Order Doppler Parameter Estimation of Bistatic Forward-Looking SAR Based on Modified CPF. Communication,2012,E95-B(2):581-586.
    [106]保铮,邢孟道,王彤,雷达成像技术.北京:电子工业出版社,2005:185-215.
    [107]L. Cohen. Time-Frequency Analysis:Theory and Applications. New York:Prentice Hall, 1995:94-100.
    [108]李燕平.单/基SAR成像和运动补偿研究:[博士学位论文].西安:西安电子科技大学,2008.
    [109]王浩丞.双基前视合成孔径雷达成像算法研究:[硕士学位论文].成都:电子科技大学,2010.
    [110]Junjie Wu, Yulin Huang, Jianyu Yang, et al. First result of bistatic forward-looking SAR with stationary transmitter. International Geoscience and Remote Sensing Symposium(IGARSS 2011),2011:1223-1226.
    [111]Victor C. Chen, H. Ling. Time-Frequency Transforms for Radar Imaging and Signal Analysis, Artech House,2002:173-190.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700