用户名: 密码: 验证码:
黄颡鱼仔稚鱼消化系统发育及摄食特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄颡鱼(Pelteobagrus fulvidraco)隶属于鲇形目、鲿科、黄颡鱼属,因其肉质鲜美而深受人们喜爱。但在规模化苗种培育过程中死亡率很高,严重制约了黄颡鱼养殖的发展。本试验对黄颡鱼仔稚鱼消化系统发育进行形态学、组织学及超微结构等方面研究,以期掌握组织器官结构出现与功能完善过程,为提高仔稚鱼的成活率提供理论依据;本试验还对黄颡鱼仔稚鱼的食物组成变化、摄食节律等摄食特性及其对生长的影响进行研究,以期为规模化苗种培育制定合理的饵料投喂策略提供理论依据,同时也丰富黄颡鱼早期生活史的基础资料。主要研究结果如下:
     1、对仔稚鱼摄食和消化器官形态学发育特征研究表明,随着日龄的增加,眼径、头长、颌须长、颐须长、肠长随鱼体的发育而增加;眼径与体长比在16 DAH(day after hatching)最大,而后逐渐降低;颌须长、颐须长与体长比快速增加,到17 DAH继续增加但增速趋缓;颌齿在4 DAH出现,到15 DAH颌齿数目增多。这些形态学变化适于仔稚鱼在不同发育阶段对不同饵料的捕食、消化。
     2、利用光学显微技术和透射电镜技术对黄颡鱼仔稚鱼的消化系统发育研究表明:2 DAH仔稚鱼的消化道分化出口咽腔、食道、胃和肠;3 DAH肠道分化为前肠、中肠和后肠。3 DAH黄颡鱼开口摄食时其胃贲门部粘膜层下出现胃腺。超微结构显示3 DAH胃腺细胞中可见胃蛋白酶原颗粒和丰富的管泡系统,为典型的泌酸胃酶细胞;随日龄增加,胃蛋白酶原颗粒越来越丰富而管泡系统越来越不明显。3 DAH时前肠吸收细胞胞质中可见脂肪泡,后肠吸收细胞胞质中可见蛋白质胞饮体。直到25DAH后肠吸收细胞胞质中尚可见蛋白质胞饮体。表明黄颡鱼在3 DAH开口摄食时消化道具备细胞外消化功能,但此功能不完善,期间细胞外消化逐渐取代胞饮作用等细胞内消化,直到25-30 DAH后细胞外消化功能发育完善。
     3、对仔稚鱼的视网膜结构观察表明:刚孵出的黄颡鱼视网膜感受细胞主要为视锥细胞,随着机体的生长发育,视锥细胞和神经节细胞在单位面积上的分布数量逐渐降低,视杆细胞的分布数量则逐渐增加,视网膜各层次的发育逐渐完善。11-13DAH是视网膜结构及视觉特性发生较明显变化的过渡时期。黄颡鱼仔稚鱼视觉结构的变化与其从浮游生活到底栖生活的特性及饵料变化相适应。
     4、对池养黄颡鱼仔稚鱼及幼鱼(60 DAH前)在日过量投喂8次和投喂1次条件下的摄食节律研究表明:池塘培育仔稚鱼摄食具有明显的昼夜节律性。夜间时段摄食水平显著高于白天时段。日过量投喂8次时黄颡鱼幼鱼也表现出明显的摄食节律,夜间时段摄食率显著高于白天时段摄食率,不同时间段的摄食率差异极显著。日不同时间段过量投喂1次时,8个时间段的摄食率差异不显著。投喂8次组的日摄食率远高于1次组。综合结果表明黄颡鱼仔稚幼鱼为夜行性摄食,但投喂频率、投喂量等因素直接影响其摄食节律。
     5、对池养黄颡鱼仔稚鱼的食物组成研究表明:黄颡鱼早期阶段主要摄食浮游动物,以轮虫、小型枝角类、无节幼体开口,9 DAH时以裸腹蚤等枝角类为主。13 DAH时在数量上仍以秀体蚤等浮游动物为主,但在重量上已被底栖的摇蚊幼虫超过。13-21日龄大型浮游动物和小型划蝽及摇蚊幼虫等底栖动物同为黄颡鱼的主要饵料。21日龄后则以底栖动物为主要食物。
     6、研究了以浮游动物为饵料日饱食投喂3次、2次、1次等不同投喂频率对32DAH前黄颡鱼仔稚鱼生长和存活的影响,并比较了单独投喂浮游动物、水蚯蚓及两者混合投喂对34 DAH前黄颡鱼生长和存活的影响。结果表明:(1)投喂频率对黄颡鱼仔稚鱼生长有显著影响,29 DAH前全长和体重特定生长率与投喂频率间直线正相关,投喂越多则生长越快;(2)28 DAH后水蚯蚓为黄颡鱼更合适的饵料;(3)在本实验条件下饵料种类对34 DAH内的仔稚鱼成活率没有影响。试验表明日饱食3次更有利于黄颡鱼仔稚鱼的生长;28 DAH后投喂饵料应增加水蚯蚓。
     7、通过研究不同饵料密度对黄颡鱼仔鱼不可逆点及生长的影响表明:(1)以摄食强度为判断仔鱼摄食能力变化的指标,比摄食率更准确反映黄颡鱼仔鱼的不可逆点出现时间;(2)本试验饵料密度变化对黄颡鱼仔鱼的开口时间、抵达PNR的时间没有影响;(3)在不同的生长阶段,饵料密度对仔鱼的生长影响不一。5-8 DAH时,0.7 preys/mL密度组即可满足仔鱼生长的需要;8-17 DAH时,0.5-1.5 preys/mL密度组适于生长需要,密度更高反而抑制了仔鱼的正常生长。
     根据上述研究结果提出相应的生产实践管理建议:开口期投喂(或培育)适口且易消化的浮游生物种类;随着仔鱼发育(13 DAH)逐渐增加投喂(或培育)水蚯蚓等底栖饵料生物;待细胞外消化功能完善后(25 DAH)及时转饵或投喂人工饵料。
Yellow catfish (Pelteobagrus fulvidraco) is an important commercial freshwater species in China. It has a promising market potential in China, Japan, South Korea, East and South Asia. Due to its high market value, the culture of this species has increased rapidly in recent years. However, larvae rearing became a major bottleneck because of its high mortality which caused by uncorrected culture feeding strategies simply derived from the traditional carp culture. Little is known on the early life stages of P. fulvidraco, especially on their morphological and internal development relating to functional capabilities. To date, no study has been documented on ontogeny of the digestive system in P. fulvidraco, thus correct feeding strategy related to morphological development is unknown.
     In order to enhance the success of larvae rearing of P. fulvidraco, we need to know the ontogeny of its digestive system thoroughly and the feeding habits. The purpose of this study was to understand the morphological structure of digestive tract and the its feeding habits during the ontogeny of P. fulvidraco. We hope that this information would provide fundamental knowledge for larvae rearing management for this species. The main results are shown as follows:
     1 The development morphological characteristics of feeding and digestive organs of larvae of P. fulvidraco were studied. Eye diameter, lengths of head, maxillar barbells, mandibular outer barbells and gut increased with the development of fish larvae. Ratio of eye diameter to body length reached the maximum at 16 DAH, and then gradually reduced. Ratio of length of maxillar barbells, mandibular outer barbells to body length increased rapidly to 17 DAH, and then continue to increase with slowing down growth. Jaw teeth appeared at 4 DAH. The number increases with age, arranged 2 lines in upper maxillar and 1 line in mandibular. Gill raker appeared at 6 DAH, and the morphological structure similar to adult fish gill rakers at 20 DAH. It is concluded that the visual play an important role in preying at first then the tentacles were more important when larvae converted to benthic.
     2 Development of the digestive tract in P. fulvidraco followed the general pattern described for other fish species with some peculiar findings. At hatching, it consisted of an undifferentiated straight tube laying over the yolk sac. The digestive tract was differentiated into buccopharynx, esophagus, primary stomach and intestine by 2 DAH. The liver and pancreas were also appeared at this time. The intestine became differentiated into anterior and posterior regions separated by the intestine bend at 3 DAH. Gastric gland appeared in cardiac stomach at 3 DAH, the earliest appearance time among fishes studied to date. Oxynticopeptic cell contained pepsinogenic granules and abundant tubulovesicular systems at 3 DAH. As larvae grew, more pepsinogenic granules but less tubulovesicular systems were found in oxynticopeptic cell. The abundant visible tubulovesicular systems suggested that oxynticopeptic cell was still in rest phase with little hydrogen chloride (HCl) secreted at the first appearance time. The ultrastructure of oxynticopeptic cell indicated the asynchronous development of acid-secreting and pepsinogen-secreting function. The epithelial absorptive cell of the anterior and posterior intestinal segment showed electron-opaque lipid droplets and heavy pinocytosis, respectively at 3 DAH. Heavy pinocytosis could be observed in the posterior intestine until 25 DAH. Lipid vacuoles accumulation appeared in liver at 13 DAH, the same time as the storage of abundant glycogen. These results suggested the development of the digestive tract of P. fulvidraco larvae was functional rapidly, however it was still incomplete at 3 DAH. The functions of digestive tract and accessory glands were developed gradually until 25 DAH.
     3 The retinal structure and the density of three visual cells of P. fulvidraco larvae at 0-30 DAH were examined histological during different development stages. The retinal of the newly hatched larvae has only single cone as sensory cell. Over the whole range of development the density of cones and ganglion cells decreases while the density of the rods increases correspondingly. The forms of various layers of retina gradually develop to be perfect. The data concerned shows that the structure of the retina changes apparently in the age between 11 DAH and 13 DAH, which is a transitional period in which its visual characteristics changes obviously. It is revealed that the changes of visual structure of P. fulvidraco are adapted to the ecological shift from pelagic to benthic habitats.
     4 The circadian feeding rhythm for larvae culturing in pond, and juvenile at different feeding frequencies was investigated. Apparent day and night feeding rhythm is observed in larvae which culturing in pond. The feed intake rate at night was higher obviously than that at day through all the experiment stage. Similar results were found in juvenile. That is, there is typical nocturnal feeding activity with the highest levels of feeding activity at 20:00 pm and the lowest levels at 8:00 am in the condition of over-feeding 8 times per 24 hour. There are different significantly feeding rate between different feeding time (P<0.01). The similar circadian feeding rhythm occurred in the condition of over-feeding only 1 time in different time per 24h. However, there is no different feeding rate between different feeding time in latter feeding condition (P>0.05). Results suggest the circadian feeding rhythm of larvae and juvenile of P. fulvidraco belong to nocturnal.
     5 The food composition of P. fulvidraco larvae which culturing in pond were studied at different age. During initial bait phase, the main food were zooplankton, mainly rotifers, small Clandocerans and nauplii. The proportion of large Clandocerans gradually increased with age. Zooplankton were still main food according to number percentage of prey at 13 DAH. However the zoobenthos such as Chironomus were more than zooplankton in terms of weight percentage of prey. The main food changed from zooplankton to zoobenthos after 21 DAH.
     6 Effect of feeding frequency and different food items on growth and survival rate of larvae and juvenile of P. fulvidraco were studied. Trial 1 were conducted to investigate the effect of different feeding frequency (satiation feeding 1 (F1),2 (F2) or 3 (F3) times/day) of zooplankton on the growth and survival. Trial 2 were conducted to investigate the effect of different food items (feeding zooplanktons (groupⅠ), feeding zoobenthos (groupⅡ) or feeding zooplanktons and zoobenthoes together (groupⅢ)) on the growth and survival. The results showed that:①During 3-29 days after hatching, with increasing feeding frequency, specific growth rate of total length and wet weight increased significantly in linear style (SGR1=1.0366D+3.2347 R2=0.9025; SGRw=3.0013D+9.4829 R2=0.8833).②During 17-25 DAH, the growth of groupⅡwas slower than groupⅠand groupⅢ. The growth of groupⅡwas still slower than groupⅢ, but there was no different between groupⅡand groupⅠup to 28 DAH. In 34 DAH, there were different among the growth of 3 groups. The growth of groupⅢwas the fastest, followed by groupⅡand groupⅠ.③There were no survival rate difference among group of feeding different food items during 3-34 DAH. It can be concluded that it is more useful that satiation feeding 3 times/day than 1 or 2 times/day, and feeding zoobenthoes is better than feeding zooplankton after 28 DAH.
     7 The "point of no return" (PNR) of P. fulvidraco larvae were investigated. The result indicated that feeding intensity is more suitable than feeding rate to calculate the PNR for P. fulvidraco larvae. A method of calculating the PNR via the feeding intensity index as a complement to traditional methods was presented. Under the experimental conditions, the PNR of P. fulvidraco larvae appeared at 11 DAH.
     Effect of prey density on growth of P. fulvidraco larvae was also studied.7 groups of different prey density (0、0.1、0.3、0.5、0.7、1.5、3.0 preys per millilitre) were arranged. There are different optimal prey density at different growth stage of larvae. The optimal prey density was 0.7 preys per millilitre before 8 DAH. While 0.5-1.5 preys per millilitre were the optimal prey density between 8 DAH and 17 DAH. The use of more than 1.5 preys per millilitre of live prey density had negative effects on larval growth.
     According to the development characters of P. fulvidraco larvae, a series of scientific methods to improve the surviving rate were suggested.
引文
1.边文冀,陈校辉.黄颡鱼规模养殖关键技术.南京:江苏科学技术出版社,2002
    2.芮菊生.组织切片技术(第一版).上海:上海科学技术出版社,1986
    3.柴毅.中华鲟感觉器官的早期发育及其行为机能研究.[博士学位论文].武汉:华中农业大学,2006
    4. 常青,陈四清,张秀梅,梁萌青,刘龙常.半滑舌鳎消化系统器官发生的组织学.水产学报,2005,29(4):447-453
    5. 陈细香.大鳍鱯肝脏、胰脏胚后发育的组织学研究.泉州师范学院学报,2002,20(2): 84-94
    6.陈细香,金灿彪,徐吉山,王德寿.大鳍鱯消化系统胚后发育的组织学观察.西南师范大学学报(自然科学版),2002,27(2):239-243
    7.杜金瑞.梁子湖黄颡鱼的繁殖和食性的研究.动物学杂志.1963,2:74-77
    8.杜森英,潘光碧,李祖华.颖鲤消化器官发育与食性观察.淡水渔业,1988,6:37-39
    9.关海红,潘伟志,陈军,赵春刚.怀头鲇、鲇及杂交F1肝、胰脏胚后发育及卵黄吸收方式.中国水产科学,2006,13(3):460-465
    10.韩士群,范成新,严少华.滩涂富营养池塘中浮游生物种群结构及其生态调控研究.水生生物学报,2006,30(3):344-348
    11.郝玉江,张国红,贾艳菊,杨振才.种群密度对鱼类影响的研究概述..河北师范大学学报(自然科学版),2003,27(4): 397-401
    12.何利君,谢小军,艾庆辉.饲喂频率对南方鲇的摄食率、生长和饲料转化效率的影响.水生生物学报,2003,27(4):434-436
    13.湖北省水生生物研究所鱼类研究室.长江鱼类.北京:科学出版社,1976
    14.胡先成,孙帼英.河川沙塘鳢消化系统的发育及仔稚幼鱼摄食的研究.上海水产大学学报,1996,5(2):75-82
    15.黄德祥.达氏鲟仔鱼消化系统发育及摄食初期食性初步研究.水产学报,1980,12(3):285-292
    16.黄峰,严安生,熊传喜,郑悦,张桂蓉.黄颡鱼的含肉率及鱼肉营养评价.淡水渔业,1999,29(10):1-6
    17.黄峰,严安生,张桂蓉.大口鲇仔鱼消化道的组织学观察.华中农业大学学报,2000,19(1):59-63
    18.黄晓荣,庄平,章龙珍,张涛.延迟投饵对史氏鲟仔鱼摄食、存活及生长的影响.生态学杂志,2007,26(1):73-77
    19.姜志强,谭淑英.不同光照强度对花鲈幼鱼摄食的影响.水产科学,2002,21(3):4-5
    20.李芹,龙勇,屈波.瓦氏黄颡鱼仔稚鱼发育过程中消化酶活性变化研究.中国水产科学,2008,15(1):73-78
    21.李文静,王剑伟,谭德清,但胜国.厚颌鲂胚后发育观察.水产学报,2005,29(6):729-736
    22.李秀玉,林小涛,廖志洪,王春.温度对黄颡鱼仔鱼摄食强度及饥饿耐受力的影响.生态科学,2005,24(3):243-245
    23.凌去非,李思发,乔德亮,姚化章.丁鱼岁胚胎发育和卵黄囊仔鱼摄食研究.水产学报,2003,27(1):43-48
    24.刘建虎,叶元土,王学文,罗祖征.南方大口鲇消化管胚后发育组织学研究.中国水产科学,1999,6(1):18-23
    25.刘景祯,刘丙阳,徐世谦,邱春刚,骆小年,刘义新.黄颡鱼仔鱼摄食习性研究.水利渔业,2000,20(1):20-21
    26.刘世平.鄱阳湖黄颡鱼生物学研究.动物学杂志,1997,32(4):10-15
    27.刘文奎,樊启学, 朱邦科,杜海明.饵料密度对杂交鳢仔鱼生长存活的影响.华中农业大学学报,2007,26(3): 367-370
    28.刘晓春,何大仁,李大勇.真鲷视网膜和视网膜运动反应的发育.厦门大学学报.1994,33(6):857-862
    29.刘晓娜.几种肉食性鱼类摄食形态学适应的初步研究.湖北农学院学报.1996,16(4):280-283
    30.刘正文,朱松泉.滇池产太湖新银鱼食性与摄食行为的初步研究.动物学报,1994,40(3):253-261
    31.陆伟民.大口黑鲈仔、稚鱼生长和食性的观察.水产学报,1994,18(4):330-334
    32.马爱军,马英杰,姚善诚.黑鲷消化系统的胚后发育研究.海洋与湖沼,2000,31(3):281-287
    33.马爱军,王新安,庄志猛,张秀梅,张立敬.半滑舌鳎仔、稚鱼视网膜结构与视觉特性.动物学报.2007,53(2):354-363
    34.区又君,李加儿.人工培育条件下甾鱼早期发育的生理生态研究.热带海洋,1998,17(4):29-39
    35.区又君,李加儿.鲻鱼胚胎和卵黄囊期仔鱼的发育与营养.海洋学报,1997,19(3):102-110
    36.蒲红宇,翟宝香,刘焕亮.鲇仔、稚鱼消化系统胚后发育的组织学观察研究.中国水产科学,2004,11(1):1-8
    37.单保党,何大仁.黑鲷视觉发育与摄食关系.台湾海峡,1995,14(2):169-173
    38.万瑞景,李显森,庄志猛,蒙子宁.鲲鱼仔鱼饥饿试验及不可逆点的确定.水产学报,2004,28(1):79-83
    39.王春芳.黄颡鱼消化道的发育及其选食性研究.硕士学位论文,武汉华中农业大学,2001
    40.王春芳,谢从新,马俊.黄颡鱼早期发育阶段的摄食节律及日摄食率.水产学杂志,2001,14(2):66-68
    41.王春芳,谢从新,冯广朋,马俊.黄颡鱼摄食和消化器官的发育及其对摄入食物个体大小的影响.水生生物学报,2002,26(suppl):58-66
    42.王令玲,仇潜如,邹世平,刘寒文,吴福煌.黄颡鱼生物学及其繁殖和饲养.淡水渔业,1989,(6):23-24,31
    43.王吉桥.黄颡鱼的生物学与养殖技术.现代渔业信息,2003,18(6):1-8
    44.王吉桥,王凯,王声权,巴桂香.不同投饲率对黄颡鱼幼鱼生长和存活的影响.动物学杂志,2005,18(2):1-5
    45.王迎春,苏锦祥,周勤.光照对黄盖鲽仔鱼生长、发育及摄食的影响. 水产学报,1999,23:6-12
    46.王涵生,方琼珊,郑乐云.赤点石斑鱼仔稚幼鱼的形态发育和生长.上海水产大学学报,2001,10(4):307-312
    47.王剑伟,乔晔,陶玉岭.稀有鮈鲫仔鱼的摄食和耐饥饿能力.水生生物学报,1999,23(6):648-654
    48.王卫民.黄颡鱼与瓦氏黄颡鱼杂交育种初步研究.博士学位论文,武汉华中农业大学,2003
    49.王卫民,严安生,查金苗,张志国,吴建军,柏世军.黄颡鱼两种人工繁殖方法的比较研究.淡水渔业,2002,32(2):7-8
    50.王韫明,王文.几种淡水鱼的胃腺细胞显微与超显微结构的研究.水生生物学报,1989,13(4):334-339
    51.王文辉,王吉桥,程鑫.不同剂型维生素C对黄颡鱼生长和几种免疫指标的影响.中国水产科学,2006,13(6):951-958
    52.王武,边文冀,余卫忠,石张东.江黄颡鱼的仔稚鱼发育及行为生态学.水产学报,2005,29(4):487-495
    53.魏开建,张海明.鳜鱼视网膜发育的组织学研究.华中农业大学学报,1996,15(3):263-269
    54.魏开建,谢从新,杨英,周洁,熊传喜.乌鳢早期视网膜发育的初步研究.华中农业大学学报,1997,16(5):408-412
    55.吴金英,林浩然.斜带石斑鱼消化系统胚后发育的组织学研究.水产学报,2003,27(1): 7-12
    56.夏连军,施兆鸿,陆建学.黄鲷仔鱼饥饿试验及不可逆点的确定.海洋渔业,2004,26(4):286-290
    57.肖东,林浩然.鱼类摄食和生长的神经内分泌调控途径研究进展.中国水产科学,2000,7(3):102-106
    58..肖调义,章怀云,王晓青,肖克宇,戴振炎.洞庭湖黄颡鱼生物学特性.动物学杂志,2003,38(5):83-88
    59.谢从新,熊传喜,周洁,万新淼,金晖.不同光照强度下乌鳢幼鱼的摄食强度及动力学.水生生物学报,1997,21(3):213-218
    60.薛莹,金显仕.鱼类食性和食物网研究评述.海洋水产研究,2003,24(2):76-87
    61.杨桂枝,张耀光.南方鲇皮肤、唇瓣和须结构的研究.西南师范大学学报(自然科学版),1997,22(3):296-301
    62.杨瑞斌,谢从新,魏开建,郑维友,雷传松.不同投喂频率下黄颡鱼幼鱼的摄食节律研究.华中农业大学学报,2006,25(6):274-276
    63.杨瑞斌,谢从新,樊启学,郑维友,雷传松.投喂频率和饵料种类对黄颡鱼仔稚鱼生长和存活的影响.应用与环境生物学报,2009,15(1):78-81
    64.叶继丹,刘红柏,赵吉伟,孙大江,关海虹.史氏鲟及杂交鲟消化系统的组织学.水产学报,2003,27(2):177-182
    65.叶佳林,刘正文,王卫民.太湖梅梁湾刀鲚与间下鱵食性的比较.湖泊科学,2007,19(2):218-222
    66.殷名称.北海鲱卵黄囊期仔鱼的摄食能力和生长.海洋与湖沼,1991a,22(6):554-560
    67.殷名称.鱼类早期生活史研究与进展.水产学报,1991b,15(4):348-358
    68.殷名称.鱼类仔鱼期的摄食与生长.水产学报,1995a,19(4):336-342
    69.殷名称.鱼类生态学. 北京:中国农业出版社,1995b,76-78.
    70.余宁.黄颡鱼生长特性与食性的研究.水产养殖,1996,(3):19-20
    71.张海发,刘晓春,刘付永忠,王云新等.斜带石斑鱼胚胎及仔稚幼鱼形态发育.中国水产科学,2006,13(5):689-696
    72.张俊玲,施志仪.牙鲆早期阶段的变态发育及其机制.上海水产大学学报,2003,12(4):348-352
    73.张涛,庄平,章龙珍,夏永涛,高露姣,王文武,田美平.俄罗斯鲟仔鱼初次摄食时间对生长及存活的影响.生态学杂志,2009,28(3):466-470
    74.张晓华,苏锦祥,殷名称.不同温度条件对鳜仔鱼摄食和生长发育的影响.水产学报,1999,23(1):91-94
    75.张孝威,何桂芬,沙学绅.黑鲷卵子及仔、稚、幼鱼的形态观察.动物学报,1980,26(4):331-336
    76.章晓炜,汪雯翰,郑聪.黄颡鱼仔鱼食性及生长的研究.水产科学,2002,21(3):13-15
    77.章宗涉,黄祥飞.淡水浮游生物研究方法.1991.科学出版社
    78.赵宝生,孙建富,毕宁阳.尼罗罗非鱼仔鱼前期器官发育与分化的组织学观察.大连水产学院学报,1984,4(2):21-26
    79.周勤,王迎春,苏锦样.温度对黄盖蝶仔鱼生长、发育、摄食及PNR的影响.中国水产科学,1998,5(1):30-37
    80.邹桂伟,罗相忠,潘光碧,杨国庆.大口鲇捕食行为感觉作用的研究.大连水产学院学报,2003,18(4):236-240
    81.邹记兴,向文洲,胡超群,林坚士,章之蓉.点带石斑鱼仔、稚、幼鱼的生长与发育.高技术通讯,2003,4:77-84
    82.朱成德.仔鱼的开口摄食期及其饵料综述.水生生物学报,1986,10(1):86-95
    83.庄志猛,万瑞景,陈省平,刘新富.半滑舌鳎仔鱼的摄食与生长.动物学报,2005,51(6):1023-1033
    84. Alanara, A., Burns, M.D., Metcalfe, N.B. Intraspecific resource partitioning in brown trout:the temporal distribution of foraging is determined by social rank. J. Ani. Ecol.2001,70,980-986.
    85. Azzaydi, M., Martynez, F.J., Zamora, S., Sanchez-Vazquez, F.J., Madrid, J.A.. The influence of nocturnal vs. diurnal feeding under winter conditions on growth and feed conversion of European sea bass(Dicentrarchus labrax, L.). Aquaculture, 2000,170,253-266.
    86. Baglole, C.J., Murray, H.M., Goff, G.P., Wright, G. M.. Ontogeny of the digestive tract during larval development of yellowtail flounder:a light microscopic and mucous histochemical study. Journal of Fish Biology,1997,51,120-134.
    87. Bisbal, G. A.& Bengtson, D. A.. Development of the digestive tract in larval summer flounder. Journal of Fish Biology,1995,47,227-291.
    88. Bjelland, R.M., Skiftesvik, A.B.. Larval development in European hake(Merluccius merluccius L.) reared in a semi-intensive culture system. Aquaculture Research,2006, 37,1117-1129
    89. Blaxter J.H.S.. Pattern and Variety in Development. In, Fish Biology 11 A, edited by W.S.Hoar,1988,1-58
    90. Blaxter J. H. S., Janes M. P.. The development of the retina and retinomotor responses in the herring. J Mar Boil Ass UK.1967, (47):677-697
    91. Blaxter J. H. S.. Development of sense organ & behaviour of teleost larvare with special reference to feeding & predator avoidance. Transactions of the American Fisheries Society.1986,19(2):109-115
    92. Bouhlic, M., Gabaudan, J. Histological study of the organogenesis of digestive system and swim bladder of the Dover sole, Solea solea (Linnaeus 1758). Aquaculture,1992,102:373-396.
    93. Boujard, T., Gelineau, A., Corraze, G, Kaushik, S., Gasset, E., Coves, D., Dutto,G. Effect of dietary lipid content on circadian rhythm of feeding activity in European sea bass. Physiol. Behav.2000,68,683-689.
    94. Brett, J.R., Groves, D.D.. Physiological energetics. In:Fish Physiology, VIII. Hoar, W. S., Randall D. J., Brett, J.R. (Eds.). Academic Press, New York,1979, pp.280-352.
    95. Buchet, V., Zambonino Infante, J.L., Cahu, C.L. Effect of lipid level in a compound diet on the development of red drum (Sciaenops ocellatus) larvae. Aquaculture,2000, 184:339-347.
    96. Buentello, J.A., Neill, W.H., Gatlin Ⅲ, D.M.. Effects of water temperature and dissolved oxygen on daily feed consumption, feed utilization and growth of channel catfish (Ictalurus punctatus). Aquaculture,2000,182,339-352.
    97. Caceci T., El-Habback H. A., Smith S. A.. The stomach of Oreochromis niloticus has three regions. Journal of Fish Biology,1997,50:939-952.
    98. Cahu, C.L., Zambonino-Infante, J.L. Substitution of live food by formulated diets in marine fish larvae. Aquaculture,2001,200:161-180.
    99. Calzada A., Medina A., Gonzalez de Canales M. L.. Fine structure of the intestine development in cultured sea bream larvae. Journal of Fish Biology,1998,53: 340-365.
    100.Chen B. N., Qin J. G, Kumar M. S., et al.. Ontogenetic development of the digestive system in yellowtail kingfish Seriola lalandi larvae. Aquaculture,2006,256 (1-4): 489-501.
    101.Clark, J., Murray, K.R., Starck, J.R. Protease development in Dover sole (Solea solea L.). Aquaculture,1986,53:253-262
    102.Confer J. L., Blades P. I.. Omnivovous zooplankton and planktivoyous fish. Limnol. Oceanogr.1975,20:571-579
    103.Cuenco, M.L., Stickney, R.R., Grant, W.E.. Fish bioenergetics and growth in aquaculture ponds:Ⅱ. Effects of interactions among size, temperature, dissolved oxygen, unionized ammonia and food on growth of individual fish. Ecolo. Model. 1985,27,191-206.
    104.Elbal M. T., Garci'a Herna'ndez M. P., Lozano M T.. Development of the digestive tract of gilthead sea bream(Sparus aurata L.). Light and electron microscopic studies. Aquaculture,2004,234:215-238.
    105.Fast, A.W., Qin, T., Szyper, J.P.. A new method for assessing fish feeding rhythms using demand feeders and automated data acquisition. Aquacult. Eng.1997,16, 213-220.
    106.Faulk C. K., Benninghoff A. D., Holt G. J.. Ontogeny of the gastrointestinal tract and selected digestive enzymes in cobia Rachycentron canadum (L.). Journal of Fish Biology,2007,70 (2):567-583.
    107.Fraser, N.H.C., Heggenes, J., Metcalfe, N.B., Thorpe, J.W.. Low summer temperatures cause juvenile Atlantic salmon to become nocturnal. Can. J. Zool.1995, 73,446-451.
    108.Gelineu, A., Medale, F., Boujard, T.,1998. Effect of feeding time on postprandial nitrogen excretion and energy expenditure in rainbow trout. Journal of Fish Biology, 52,655-664.
    109.Gibert E., Rodriguez A., Castello-Orvay F.. A histological study of the development of the digestive tract of Siberian sturgeon(Acipenser baeri) during early ontogeny. Aquaculture,1998,167:195-209.
    110.Gisbert E., Piedrahita R. H., Conklin D. E.. Ontogenetic development of the digestive system in California halibut (Paralichthys californicus) with notes on feeding practices. Aquaculture,2004,232 (1-4):455-470.
    111.Govoni, J. J., Boehlert, G. W.& Watanabe, Y.. The physiology of digestion in fish larvae. Environmental Biology of Fishes,1986,16,59-77.
    112.Greenwood, M. F. D., Metcalfen, N. B.. Minnows become nocturnal at low temperatures. Journal of Fish Biology,1998,53,25-32.
    113.Guyot, E., Diaz, J.P., Connes, R.. Organogenesis of the liver in sea bream. Journal of Fish Biology,1995,47:427-437
    114.Hamlett W. C., Schwartz, F. J., DiDio, L. J.. Subcellular organization of the yolk syncytial-endoderm complex in the preimplantation shark yolk sac. Cell Tissue Res., 1987,247,275-285
    115.Hamlin H. J., Hunt von Herbing I., Kling L. J.. Histological and morphological evaluations of the digestive tract and associated organs of haddock throughout post-hatching ontogeny. Journal of Fish Biology,2000,57:716-732.
    116.Helfman, G. S.. Fish Behaviour by day,night and twilight. In:TONG J P:The Behaviour of Teleost fishes. Baltimore Mary Land, The Johns Hopkin Univ Press, 1986:366-387.
    117.Heming T.A. and Buddington R.K.. Yolk Absorption in Embryonic and Larval Fishes. In, Fish Biology 11 A, edited by W.S.Hoar,1988,408-446
    118.Houde, E.D., Schekter, R.C.. Feeding by marine fish larvae:development and functional responses. Environmental Biology of Fishes,1980,5,315-334.
    119.Humbert W., Kirsch R., Meister M. F.. Scanning electron microscopic study of the oesophageal mucous layer in the eel, Anguilla anguilla. Journal of Fish Biology, 1984,25:117-122.
    120.Hung L.T., Tuan N.A., Cacot P., Lazard J. Larval rearing of the Asian Catfish, Pangasius bocourti(Siluroidei, Pangasiidae):alternative feeds and weaning time. Aquaculture,2002,212:115-127
    121 Jobling, M.. Influence of body weight and temperature on growth rates of Arctic charr (Salvelinus alpinus L.). Journal of Fish Biology,1983,22,471-475.
    122.Johnston T. A., Mathias J. A. Feeding ecology of walleye, Stizostedion vitreum, larvae:effects of body size, zooplankton abundance, and zooplankton community composition. Can J Fish Aquat Sci,1994,51:2077-2089.
    123.Kadri, S., Metcalfe, N.B., Huntingford, F.A., Thorpe, J.E.. Daily feeding rhythms in Atlantic salmon.1. Feeding and aggression in parr under ambient environmental conditions. Journal of Fish Biology,1997a,50,267-272.
    124.Kadri, S., Metcalfe, N.B., Huntingford, F.A., Thorpe, J.E.. Daily feeding rhythms in Atlantic salmon.2. Size-related variation in feeding patterns of post-smolts under constant environmental conditions. Journal of Fish Biology,1997b,50,273-279.
    125.Kjorsvik, E., van der Meeren, T., Kryvi, H., Arnfinnson, J., Kvenseth, P. G. Early development of the digestive tract of cod larvae, Gadus morhua L., during start-feeding and starvation. Journal of Fish Biology,1991,38,1-15.
    126.Klumpp, D.W., Von Westernhagen, H.. Nitrogen balance in marine fish larvae: Influence of developmental stage and prey density. Marine Biology,1986,93, 189-200.
    127.Kohbara, J., Hidaka, I., Kuriyama, I., Yamashita, M., Ichikawa, M., Furukawa, K., Aida, K., Sanchez-Vazquez, F.J., Tabata, M.. Nocturnal/diurnal demand-feeding pattern of yellowtail Seriola quinqueradiata under different keeping conditions. Fish. Sci.,2000,66,955-962.
    128.Laurence G. C. Growth and survival of haddock (Melanogrammus aeglefinus) larvae in relation to planktonic prey concentration. J Fish Res Bd Can,1974,31: 1415-1419.
    129.Lee, S.M., Hwang, U. G, CHo, S.H.. Effects of feeding frequency and dietary moisture content on growth, body composition and gastric evacuation of juvenile Korean rockfish (Sebastes schlegeli). Aquaculture,2000,187,399-409.
    130.Lu S. F., Zhao N., Zhao A., et al.. Effect of soybean phospholipid supplementation in formulated microdiets and live food on foregut and liver histological changes of Pelteobagrus fulvidraco larvae.Aquaculture,2008,278:119-127.
    131.Mai, K., Yu, H., Ma, H., Duan,Q., Gisbert, E., Zambonino Infante, J.L., Cahu, C.. A histological study on the development of the digestive tract of the large yellow croaker (Pseudosciaena crocea). Journal of Fish Biology,2005,67:1094-1106
    132.Mendiola, D., Alvarez, P., Co'tano, U., Murguia, A. M.. Early development and growth of the laboratory reared north-east Atlantic mackerel Scomber scombrus L. Journal of Fish Biology,2007,70,911-933.
    133.Micale V., Garaffo M., Genovese L., et al.. The ontogeny of the alimentary tract during larval development in common pandora Pagellus erythrinus L.. Aquaculture, 2006,251 (2-4):354-365.
    134.Mookerji, N., Weng, Z., Mazumder, A.. Food partitioning between coexisting Atlantic salmon and brook trout in the Sainte-Marguerite River ecosystem, Quebec. Journal of Fish Biology,2004,64,680-694.
    135.Noeske, T.A., Spieler, R.E.. Circadian feeding time affects growth of fish. Trans. Am. Fish.Soc.,1984,113,540-544.
    136.Parra, G., Yufera, M.. Feeding, physiology and growth responses in first-feeding gilthead sea bream(Sparus aurata L.) larvae in relation to prey density. Journal of Experimental Marine Biology and Ecology,2000,243,1-15.
    137.Pena R, Dumas S, Villalejo-Fuerte M, et al.. Ontogenetic development of the digestive tract in reared spotted sand bass Paralabrax maculatofasciatus larvae. Aquaculture,2003,219 (1-4):633-644.
    138.Perez-Casanova, J.C., Murray, H.M., Gallant, J.W., Ross, N.W., Douglas, S.E., Johnson, S.C. Development of the digestive capacity in larvae of haddock (Melanogrammus aeglefinus) and Atlantic cod (Gadus morhua). Aquaculture,2006, 251:377-401.
    139.Petersen, J.H., Gadomski, D.M.. Light-mediated predation by northern squawfish on juvenile Chinook salmon. Journal of Fish Biology,1994,45 (Supl. A), 227-242.
    140.Puvanendran, V., Brown, J.A.. Foraging, growth and survival of Atlantic cod larvae reared in different light intensities and photoperiods. Aquaculture,2002,214,131 -151.
    141.Puvanendran V., Brown J. A.. Foraging, growth and survival of Atlantic cod larvae reared in different prey concentrations. Aquaculture,1999,175:77-92.
    142.Pyke, G. H. Optimal foraging theory:a critical review. Ann. Re. Ecol. Syst.,1984,15: 523-575
    143.Ribeiro, L., Sarasquete, C.& Dinis, M. T.. Histological and histochemical development of the digestive system of Solea senegalensis (Kaup,1858). Aquaculture,1999,171,293-308.
    144.Ribeiro, L., Zambonino-Infante, J.L., Cahu, C.L., Dinis, M.T. Development of digestive enzymes in larvae of Solea senegalensis, Kaup 1858. Aquaculture,1999, 179:465-473
    145.Rubio, V. C., Sanchez-Vazquez, F.J., Madrid, J.A.. Nocturnal feeding reduces sea bass(Dicentrarchus labrax, L.) pellet-catching ability. Aquaculture,2003,220, 697-705.
    146.Sanchez-Amaya M.I., Ortiz-Delgado J.B., Garcia-Lopez A., Cardenas S., Sarasquete C.. Larval ontogeny of redbanded seabream Pagrus auriga Valenciennes,1843 with special reference to the digestive system. A histological and histochemical approach. Aquaculture,2007,263,259-279.
    147.Sanchez-Muros, M.J., Corchete, V, Suarez, M.D., Cardenete, G, Gomez-Milan, E., de la Higuera, M.. Effect of feeding method and protein source on Sparus aurata feeding patterns. Aquaculture,2003,224,89-103.
    148.Santamaria, C. A., Marin de Mateo M., Traveset, R., Sala R., Grau A., Pastor C., Sarasquete C., Crespo S.. Larval organogenesis in common dentex Dentex dentex L. (Sparidae):histological and histochemical aspects. Aquaculture,2004,237 (1-4), 207-228.
    149.Sarasquete, M. C., Polo, A.& Yu'fera, M.. Histology and histochemistry of the development of the digestive system of larval gilthead seabream, Sparus aurata L. Aquaculture,1995,130,79-92.
    150.Segner, H., Storch, V., Reinecke, M., Kloas,W., Hanke,W.. The development of functional digestive and metabolic organs in turbot Scopthalmus maximus. Mar. Biol.,1994,119,471-486.
    151.Shan Xiujuan, Quan Hanfeng. Dou Shuozeng. Effects of delayed first feeding on growth and survival of rock bream Oplegnathus fasciatus larvae. Aquaculture,2008, 277,14-23.
    152.Stroband, H.W. J.& Kroon, A. G. The development of the stomach in Clarias lazera and the intestinal absorption of protein macromolecules. Cell Tissue Research,1981, 215,397-415.
    153.Temple, S., Cerqueira, V. R., Browen, J. A.. The effects of lowering prey density on the growth, survival and foraging behaviour of larval fat snook (Centropomus parallelus poey 1860). Aquaculture,2004,233,205-217.
    154.Wang Chunfang, Xie Shouqi, Zhu Xiaoming, Lei Wu, Yang Yunxia, Liu Jiankang. Effects of age and dietary protein level on digestive enzyme activity and gene expression of Pelteobagrus fulvidraco larvae. Aquaculture,2006,254:554-562
    155.Wang N., Hayward R. S., Noltie D. B.. Effect of feeding frequency on food consumption, growth, size variation, and feeding pattern of age-0 hybrid sunfish. Aquaculture,1998,165:261-267
    156.Watanabe T. and Kiron V.. Prospects in larval fish dietetics. Aquaculture,1994,124: 223-251
    157.Zaiss M. M., Papadakis I. E., Maingot Eric, Divanach Pascal and Mylonas C. C. Ontogeny of the digestive tract in shi drum (Umbrina cirrosa L.) reared using the mesocosm larval rearing system. Aquaculture,2006,260 (29):357-368
    158.Zambonino Infante, J. L.& Cahu C. Ontogeny of the intestinal tract of marine fish larvae. Comparative Biochemistry and Physiology.2001,130,477-487
    159.Zanuy, S., Carrillo, M.. Annual cycles of growth, feeding rate, gross conversion efficiency and hematocrit levels of sea bass (Dicentrarchus labrax L.) adapted to two different osmotic media. Aquaculture,1985,44,11-25.
    160.Zaret T. W., Kerfoot W. C.. Fish predation on Bosminalongi rostris body size selection versus visibility selection. Ecology.1972,56:232-237
    161.Zhang Genhua, Deng Shaoping, Zhang Haiyun, Li Hongtao, Li Leilei. Distribution of different taste buds and expression of a-gustducin in the barbells of yellow catfish (Pelteobagrus fulvidraco).Fish Physiology and Biochemistry,2006,32:55-62

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700