用户名: 密码: 验证码:
黄海微食物环季节变化及对主食物链贡献的生态动力学模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微食物环研究是当前海洋生态学研究的热点之一,是人类重新认识海洋中微型生物生态过程重要性的前沿领域,也是对海洋生态系统结构与功能深入研究的必然趋势。海洋微型食物环是海洋生态系统的重要组成部分,在海洋食物网的能量流动和物质循环过程中担当了重要的角色,起到了非常重要的作用。通过建立海洋微食物环动力学数值模型,可以定量估算出海洋中微食物环对主食物链的贡献,估算微食物环加快营养盐循环的作用,为预测海洋生态系统结构动态变化奠定基础。
     黄海作为典型的陆架海,是世界50个大海洋生态系统之一,也是我国重要的渔场。研究黄海微食物环的季节变化及其对主食物链的贡献对于该海区潜在资源估计和大海洋生态系统管理具有重要意义。
     本文在黄海建立了以磷、硅循环为基础的二维微食物环生态模型,通过对黄海各生态变量季节变化的模拟结果,分析了微食物环在黄海不同季节、不同区域的分布差异,并估算出微食物环对主食物链在不同季节、不同区域的贡献。模拟结果表明:黄海作为陆架海,与寡营养区域(如深海、大洋)相比,其水域营养丰富,且新生生产力高,浮游植物固碳将有机物向高营养层传递是能量流动的主要途径,异养细菌同化溶解态有机物或颗粒态有机物,并转化为自身的碳生物量,后被微型浮游动物所摄食,这部分进入主食物链的能量是对海洋主食物链的一个重要补充。浮游植物生物量较低的冬季,微食物环对主食物链能量补充作用更加明显(大约30%);然而,浮游植物水华过程中,细菌对碎屑的矿化分解是营养盐的重要补充,溶解态有机物是异养细菌的主要食物来源。微食物环对主食物链的贡献在黄海不同区域存在着空间差异,黄海中部和近岸水域,微食物环对主食物链的贡献在春季、夏季和冬季基本一致,但在秋季存在着较大差异,在黄海中部水域微食物环对主食物链的贡献为9%,近岸水域微食物环对主食物链的贡献则是18%。
     在今后的工作中需要进一步细化微食物环生态系统模型,并将自养细菌、鞭毛虫、纤毛虫等微微型生物之间的能量转化传递作用包含其中。模型还要与物理过程密切结合,探讨微食物环对气候变化的响应,分析气候变暖、环流加强/减弱等造成的生态系统结构的变化,以及细菌、微食物环在其中的调节作用。
The microbial food loop(MFL)is one of the central topics of recent studies onmarine ecosystem. The study on the MFL helps the re-assessment of the importanceof micro-biological ecosystem processes,and is an essential step for more in-depthstudy on the structure and function of the marine ecosystem. The MFL plays anessential role in the energy flow and mass cycle. Through the development ofnumerical models for the dynamics of the MFL,quantitative estimates can beobtained for the contribution of the MFL on the main marine food chain and theacceleration of nutrient cycling. Eventually,this helps to build the basis for theprediction of the dynamics of the marine ecosystem.
     As a typical continental sea, the Yellow Sea(YS)is one of the most importantfishery grounds in China, and one of50large marine ecosystems in the world ocean.Research on seasonal variation of microbial food loop and its role in the main foodchain in the Yellow Sea is key to the assessment of potential resources andmanagement of a large marine ecosystem.
     In this study,a two-dimensional model for the MFL is developed and is applied tosimulated the seasonal variations of various parameters of the ecosystem in the YS.Model results show that the contributions of the MFL to the main food chain differ indifferent seasons and geographic locations. Analyses reach the following majorconclusions:(1) During the spring bloom of phytoplankton,nutrients are compensatedby de-composition of detritus by the bacteria; and the dissolved organic material is theprimary nutrition source of the bacteria;(2) Compared to the oligotrophic regions of the deep and open oceans,the continental shelf seas have more abundant nutrients andhigher new primary productions. Phytoplankton carbon fixing is a major way of thetransfer of organic material to higher trophic level. The hyterotrophic bacteria canassimilate the DOM or POM,be predated by microzooplankton to enter the main foodchain as a supply of energy. During winter,the phytoplankton biomass is low and theMFL plays a more prominent role in the energy supply for the main food web(ca.30%).(3) The contribution of the MFL to the main food web differs in differentregions of the YS. The contributions in the spring, summer and winter seasons aresimilar in terms of the spatial distribution. In the fall season, however, thecontribution to the total main food chain amounts to9%in the central YS,and18%in the coastal waters.
     Further studies are needed to refine the MFL model by including the autotrophicbacteria, flagellate and ciliophora. Through coupling to the physical processes, onecan explore the response of the MFL to climate change, for example, the influenceof global warming and the weakening/strengthening of the currents on changes inthe structure of the ecosystem and the role played by bacteria and MFL. The modeldeveloped in this study could be an effective tool for the marine ecosystem basedmanagement.
引文
[1] Alberto Barausse a,Alessandro Duci,et al. Trophic network model of the Northern AdriaticSea: Analysis of an exploited and eutrophic ecosystem. Estuarine,Coastal and ShelfScience,2009,83:577-590
    [2] Anderson TR,Ducklow HW. Microbia l loop carbon cycling in ocean environments studiedusing a simple steady-state model. Aquatic M icrobial Ecology,2001,26(1):37-49
    [3] Anne Roué-Le Gall,Michel Poulin et al. A physical-microbial food web coupled model tostudy the evolution of the ecological functioning of a new reservoir after its flooding.Ecological Modelling,2009,220:841-856
    [4] Azam Fet al. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog.Ser.1983,10:257-263
    [5] Azam F. Microbial control of oceanic carbon flux: the plot thickens. Science,1998,280(5364):694~696
    [6] Azam F Malfatti F. Microbial structuring of marine ecosystems. Nature ReviewsMicrobiology,2007,5(12):782-791
    [7] Beukema J,Baratta Bekker J,eds European Regioonal Seas Eoosystem Model.Neth J seaRes,1995,33(3/4)
    [8] Bratak G.,Egge J.K.,Heldal M.,Viral mortality of the marine alga Emiliana huxleyi(Haptop hyceae) and termination of algal blooms. Mar.Ecol.Prog.Ser.,1993,93:39-48
    [9] Campbell L,Liu H B,Nolla H A&Vaulot D.Annual variability of phytoplankton andbacteria in the subtropical north Pacific ocean at station ALOHA during the1991-1994ENSO event[J].Deep-Sea Res(Oceanogr.Res.Pap).1997,44(2):167-191
    [10] Chang-Soo Chung,Gi-Hoon Hong,Suk-Hyun Kimet al. Shore based observation on wetdeposition of inorganic nutrients in the Korean Yellow Sea coast[J].The Yellow Sea,1998,4(1):30-39
    [11] Chauhan A,Cherrier J,Williams HN. Impact of sideways and bottom-up control factors onbacterial community succession over a tidal cycle. Proceedings of the National Academy ofSciences,2009,106(11):4301-4306
    [12] Chen,C. S.,Wiesenburg,D. A.,Xie,L. Influences of river discharge on biologicalproduction in the inner shelf: A coupled biological and physical model of theLouisiana-texas Shelf. J. Mar. Res.,1997,55:293-320
    [13] Chisholm SW,Olson R J,Zettler E R,et al. A novel free-living prochlorophyte abundantin the oceanic euphotic zone. Nature,1988,334:340-343
    [14] Christensen,V. Fishery-induced changes in a marine ecosystem: insight for model of theGulf of Thailand. Journal of Fish Science,1998,53(Supply A):128-142
    [15] Christensen,V.,Walters,C. Ecopath with Ecosim: methods,capabilities and limitations.Ecological Modelling,2004,17:109-139
    [16] Chrost RJ,Tomasz A,Kalinowska K,et al. Abundance and Structure of Microbial LoopComponents (Bacteria and Protists) in Lakes of Different Trophic Status. Journal ofMicrobiology and Biotechnology,2009,19(9):858-868
    [17] Delong E F. Archaeain coastal marine environments. Proceedings of the National Academyof Sciences,1992,89:5685-5689
    [18] Delong E F,LinK,Prezelin B B,et al. High abundance of Archaea in Antarctic marinepicoplankton.Nature,1994,371:695-697
    [19] Elloum i J,GuermaziW,Ayadi H,et al. Abundance and biomass o f prokaryotic andeukaryoticm icroorganisms coupled with environmental factors in an arid multi-pond solarsaltern (Sfax,Tun is ia). Journal of the Marine Biological Association of the UnitedKingdom,2009,89(2):243-253
    [20] Eigenheer,A.,Kuhn,W.,and Radach,G. On the sensitivity of ecosystem box modelsimulations on mixed-layer depth estimates. Deep Sea Res.,1996.43(7):1011-1027
    [21] Fasham,M. J. R.,Ducklow,H. W. and McKelvie,S. M. A nitrogen-based model ofplankton dynamics in the oceanic mixed layer. J. Mar. Res.,1990,48(3):591-639
    [22] Fransz H G,Mommaert s J P,Radach G. Ecology modeling of the North Sea. NetherlandsJournal of Sea Research,1991,28(1/2):67-140
    [23] Frost,B. W. A modeling study of process regulating plankton standing stock andproduction in the open subarctic Pacific Ocean. Prog. Oceanog.,1993,32:17-56
    [24] Fuhrman J A and Azam F. Bacterio plank ton of secondary production estimates forcoast al water of British Columbia,Antarctica,and California. Appl. EnvirlMicrobiol.1980,39:1085-1095
    [25] Fuhrman J A. Bacteriop lankton roles in cycling of organic matter: them icrobial foodweb. Falkowski PG,Woodhead AD. Primary productivity and biogeochemical cycles in thesea. New York; Plenum Press.1992:361-383
    [26] Fuhrman JA,McCallum K,Davis AA. Novel major archaebacterial group from marineplankton. Nature,1992b,356(6365):148-149
    [27] Fuhrman JA. Marine viruses and their biogeochemical and ecological effects. Nature,1999,399:541-548
    [28] Gao Huiwang, Wei Hao, Feng Shizuo. Functions used in biological models and theirinfluences on simulations,2000, Indian Journal of Marine Sciencies, Vol.29,230-237
    [29] Gilbert D,Amblard C,Bourdier G,et al. The microbial loop at the surface of a peatland:Structure,function,and impact of nutrien tinput. M icrobial Ecology,1998,35(1):83-93
    [30] Guo X. H. Hukuda,Y.Miyazawa and T. Yamagata. A Triply Nested Ocean Model forSimulating the Kuroshio-Roles of Horizontal Resolution on JEBAR. Journal ofPhysical Oceanography,2003,33:146-169
    [31] Hobbie J E,Daley R J,Jasper S. Use of mucleopore filters for counting bacteria byfluorescence microscopy. Applied and Environmental Microbiology.1977,33(5):1225-1228
    [32] Horwood J W. Algal production in the west-central North Sea. J Plank ton Res,1982,4(1):103-124
    [33] J. Sandberg. Cross-ecosystem analyses of pelagic food web structure and processes in theBaltic Sea. ecological modelling,2007,201:243-261
    [34] Jing Zhang,Minguang Liu. Observations on nutrient elements and sulphate in atmosphericwet depositions over the northwest Pacific coastal oceans-Yellow Sea[J].MarineChemistry,1994,47(2):173-189
    [35] Kishi M.J.,M.Kashiwai,D.M. Ware,B.A. Megrey et.al..NEMURO-a lower trophic levelmodel for the North Pacific marine ecosystem. Ecological Modelling,2007,202:12-25
    [36] Kolber Z S,Plumley F G,Lang A S,et al. Contribution of aerobic photoheterotrophicbacteria to the carbon cycle in the ocean.Science,2001,292:2492-2495
    [37] Lalli CM&TR Parsons. Biological Oceanography:an introduction. The Open Universityset book.1997,Butterworth-Heinemann, Jordan Hill,Oxford.314
    [38] Lawson L.M.,Hofmann E. E. and Spitz Y. H.. Time series sampling and data assimilationin a simple marine ecosystem model. Deep-Sea Research,PartⅡ,1996,43(2-3):625-651
    [39] Liu,S. M.,J. Zhang,H. T. Chen,and G. S. Zhang. Factors influencing nutrient dynamicsin the eutrophic Jiaozhou Bay,North China. Progress in Oceanography.2005,66:66-85
    [40] Liu. Z.,H. Wei.,G. S. Liu.,and J. Zhang. Simulation of water exchange in Jiaozhou Bayby average residence time approach. Estuar. Coast. Shelf. S.,2004,61:25-35
    [41] Lohmonn H. Die Bevolkerung des Oceans mit Plankton. Arch. Biontol.1920,4:617
    [42] McGillicuddy,D. J.,Robinson,A. R.,and Mccarthy,JJ. Coupled physical and biologymodeling of the spring bloom in the North Atlantic (II): three-dimensional bloom andpostbloom processes. Deep Sea Res. I,1995,42(8):1359-1398
    [43] Model task team of PICES9th Annual Meeting. Model task team workshop report.2000
    [44] Moisan,J. R.,Hofmann,E. E.,and Haidvogel,D. B. Modeling nutrient and planktonprocess in the California coastal transition zone.2. A three-dimensionalphysical-bio-optical model. J. Geophys. Res.,1996,101:22677-22691
    [45] Moll A. Regional distribution of primary production in the North Sea simulated by athree-dimensional model. Jour nal of M arine System s,1998,16(1-2):151-170
    [46] Norberg,J. and Deangelis,D. Temporetureeffects on stocks and stability of aphytoplankton-zooplankton model and the dependence on light and nutrients. Ecologicalmodeling,1997,95:75-86
    [47] Oguz,T. Ducklow,H.,and Malanotte-Rizzoli,P. Simulation of annual planktonproductivity cycle in the Black Sea by a one-dimension physical-biological model. J.Geophys. Res.,1996,101(C7):16585-16599
    [48] Partensk YF,Hess WR,Vaulot D. Prochlorococcus a Marine Photosynthetic Prokaryote o fGlobal Significance. Microbiology and Molecular Biology Reviews,1999,63(1):106-127
    [49] Paves H J,Gonzalez HE. Carbon fluxes within the pelagic food web in the coastal area offAntofagasta (23degrees S),Ch ile:The sign ificance of the microbil versus classicalfood webs. Ecological Modelling,2008,212(3-4):218-232
    [50] Paerl, H. W. Coastal eutrophication and harmful algal blooms: importance of atmosphericdeposition and groundwater as “new” nitrogen and other nutrient sources. Limnology andOceanography.1997,42:1154-1165
    [51] Peter,J. S.,and Chen,C. Plankton production in tidal fronts: A model of Georges Bankinsummer. J. Mar. Res.,1996,54:631-651
    [52] Pomeroy L R. The ocean’s food web,a changing paradigm.Bioscience.1974,24:499-504
    [53] Pomeroy LR,Willams PJI,Azam F,et a.l The Microbial Loop. Oceanography,2007,20(2):28-33
    [54] Pringault O,Tesson S,Rochelle-Newall E. Respiration in the Light andBacterio-Phytoplankton Coupling in a Coastal Environm ent. Microbial Ecology,2009,57(2):321-334
    [55] Prunet,P.,Minster,J. F.,and Ruiz-pino,D. Assimilation of surface data in one-dimensionalphysical-biogeochemical model of the surface ocean:1method and preliminary results.Global Biogeochem. Cycles,1996,10(1):111-138
    [56] Radach G,Moll A. State of the Art in Algal Bloom Modeling. Water Pollution ResearchRepo rt12,Brussels,1990.116-149
    [57] Radach G,Moll A. Estimation of the variability of p roduc2tion by simulating annualcycles of phytop lank ton in the cen2tral No rth Sea[J]. P rog Oceanog,1993,31:339-419
    [58] Sarmiento,J. L.,Slater,R. D.,and Fasham,M. J. R. A seasonal three-dimensionalecosystem model of nitrogen cycling in the north Atlantic euphotic zone,GlobalBiogeochem. Cycles,1993,7(2):417-450
    [59] Saw strom C,L is le J,Anesio AM,et al. Bacteriophage in polar in land waters.Extremophiles,2008,12(2):167-175
    [60] Scavia D. On the role of bacteria in secondary production. Limnol. Oceanogr.1988,33:1220-1225
    [61] Shen,Z.-L. Historical Changes in Nutrient Structure and its Influences on PhytoplanktonComposition in Jiaozhou Bay. Estuarine,Coastal and Shelf Science,2001,52:211-224
    [62] Skogen,M. D.,Soiland,H. A user’s guide to NORWECOM V2.0(The NorwegianEcological Model Statem). Institute of marine research. Bergen,1998.42
    [63] Skogen,M. D.,Aure,J.,Danielssen,D.,and Svendsen,. Natural fertilization of the marineenvironment-modelling of the glomma flood. Sarsia,1998,83:361-372
    [64] Steward G F,Wikner J,William P C,et al. Estimation of virus prodution in the sea II. Fieldresults. Mar Microb Food Webs,1992,6(2):79-90
    [65] Taylor,A. H. Harbour,D. S.,and Harris,R. P. Seasonal succession in the pelagicecosystem of the North Atlantic and the utilization of nitrogen. J. Plank. Res.,1993,15(8):875-891
    [66] Tsai AY,Chiang KP,Chang Jet al. Seasonal variations in trophic dynamics o f nano-flagellates and pico-plankton in coastal waters of the western subtropical Pacific Ocean.Aquatic M icrob ial Ecology,2008,51(3):263-274
    [67] Varela,R. A.,Cruzado,A.,and Gabaldon,J. E. Modelling the deep-chlorophyll maximum:A coupled physical-biological approach. J. Mar. Res.,1992,50:441-463
    [68] Varela R A,Cruzado A,Gabaldon J E. Modelling primary production in the North Seausing the European Regional Seas Ecosystem Model. Netherlands Journal of Sea Research,1995,33(3/4):337-361
    [69] Wang H. NSFC strategy on funding global change programs with the specialreference of GLOBEC. Journal of Ocean University of Qing dao,1999,29(1):75-78
    [70] Waterbury J B,Watson SW,Guillard R L. Wide-spread occurrence of a unicellular,marine plank tonic,Cyanobacterium.Nature,1979,277:293-294
    [71] Zhang,J. Atmospheric wet deposition of nutrient elements: correlation with harmfulbiological blooms in Northwest Pacific coastal zones. Ambio,1994,23:464-465
    [72] Zhang J.. Nutrient elements in large Chinese estuaries[J]. Continental Shelf Research,1996.16(8):1023-1045
    [73] Zhao L. and X. Y. Guo. Influence of cross-shelf water transport on nutrients andphytoplankton in the East China Sea: a model study. Ocean Science,2011,7:27-43
    [74] Zhenwen Wan,Bangqin Huang,et al. Energy Flow in the Plankton Ecosystem of EastChina Sea Estimated with a Quasi-steady State Approach. Submitted to Deep SeaResearch-II special issue on China GLOBEC Program,2006
    [75]白洁,时瑶,宋亮等.黄海西北部浮游细菌生物量分布特征及其与环境因子的关系[J].中国海洋大学学报,2009,39(4):592-596
    [76]陈长胜.海洋生态系统动力学与模型.北京:高等教育出版社,2003.5
    [77]戴聪杰.极地近海微食物环的主要类群组成及其功能:[博士学位论文].厦门:厦门大学海洋生物学系,2006
    [78]樊捐,刘春光,冯剑丰,王君丽,彭士涛.海洋生态动力学模型在海洋生态保护中的应用.海洋通报,2010,29(1):79-83
    [79]管玉平,高会旺,冯士筰等.海洋生态系统动力学浅说.地球科学进展,1997,12(5):447-450
    [80]高会旺,孙文心,翟雪梅.水层生态系统动力学模式参数的敏感性分析.青岛海洋大学学报,1999,29(3):398-404
    [81]高会旺,冯士筰,管玉平.海洋浮游生态系统动力学模式的研究.海洋与湖沼,2000,31(3):341-348
    [82]高生泉,林以安,金明明等.春、秋季东、黄海营养盐的分布变化特征及营养结构[J].东海海洋,2004,22(4):38-50
    [83]国家海洋局北海监测中心,青岛市海洋与水产局.胶州湾陆源污染物入海总量控制研究,1998
    [84]海洋图集编委会.渤海黄海东海海洋图集(化学卷).北京:海洋出版社,1991
    [85]海洋图集编委会.渤海黄海东海海洋图集(生物卷).北京:海洋出版社,1991
    [86]海洋图集编委会.渤海黄海东海海洋图集(水文卷).北京:海洋出版社,1992
    [87]贺志鹏,宋金明,张乃星.南黄海溶解有机碳的生物地球化学特征分析[J].海洋科学进展,2006,24(4):477-488
    [88]黄邦钦,洪华生,王大志,等.台湾海峡浮游植物生物量和初级生产力的粒结构和碳硫途径.台湾海峡,2002,22(1):23-30
    [89]黄邦钦,刘媛,陈纪新,等.东海、黄海浮游植物生物量的粒级结构及时空分布.海洋学报,2006,28(2):156-164
    [90]黄凌风,郭丰.微食物环及其在能流、物流过程中的作用.中国海洋生态系统动力学研究Ⅰ关键科学问题与研究发展战略.科学出版社,2000,212-217
    [91]霍元子.黄海浮游动物功能群的研究:[博士学位论文].北京:中国科学院研究生院,2008
    [92]焦念志,陈念红.原绿球藻--海洋生态学研究的新领域.海洋科学,1995,40(9):829-832
    [93]焦念志,赵淑江,王勇,沈志良,吴玉霖.胶州湾营养盐结构的长期变化及其对海湾生态系统的影响.海湾生态过程与可持续发展(焦念志主编).海洋出版社,2001
    [94]焦念志,Sieracki M E,张瑶,等.好氧不产氧光合异养细菌及其在海洋生态系统中的作用.科学通报,2003,48(6):530-534
    [95]林雨霏,刘素美,纪雷等.黄海西部春、夏季湿沉降常量离子化学特征研究[J].环境化学,2005,24(5):617-619
    [96]李杰.黄海冷水团新生产力及微食物环作用年变化特征的模拟分析:[硕士学位论文].青岛:中国海洋大学,2005
    [97]李杰,吴增茂,万小芳.黄海冷水团新生产力及微食物环作用分析.中国海洋大学学报,2006,36(2):193-199
    [98]李洪波,肖天.南黄海浮游细菌的分布特点与水文现象的影响研究[D].青岛:中国科学院海洋研究所,2005
    [99]林凤翱,贺杰,于占国.北黄海三类废弃物试验倾倒区海洋细菌的生态学研究Ⅰ海洋异养细菌的分布[J].海洋环境科学,1989,8(3):10-15
    [100]刘桂梅,孙松,王辉.海洋生态系统动力学模型及其研究进展.地球科学进展,2003(03):427-432
    [101]刘素美,张经.黄海和东海生源要素的化学海洋学.海洋环境科学,2000,19(1):68-74
    [102]刘占飞,彭兴跃,徐立等.台湾海峡1997年夏季和1998年冬季两航次颗粒有机碳研究[J].台湾海峡,2000,19(1):95-101
    [103]史洁.物理过程对半封闭海湾养殖容量影响的数值研究:[博士学位论文].青岛:中国海洋大学,2009
    [104]沈国英,施并章.海洋生态学.北京:科学出版社,2002
    [105]沈志良.胶州湾营养盐结构的长期变化及其对生态环境的影响.海洋与湖沼,2002,33(3):322-331
    [106]苏纪兰,唐启升.我国海洋生态系统基础研究的发展.地球科学进展,2005,20(2):139-143
    [107]孙军.海洋浮游植物与生物碳汇[J].生态学报,2011,31(18):5372-5378.
    [108]孙湘平.中国近海区域海洋学[M].北京:海洋出版社,2002
    [109]谭丽菊,张哲,梁成菊等.青岛邻近海域海水中有机碳的分布特征[J].地球科学进展,2011,26(4):426-432
    [110]唐启生,苏纪兰.中国海洋生态系统动力学研究I.关键科学问题与研究发展战略.北京:科学出版社,2000
    [111]唐启升,范元炳,林海.中国海洋生态系统动力学发展战略初探.地球科学进展,1996,11(2):160-168
    [112]唐启升,苏纪兰.海洋生态系统动力学研究与海洋生物资源可持续利用.地球科学进展,2001,16(1):5-11
    [113]田恬,魏皓,苏建,郑昌硕,孙文心.黄海氮磷营养盐的循环与收支研究.海洋科学进展,2003,21(1):1-11
    [114]仝龄.Ecopath—一种生态系统能量平衡评估模式.海洋水产研究,1999,20(2):103-107
    [115]万小芳.黄海冷水团水域水层-底栖耦合生态系统建模研究:[硕士学位论文].青岛:中国海洋大学,2003
    [116]万小芳,吴增茂,常志清,张新玲等.南黄海和东海海域营养盐等物质大气入海通量的再分析[J].海洋环境科学,2002,21(4):14-18
    [117]王衍明.大气物理学[M].青岛:青岛海洋大学出版社,1993
    [118]王新,周艳艳,郑天凌.海洋细菌生态学的若干前沿课题及其研究新进展.微生物学报,2010,50(3):291-29.
    [119]王辉.海洋生态系统模型研究的几个基本问题.海洋与湖沼.1998,29(4):341-346
    [120]王慧,柏仕杰,蔡雯蔚,郑天凌.海洋病毒--海洋生态系统结构与功能的重要调控者.微生物学报,2009,49(5):551-559
    [121]王玉衡.黄海物理环境对鳀鱼种群动态的影响-基于个体发育的生态动力模型研究:[博士学位论文].青岛:中国海洋大学,2011
    [122]王震勇.胶州湾浮游生态系统四十年变化的模拟与分析:[硕士学位论文].青岛:中国海洋大学,2007
    [123]魏皓,赵亮,武建平.浮游植物动力学模型及其在海域富营养化研究中的应用.地球科学进展,2001,16(2):220-225
    [124]魏皓,赵亮,冯士筰.渤海浮游植物生物量与初级生产力变化的三维模拟.海洋学报,2003,25(2):66-72
    [125]魏皓.浮游植物动力学模型及其在海域富营养化研究中的应用.地球科学进展,2001,16(2):220-225
    [126]魏皓,王磊,林以安,Chang-Soo CHUNG,刘哲.黄海中部营养盐的贯跃层输运.海洋科学进展,2002,vol.20(3):15-20
    [127]吴增茂,俞光耀.海洋生态系统动力学模型的基本特征及其研究进展.地球科学进展,1996,11(1):13-18
    [128]肖天.海洋细菌在微食物环中的应用.海洋科学,2000,24(7):4-6
    [129]徐永福.模拟浮游植物的季节变化.生态学报,1995,15(3):245-250
    [130]翟雪梅.渤海增养殖水文环境及年代变异特点.海洋水产研究,1997,18(2):86-100
    [131]张传松张婷米铁柱等.2006年夏季北黄海海域氮的形态和分布.中国海洋大学学报,2009,39(S):189-193
    [132]张经.中国主要河口的生物地球化学研究-化学物质的迁移与环境[M].北京:海洋出版社,1996
    [133]张国森.大气的干、湿沉降以及对东、黄海海洋生态系统的影响:[硕士学位论文].青岛:中国海洋大学,2004
    [134]张婷,王作华,石晓勇等.黄海、东海溶解有机碳的分布特征[J].海洋环境科学,2011,30(2):162-166
    [135]张志南等(译).生物海洋学导论,青岛海洋大学出版社.2000
    [136]赵亮.渤海浮游植物生态动力学模型研究:[博士学位论文].青岛:中国海洋大学,2002
    [137]赵卫红,焦念志,赵增霞.生态系统营养动力学.海湾生态过程与可持续发展.科学出版社,2001
    [138]周伟华,王汉奎,董俊德,等.三亚湾秋、冬季浮游植物和细菌的生物量分布特征及其与环境因子的关系[J].生态学报,2006,26(8):2633-2639

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700