用户名: 密码: 验证码:
大兴安岭地区岩石圈地幔的性质及其形成演化过程
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大陆岩石圈地幔的性质,形成和演化一直是现今固体地球科学界研究的热点问题之一。最近十几年里,对于华北克拉通和我国东部岩石圈地幔的演化和改造的研究取得了长足的进展。然而,对位于中亚造山带东部,我国著名重力梯度线稍偏西位置的大兴安岭岩石圈地幔的研究却一直未能一起地质学家足够的重视。与克拉通相比,造山带岩石圈地幔往往记录了板片俯冲交代,壳幔相互作用等更为丰富的信息。因此,我们选取大兴安岭南部锡林浩特地区橄榄岩捕虏体与大兴安岭中部阿尔山橄榄岩捕虏体为研究对象,在结合前人研究资料基础上,拟通过详细的岩相学和地球化学分析,采用综合对比分析等手段,确定大兴安岭岩石圈地幔的性质,分析其所经历的熔融交代过程,并进一步探讨大兴安岭岩石圈地幔的形成和演化。
     大兴安岭南部锡林浩特地区橄榄岩捕虏体以二辉橄榄岩为主,有少量的方辉橄榄岩(Cpx<5%)。与锡林浩特橄榄岩捕虏体相比,大兴安岭中部阿尔山地区橄榄岩捕虏体方辉橄榄岩数量更多。这两个地方的捕虏体均为尖晶石相橄榄岩,岩石组合为橄榄石+斜方辉石±单斜辉石±尖晶石。手标本和镜下观察未见石榴石的出现。阿尔山橄榄岩部分样品含有少量显性交代矿物:角闪石和锂辉石。
     大兴安岭南部锡林浩特捕虏体按照单斜辉石稀土元素配分曲线的形态可以分为三组。主量元素方面,锡林浩特第一组捕虏体为方辉橄榄岩或贫单斜辉石二辉橄榄岩,单斜辉石含量小于7vol%。该组捕虏体具有较高的橄榄石Mg#值,尖晶石Cr#值,以及较低的全岩玄武质组分(CaO, TiO2, Al2O3)含量,经模拟计算其部分熔融程度为14-18%,显示了适度难熔(难熔程度小于鹤壁但远大于山旺)的地球化学特点。第二组捕虏体均为二辉橄榄岩,单斜辉石含量大于9vol%。该组捕虏体具有较低的橄榄石Mg#值,尖晶石Cr#值,以及较高的全岩CaO, TiO2, Al2O3含量,经模拟计算其部分熔融程度小于10%,显示了较为饱满(略比山旺难熔)的特征。第三组捕虏体既有方辉橄榄岩也有二辉橄榄岩,单斜辉石含量介于3-14vol%之间。该组捕虏体具有较大的主量元素变化范围,基本上横跨了第一组与第二组橄榄岩捕虏体,部分熔融程度为5-18%。微量元素方面,锡林浩特第一组捕虏体具有右倾的单斜辉石稀土元素配分曲线,富集大离子亲石元素,亏损高场强元素,但相对于部分熔融程度具有更高的Nb颔联,显示了碳酸盐熔体交代作用的痕迹。第三组橄榄岩捕虏体具有正弦曲线式单斜辉石稀土元素配分曲线,适度富集大离子亲石元素和轻稀土元素,相对于其部分熔融程度具有更高的Nb, Zr, Ti含量,但Ti/Eu比值变化较大,显示了多期次的交代作用的痕迹。而第二组捕虏体具有左倾的单斜辉石稀土元素配分曲线,没有明显的受后期交代作用的痕迹。锡林浩特第三组捕虏体全岩稀土元素配分曲线为轻稀土富集的右倾型,与单斜辉石不同,可能为矿物粒间存在富集轻稀土元素的熔流体导致。
     大兴安岭中部阿尔山地区橄榄岩捕虏体按照单斜辉石稀土元素配分曲线也可分为三组。与锡林浩特捕虏体相似,阿尔山地区第一组橄榄岩捕虏体均为方辉橄榄岩,单斜辉石含量不大于3vo1%,该组捕虏体具有较高的橄榄石Mg#值,尖晶石Cr#值,以及较低的全岩CaO,TiO2, Al2O3含量,经模拟计算其部分熔融程度为14-20%,也显示了适度难熔(难熔程度小于鹤壁但远大于山旺)的地球化学特点。第二组捕虏体为二辉橄榄岩,单斜辉石含量为12vol%。该组捕虏体具有较低的橄榄石Mg#值,尖晶石Cr#值,以及较高的全岩CaO, TiO2, Al2O3含量,经模拟计算其部分熔融程度约为1%,显示了非常饱满的特征。第三组捕虏体既有方辉橄榄岩也有二辉橄榄岩,单斜辉石含量不大于7vo1%。该组捕虏体具有较大的主量元素变化范围,部分熔融程度为5-20%。对阿尔山第三组捕虏体进行石榴石相部分熔融模拟计算,部分第三组橄榄岩源区可能来自含有石榴石,但石榴石含量应该不会太高。微量元素方面,阿尔山第一组橄榄岩捕虏体单斜辉石稀土元素配分曲线比较平坦,但微量元素蛛网图上具有明显Nb, Ta, Zr, Hf, Ti等高场强元素负异常,无Sr正异常,经模拟计算相对于其部分熔融程度基本没有Nb的再富集,岩相学上观察到了角闪石的出现,显示了含水流体交代作用的痕迹。阿尔山第三部捕虏体具有正弦曲线型单斜辉石稀土元素配分曲线形态,部分第三组捕虏体无Sr正异常,但有显著的Ti负异常,可能反映了多期次的不同交代介质作用的特点,其余第三组捕虏体无高场强元素负异常,显示了硅酸盐熔体的交代特征。而阿尔山第二组捕虏体单斜辉石具有左倾的轻稀土元素亏损的配分曲线形态,没有表现出明显的交代特征。此外,锡林浩特和阿尔山第三组捕虏体还可能受到了某种程度的熔体/橄榄岩反应的影响,斜方辉石含量较高,单斜辉石Cr与尖晶石Ti的含量明显偏高,在全岩主量元素组成上也显示了Ti的富集与轻微的Fe富集作用。反应过程可能溶解了单斜辉石,生成斜方辉石和/或橄榄石。
     将锡林浩特和阿尔山捕虏体与北部的五大连池-科洛地区捕虏体和华北克拉通东部的鹤壁和山旺捕虏体相对比,大兴安岭橄榄岩捕虏体整体上体现了从适度难熔到饱满的特点。锡林浩特和阿尔山第一组捕虏体的平衡温度都高于第二组捕虏体的平衡温度。但结合最近的研究资料显示,锡林浩特和阿尔山地区橄榄岩捕虏体代表难熔程度的尖晶石Cr#值并没有随平衡温度的不同而变化。以阿尔山,锡林浩特和五大连池-科洛橄榄岩捕虏体为代表的大兴安岭岩石圈地幔的Sr-Nd同位素显示了较为亏损的特征,187Os/188Os值与平衡温度无相关关系。大兴安岭捕虏体与中国东北其它地区橄榄岩捕虏体具有相似的Sr-Nd, Re-Os同位素组成。整体上体现了以新生饱满岩石圈地幔为主,局部零星存在古老难熔的地幔残余。我们认为中亚造山带是一个由多种构造单元(洋岛,岛弧,增生楔,前寒武纪微陆块)组成的复杂拼合体,大兴安岭地区位于中亚造山带东部,在古生代和中-新生代分别收到了古亚洲洋构造域和古太平洋构造域的影响,长期的俯冲作用和岩浆活动使岩石圈维持较高的热与正浮力状态,随着俯冲作用和岩浆活动的结束,岩石圈逐渐冷却并在重力上失稳,从而发生岩石圈的拆沉,软流圈物质上涌冷却,最终形成了新增生的岩石圈地幔,而古老陆块残片下的岩石圈地幔由于重力上的相对稳定性可能得以(部分)保存。从而形成了现今大兴安岭乃至中国东北以新生饱满的岩石圈地幔为主,局部零星存在古老难熔的岩石圈地幔残余的特点。但是对于五大连池-科洛地区的岩石圈地幔来说,前人结合区域上钾质玄岩地球化学资料进行分析,认为该区岩石圈地幔具有上新下老的特征,可能为外来岩石圈地幔就位。五大连池-科洛地区岩石圈地幔这一特殊的现象仍须进一步研究和探索。
The nature and evolutionary process of the subcontinental lithospheric mantle has long been one of the hottest issues of solid Earth science community. In the last twenty years, the studies on the evolution and modification of the lithospheric mantle underneath the eastern North China Craton (NCC) and eastern China have got considerable achievements. However, the lithosperic mantle beneath the Great Xing'an Range, which is located at the eastern Central Asian Orogenic Belt-a little west to the famous China Gravity Gradient Stabilization Line, has not been paid enough attentions. Compared with the lithopheric mantle beneath cratons, the orogenic lithospheric mantle may record informatons such as subduction and crust-mantle interaction. Therefore, we collected the peridotite xenoliths from the Xilinhot (XLHT) region and Ar Shan (AS) region, which is located in the southern and middle part of the Great Xing'an Range respectively. Based on the detailed petrologe and geochemistry studies, combined with previous studies and using comparison method, we tend to determine the nature of the lithospheric mantle beneath the Great Xing'an Range, discuss the mantle process such as partial melting and metasomatism and further explore the formation and evolution of the lithospheric mantle beneath the Great Xing'an Range.
     The XLHT peridotite xenoliths (in the southern part of the Great Xing'an Range) are mainly lherzolite with minor harzburgite (Cpx<5%). Compared with peridotite xenoliths in the XLHT region, peridotite xenoliths in the AS region contain more harzburgite. Xenoliths in the two locations are all spinel peridotite xenoliths, with mineral assemblage of olivine+orthopyroxene stone±clinopyroxene±spinel. No garnet was observed in the hand specimen and thin sections. Some peridotite xenoliths in the AS region contain small amount of modal metasomatic minerals such as amphibole and spondumene.
     Peridotite xenoliths from the XLHT region can be divided into three groups according to their clinopyroxene REE patterns. The Group1peridotite xenoliths consist of harzburgite or clinopyroxene-poor lherzolite, with clinopyroxene content less than7vol%. Group1xenoliths have high olivine Mg#, spinel Cr#values and low whole-rock basaltic components (CaO, TiO2, A12O3) level. The partial melting degrees of Group1xenoliths are14-18%through model calculating, showing the moderately refractory (less refractory than the Hebi but much more refractory than Shanwang) geochemical characteristics. The Group2xenoliths are lherzolites, with the clinopyroxene content more than9vol%. The Group2xenoliths have low olivine Mg#, spinel Cr#values and high CaO, TiO2, Al2O3bulk contents. The partial melting degrees of Group2xenoliths are no more than10%. The xenoliths of Group2show fertile (slightly more refractory than Shanwang) geochemical characteristics. The Group3xenoliths are composed of both harzburgites and lherzolites. Xenoliths of this Group contain clinopyroxene contents ranging between3-14vol%. The Group3xenoliths have large variations of major-elements, basically overlapping the Group1and Group2peridotite xenoliths. The partial melting degree of Group3xenoliths is5-18%. The Group1xenoliths from the XLHT region show LREE enrichment REE patterns. From the extended trace-element diagrams, the clinopyroxene of the Group1xenoliths have high large ion lithophile elements (LILE) levels and strong negative anomalies in high field strength elements (HFSE). However, relative to the degree of melt extraction, the clinopyroxenes of the Group1xenoliths have higher Nb contents, displaying clues of carbonate metasomatism. The clinopyroxenes in xenoliths of the Group3have sinusoid REE patterns with peak at Sm or Nd. They are moderately enriched in LILE and LREE content. Relative to the degree of partial melting, they have higher Nb, Zr, Ti concentrations and variable Ti/Eu values, displaying clues for the multi-stage metasomatism. The clinopyroxenes in the Group2xenoliths have LREE depleted patterns. There are no apparent characteristics for mantle metasomatism. For the Group3xenoliths, whole-rock REE patterns differ from the clinopyroxene REE patterns, possibly due to the melt/fluid in the mineral grain boudaries which are enriched in LREE.
     The peridotite xenoliths from AS region can be subdivided into three groups, according to their clinopyroxene REE distribution curves. Similar to the XLHT xenoliths, the Group1xenoliths from the AS region are all harzburgites, with clinopyroxene mode content not more than3vol%. They have high olivine Mg#, spinel Cr#values, and have low whole-rock CaO, TiO2, Al2O3levels. Through model calculating, the degree of partial melting of Group1xenoliths are14-20%, showing moderate refractory (less refractory than Hebi but more refractory than Shanwang) geochemical characteristics. The Group2xenoliths are Iherzolite, with clinopyroxene mode content of12vol%. The Group2xenoliths have low olivine Mg#, spinel Cr#values and high whole-rock CaO, TiO2, Al2O3levels. Its melt extraction degree is about1%, showing very fertile features. The Group3xenoliths contain both harzburgite and lherzolite, with clinopyroxene mode contents no more than7vol%. The Group3xenoliths have a large range of major-elements, with the partial melting degrees from5%to20%. Part of the Group3xenoliths from AS region may contain garnet. However, after model calculating, the garnet contents of the Group3xenoliths, if have, can not be very high. The clinopyroxene in the Group1xenoliths from AS region have flat REE patterns. But they has significantly negative (Nb, Ta, Zr, Hf, Ti) HFSE anomalies, positive Sr anomaly from the trace-elements extended diagrams. They aslo show no enrichment of Nb contents relative to its degree of partial melting. Combined with thin section observations (the presence of hornblende), the Group1xenoliths show characteristics of aqueous fluid metasomatism. The Group3xenoliths have sinusoid clinopyroxene REE patterns. Some of the Group3xenoliths have Sr positive anomaly and significantly Ti anomalies, reflecting the features of multi-stage metasomatism. No HFSE negative anormalies of the rest Group3xenoliths shows the characteristics of silicate metasomatism. The Group2xenoliths from the AS region have LREE depleted patterns, showing no apparent metasomatic features. The Group3xenoliths from the XLHT and AS region experienced melt/rock reaction by some degree. They have higher levels of orthopyroxene modes, higher clinopyroxene Cr and spinel Ti contents, ande whole-rock Ti enrichment and slight Fe enrichment. The reactions may dissolve clinopyroxenes and precipitate orthopyroxenes and/or olivines.
     Compared with the North China Craton xenoliths (Hebi and Shanwang), peritotite xenoliths from the Great Xing'an Range show moderately refractory to fertile features. The Group1xenoliths in the XLHT and AS region have higher equilibrium temperatures than the Group2xenoliths. However, taking account for recent geochemical data, the peridotite xenoliths from the XLHT and AS region show no regular variations between spinel Cr#values and equilibrium temperatures. For the XLHT and AS xenoliths, the Sr-Nd data and187Os/188Os values also show no regular change with equilibrium temperatures. However, for the Wudalianchi-Keluo (WEK) xenoliths, the187Os/188Os values seem to decrease with increasing of the equilibrium temperatures. The xenoliths from the Great Xing'an Range show similar Sr-Nd, Re-Os isotopic compositions with other places in the northeast China peridotite xenoliths. The lithospheric mantle beneath the northeast China is mainly fertile and new, with local presence of the remnants of ancient refractory mantle. We interpreted that the Central Asian orogenic belt is composed of a variety of tectonic units (oceanic island, island arcs, accretionary wedge and Precambrian microcontinental). The Great Xing'an Range is located in the eastern Central Asian Orogenic Belt. During the the Paleozoic and Mesozoic, the Great Xing'an Range was governed by Paleo-Asian Ocean and Paleo-Pacific ocean domain. Long term slab subduction and magmatic activity maintain a high heat budge and positive buoyancy of the lithosphere relative to the asthenosphere. After the end of the subduction and magmatism, new accreted lithospheric gradually cooled and became instability on gravity. Finally, the new accreted lithosphere delaminated and the upwelled asthenosphere cooled to form newly accreted lithospheric mantle. Lithospheric mantle underneath the ancient continent fragments may be (partly) preserved due to theric gravity stability. Today, the lithospheric mantle beneath the Great Xing'an Range, even northeastern China are mainly new accreted and fertile, with local presence of ancient refractory lithospheric mantle relict. For the lithospheric mantle beneath the WEK region, previous studies on the host potassic basalts suggested that the garnet-face lithospheric mantle is formed before Mesoproterozoic. Thus the lithospheric mantle beneath the WEK region is featured by younger mantle at shallow levels and older mantle at deep levels. The lithospheric mantle beneath the WEK region need to be further investigated.
引文
[1]Doin M, Fleitout L, Christensen U. Mantle convection and stability of depleted and undepleted continental lithosphere. Journal of Geophysical Research.1997,102(B2):2771-2787.
    [2]O'Reilly S Y, Griffin W L, Poudjom Djomani Y H, et al. Are lithospheres forever? Tracking changes in subcontinental lithospheric mantle through time:GSA Today.2001,11(4):4-10.
    [3]Griffin W L, Shee S R, Ryan C G, et al. Harzburgite to lherzolite and back again:metasomatic processes in ultramafic xenoliths from the Wesselton kimberlite, Kimberley, South Africa. Contributions to Mineralogy and Petrology.1999,134(2-3):232-250.
    [4]Poudjom Djomani Y H, O'Reilly S Y, Griffin W L, et al. The density structure of subcontinental lithosphere through time. Earth and Planetary Science Letters.2001,184(3):605-621.
    [5]Sleep N H. Evolution of the continental lithosphere. Annu. Rev. Earth Planet. Sci.2005,33:369-393.
    [6]Griffin W L, Graham S. O'Reilly S Y. Lithosphere evolution beneath the Kaapvaal Craton:Re-Os systematics of sulfides in mantle-derived peridotites. Chemical Geology.2004,208(1):89-118.
    [7]Griffin W L, O'Reilly S Y, Doyle B J, et al. Lithosphere mapping beneath the North American plate. Lithos.2004,77(1):873-922.
    [8]Boyd F R. Compositional distinction between oceanic and cratonic lithosphere. Earth and Planetary Science Letters.1989,96(1):15-26.
    [9]Schmidberger S S, Francis D. Nature of the mantle roots beneath the North American craton:mantle xenolith evidence from Somerset Island kimberlites. Developments in Geotectonics.1999,24:195-216.
    [10]Lee C, Yin Q, Rudnick R L, et al. Preservation of ancient and fertile lithospheric mantle beneath the southwestern United States. Nature.2001,411(6833):69-73.
    [11]Liu D Y, Nutman A P, Compston W, et al. Remnants of≥ 3800 Ma crust in the Chinese part of the Sino-Korean craton. Geology.1992,20(4):339-342.
    [12]Zheng J, Griffin W L, O'Reilly S Y, et al.3.6 Ga lower crust in central China:new evidence on the assembly of the North China Craton. Geology.2004,32(3):229-232.
    [13]Griffin W L, Andi Z, O'Reilly S Y, et al. Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton. Geodynamics Series.1998,27:107-126.
    [14]Fan W M, Menzies M A. Destruction of aged lower lithosphere and accretion of asthenosphere mantle beneath eastern China. Geotectonica et Metallogenia.1992,16(3-4):171-180.
    [15]Gao S, Rudnick R L, Carlson R W. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China craton. Earth and Planetary Science Letters.2002,198(3):307-322.
    [16]Zheng J P. Mesozoic-Cenozoic mantle replacement and lithospheric thinning beneath the eastern China. China University of Geosciences Press, Wuhan.1999,126.
    [17]Zheng J, O'REILLY S Y, Griffin W L, et al. Nature and evolution of Cenozoic lithospheric mantle beneath Shandong peninsula, Sino-Korean craton, eastern China. International geology review.1998, 40(6):471-499.
    [18]Ying J, Zhang H, Kita N, et al. Nature and evolution of Late Cretaceous lithospheric mantle beneath the eastern North China Craton:Constraints from petrology and geochemistry of peridotitic xenoliths from Junan, Shandong Province, China. Earth and Planetary Science Letters.2006,244(3-4):622-638.
    [19]Zheng J, Sun M, Zhou M, et al. Trace elemental and PGE geochemical constraints of Mesozoic and Cenozoic peridotitic xenoliths on lithospheric evolution of the North China Craton. Geochimica et Cosmochimica Acta.2005,69(13):3401-3418.
    [20]Zheng J P, Griffin W L, O'Reilly S Y, et al. Mechanism and timing of lithospheric modification and replacement beneath the eastern North China Craton:Peridotitic xenoliths from the 100 Ma Fuxin basalts and a regional synthesis. Geochimica et Cosmochimica Acta.2007,71(21):5203-5225.
    [21]Zheng J, O'Reilly S Y, Griffin W L, et al. Relict refractory mantle beneath the eastern North China block:significance for lithosphere evolution. Lithos.2001,57(1):43-66.
    [22]Tang Y, Zhang H, Ying J, et al. Refertilization of ancient lithospheric mantle beneath the central North China Craton:evidence from petrology and geochemistry of peridotite xenoliths. Lithos.2008, 101(3):435-452.
    [23]袁学诚.中国地球物理图集.地质出版社.1996.
    [24]Zhang H. Transformation of lithospheric mantle through peridotite-melt reaction:A case of Sino-Korean craton. Earth and Planetary Science Letters.2005,237(3-4):768-780.
    [25]Kelemen P B, Hart S R, Bernstein S. Silica enrichment in the continental upper mantle via melt/rock reaction. Earth and Planetary Science Letters.1998,164(1):387-406.
    [26]Kopylova M G, Russell J K. Chemical stratification of cratonic lithosphere:constraints from the Northern Slave craton, Canada. Earth and Planetary Science Letters.2000,181(1):71-87.
    [27]Griffin W L, O'Reilly S Y, Natapov L M, et al. The evolution of lithospheric mantle beneath the Kalahari Craton and its margins. Lithos.2003,71(2):215-241.
    [28]Zhang H F. Transformation of lithospheric mantle through peridotite-melt reaction:a case of Sino-Korean craton. Earth and Planetary Science Letters.2005,237(3-4):768-780.
    [29]Gao S, Rudnick R L, Yuan H L, et al. Recycling lower continental crust in the North China craton. Nature.2004,432(7019):892-897.
    [30]Xu Y G. Thermo-tectonic destruction of the Archaean lithospheric keel beneath the Sino-Korean Craton in China:Evidence, timing and mechanism. Physics and Chemistry of the Earth, Part A:Solid Earth and Geodesy.2001,26(9-10):747-757.
    [31]Wilhem C, Windley B F, Stampfli G M. The Altaids of Central Asia:A tectonic and evolutionary innovative review. Earth-Science Reviews.2012,113(3):303-341.
    [32]Han B, He G, Wang X, et al. Late Carboniferous collision between the Tarim and Kazakhstan Chuyili terranes in the western segment of the South Tian Shan Orogen, Central Asia, and implications for the Northern Xinjiang, western China. Earth-Science Reviews.2011,109(3):74-93.
    [33]Sengor A, Burtman V S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature.1993,364:299-307.
    [34]Lehmann J, Schulmann K, Lexa O, et al. Structural constraints on the evolution of the Central Asian Orogenic Belt in SW Mongolia. American Journal of Science.2010,310(7):575-628.
    [35]Kroner A, Lehmann J, Schulmann K, et al. Lithostratigraphic and geochronological constraints on the evolution of the Central Asian Orogenic Belt in SW Mongolia:Early Paleozoic rifting followed by late Paleozoic accretion. American Journal of Science.2010,310(7):523-574.
    [36]Xiao W J, Windley B F, Huang B C, et al. End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids:implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia. International Journal of Earth Sciences.2009, 98(6):1189-1217.
    [37]Xiao W, Kroner A, Windley B. Geodynamic evolution of Central Asia in the Paleozoic and Mesozoic. International Journal of Earth Sciences.2009,98(6):1185-1188.
    [38]Windley B F, Alexeiev D, Xiao W, et al. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society.2007,164(1):31-47.
    [39]Khain E V, Bibikova E V, Salnikova E B, et al. The Palaeo-Asian ocean in the Neoproterozoic and early Palaeozoic:new geochronologic data and palaeotectonic reconstructions. Precambrian Research. 2003,122(1):329-358.
    [40]Khain E V, Bibikova E V, Kroner A, et al. The most ancient ophiolite of the Central Asian fold belt: U-Pb and Pb-Pb zircon ages for the Dunzhugur Complex, Eastern Sayan, Siberia, and geodynamic implications. Earth and Planetary Science Letters.2002,199(3):311-325.
    [41]Jahn B. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic. Geological Society, London, Special Publications.2004,226(1):73-100.
    [42]Jahn B, Wu F, Chen B. Massive granitoid generation in Central Asia:Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes.2000,23(2):82-92.
    [43]Ionov D A, Griffin W L, O'Reilly S Y. Volatile-bearing minerals and lithophile trace elements in the upper mantle. Chemical Geology.1997,141(3-4):153-184.
    [44]Konc Z, Marchesi C, Hidas K, et al. Structure and composition of the subcontinental lithospheric mantle beneath the Sangilen Plateau (Tuva, southern Siberia, Russia):Evidence from lamprophyre-hosted spinel peridotite xenoliths. Lithos.2012.
    [45]Ionov D A, Ashchepkov I, Jagoutz E. The provenance of fertile off-craton lithospheric mantle: Sr-Nd isotope and chemical composition of garnet and spinel peridotite xenoliths from Vitim, Siberia. Chemical Geology.2005,217(1-2):41-75.
    [46]Ionov D A, O Reilly S Y, Griffin W L. A geotherm and lithospheric section for central Mongolia (Tariat region). Mantle Dynamics and Plate Interactions in East Asia.1998,27:127-153.
    [47]Litasov K D, Foley S F, Litasov Y D. Magmatic modification and metasomatism of the subcontinental mantle beneath the Vitim volcanic field (East Siberia):evidence from trace element data on pyroxenite and peridotite xenoliths from Miocene picrobasalt. Lithos.2000,54(1-2):83-114.
    [48]Ionov D A. Compositional variations and heterogeneity in fertile lithospheric mantle:peridotite xenoliths in basalts from Tariat, Mongolia. Contributions to Mineralogy and Petrology.2007,154(4): 455-477.
    [49]周琴,吴福元,储著银等.吉林省伊通地区橄榄岩包体的同位素特征与岩石圈地幔时代.岩石学报.2010,26(4):1241-1264.
    [50]Yu S, Xu Y, Huang X, et al. Sr-Nd-Hf isotopic decoupling in continental mantle lithosphere beneath Northeast China:Effects of pervasive mantle metasomatism. Journal of Asian Earth Sciences.2009, 35(6):554-570.
    [51]周琴,吴福元,储著银等.吉林蛟河地幔橄榄岩捕虏体的Sr-Nd-Hf-Os同位素特征与岩石圈地幔时代.岩石学报.2007,23(6):1269-1280.
    [52]Xu Y, Menzies M A, Vroon P, et al. Texture-Temperature-Geochemistry relationships in the upper mantle as revealed from spinel peridotite xenoliths from Wangqing, NE China. Journal of Petrology. 1998,39(3):469-493.
    [53]Wang K, O Reilly S Y, Kovach V, et al. Microcontinents among the accretionary complexes of the Central Asia Orogenic Belt:In situ Re-Os evidence. Journal of Asian Earth Sciences.2011.
    [54]Tang J, Xu W, Wang F, et al. Geochronology and geochemistry of Neoproterozoic magmatism in the Erguna Massif, NE China:petrogenesis and implications for the breakup of the Rodinia supercontinent. Precambrian Research.2012.
    [55]Wang F, Xu W, Gao F, et al. Tectonic history of the Zhangguangcailing Group in eastern Heilongjiang Province, NE China:Constraints from U-Pb geochronology of detrital and magmatic zircons. Tectonophysics.2012.
    [56]Xu W, Ji W, Pei F, et al. Triassic volcanism in eastern Heilongjiang and Jilin provinces, NE China: Chronology, geochemistry, and tectonic implications. Journal of Asian Earth Sciences.2009,34(3): 392-402.
    [57]Li J. Permian geodynamic setting of Northeast China and adjacent regions:closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate. Journal of Asian Earth Sciences.2006, 26(3):207-224.
    [58]Wu F, Sun D, Li H, et al. A-type granites in northeastern China:age and geochemical constraints on their petrogenesis. Chemical Geology.2002,187(1):143-173.
    [59]Wu F, Sun D, Ge W, et al. Geochronology of the Phanerozoic granitoids in northeastern China. Journal of Asian Earth Sciences.2011,41(1):1-30.
    [60]张彦龙,赵旭晁,葛文春等.大兴安岭北部塔河花岗杂岩体的地球化学特征及成因.岩石学报.2010,26(12):3507-3520.
    [61]张彦龙,葛文春,柳小明等.大兴安岭新林镇岩体的同位素特征及其地质意义.吉林大学学报(地球科学版).2008,38(2):177-186.
    [62]隋振民.大兴安岭东北部花岗岩类锆石U-Pb年龄,岩石成因及地壳演化.吉林大学.2007
    [63]葛文春,隋振民,吴福元等.大兴安岭东北部早古生代花岗岩锆石U-Pb年龄,Hf同位素特征及地质意义.岩石学报.2007,23(2):423-440.
    [64]葛文眷,吴福元,周长勇等.大兴安岭中部乌兰浩特地区中生代花岗岩的锆石U-Pb年龄及地质意义.岩石学报.2005,21(3):749-762.
    [65]Zhou J, Wilde S A, Zhang X, et al. Early Paleozoic metamorphic rocks of the Erguna block in the Great Xing'an Range, NE China:Evidence for the timing of magmatic and metamorphic events and their tectonic implications. Tectonophysics.2011,499(1):105-117.
    [66]Li D, Chen Y, Wang Z, et al. Detrital zircon U-Pb ages, Hf isotopes and tectonic implications for Palaeozoic sedimentary rocks from the Xing-Meng orogenic belt, middle-east part of inner Mongolia, China. Geological Journal.2011,46(1):63-81.
    [67]Meng E, Xu W, Pei F, et al. Detrital-zircon geochronology of Late Paleozoic sedimentary rocks in eastern Heilongjiang Province, NE China:Implications for the tectonic evolution of the eastern segment of the Central Asian Orogenic Belt. Tectonophysics.2010,485(1):42-51.
    [68]李明.中国东北现代河流碎屑锆石U-Pb年代学和Hf同位素研究及大陆生长与演化.中国地质大学(武汉).2010.
    [69]Pei F, Xu W, Yang D, et al. Zircon U-Pb geochronology of basement metamorphic rocks in the Songliao Basin. Chinese Science Bulletin.2007,52(7):942-948.
    [70]Wu FY, Walker R J, Ren X, et al. Osmium isotopic constraints on the age of lithospheric mantle beneath northeastern China. Chemical Geology.2003,196(1-4):107-129.
    [71]Xu YG, Menzies M A, Vroon P, et al. Texture-temperature-geochemistry relationships in the upper mantle as revealed from spinel peridotite xenoliths from Wangqing, NE China. Journal of Petrology.1998,39(3):469.
    [72]Pan S K, Zheng J P, Chu L L, et al. Coexistence of the moderately refractory and fertile mantle beneath the eastern Central Asian Orogenic Belt. Gondwana Research.2012.
    [73]Zhang M, Yang J, Sun J, et al. Juvenile subcontinental lithospheric mantle beneath the eastern part of the Central Asian Orogenic Belt. Chemical Geology.2012.
    [74]Zhang YL, Liu C, Ge WC, et al. Ancient sub-continental lithospheric mantle (SCLM) beneath the eastern part of the Central Asian Orogenic Belt (CAOB):Implications for crust钬搈antle decoupling. Lithos.2011,126(3):233-247.
    [75]Wiechert U, Ionov D A, Wedepohl K. H. Spinel peridotite xenoliths from the Atsagin-Dush volcano, Dariganga lava plateau, Mongolia:a record of partial melting and cryptic metasomatism in the upper mantle. Contributions to Mineralogy and Petrology.1997,126(4):345-364.
    [76]Chen Y, Zhang Y, Graham D, et al. Geochemistry of Cenozoic basalts and mantle xenoliths in Northeast China. Lithos.2007,96(1):108-126.
    [77]Liu J, Han J, Fyfe W S. Cenozoic episodic volcanism and continental rifting in northeast China and possible link to Japan Sea development as revealed from K-Ar geochronology. Tectonophysics.2001, 339(3):385-401.
    [78]刘嘉麟.中国东北地区新生代火山岩的年代学研究.岩石学报.1987,4:21-31.
    [79]Xu Y, Zhang H, Qiu H, et al. Oceanic crust components in continental basalts from Shuangliao, Northeast China:Derived from the mantle transition zone? Chemical Geology.2012,328:168-184.
    [80]Ho K, Liu Y, Chen J, et al. Elemental and Sr-Nd-Pb isotopic compositions of late Cenozoic Abaga basalts, Inner Mongolia:Implications for petrogenesis and mantle process. Geochemical Journal.2008, 42(4):339-357.
    [81]张玉涛,张连昌,英基丰.大兴安岭北部扎兰屯脉岩群的地球化学特征及其地质意义.岩石学报.2006,22(11):263-274.
    [82]林强,葛文春,曹林等.大兴安岭中生代双峰式火山岩的地球化学特征.地球化学.2003,32(3):208-215.
    [83]Zou H, Reid M R, Liu Y等. Constraints on the origin of historic potassic basalts from northeast China by U-Th disequilibrium data. Chemical Geology.2003,200(1):189-201.
    [84]葛文春,林强,孙德有.大兴安岭中生代玄武岩地球化学特征.岩石学报.1999,15(3):396-407.
    [85]Zhang M, Zhou X, Zhang J. Nature of the lithospheric mantle beneath NE China:evidence from potassic volcanic rocks and mantle xenoliths. Geodynamics Series.1998,27:197-219.
    [86]Zhang M, Suddaby P, Thompson R N, et al. Potassic volcanic rocks in NE China:geochemical constraints on mantle source and magma genesis. Journal of Petrology.1995,36(5):1275-1303.
    [87]王庆权,Gill J,朱炳泉.我国东北的第四纪超钾质-钾质-亚钾质-似钾质镁铁质火山岩省:喷发时代,岩石类型与地球化学特征.2004.2004:255-288.
    [88]Zhang M, Suddaby P, O'Reilly S Y, et al. Nature of the lithospheric mantle beneath the eastern part of the Central Asian fold belt:mantle xenolith evidence. Tectonophysics.2000,328(1-2):131-156.
    [89]樊棋诚,杜星星,赵勇伟等.大兴安岭地幔岩中溶体的多样性及成因.岩石学报.2011,27(5):1262-1266.
    [90]樊棋诚,隋建立,赵勇伟等.大兴安岭中部第四纪火山岩中石榴石橄榄岩捕虏体的初步研究.岩石学报.2008,24(11):2569-2575.
    [91]张彦龙.大兴安岭地区地幔捕虏体的同位素特征和岩石圈地幔时代.吉林大学.2011.
    [92]Liu Y S, Gao S. Hu Z C. Continental and oceanic crust recycling-induced melt/peridotite interactions in the trans-north China Orogen:U-Pb dating, Hf isotopes and trace elements in Zircons from Mantle Xenoliths. Journal of Petrology.2010,51(1-2):537-571.
    [93]Zheng J P, Griffin W L, Qi L, et al. Age and composition of granulite and pyroxenite xenoliths in Hannuoba basalts reflect Paleogene underplating beneath the North China Craton. Chemical Geology. 2009,264(1):266-280.
    [94]余淳梅,郑建平.汉诺坝橄榄岩捕虏体原位Re-Os I司位素年龄与多发地幔事件.科学通报.2007,52(15):1814-1819.
    [95]Liu Y, Gao S, Jin S, et al. Geochemistry of lower crustal xenoliths from Neogene Hannuoba Basalt, North China Craton:Implications for petrogenesis and lower crustal composition. Geochimica et Cosmochimica Acta.2001,65(15):2589-2604.
    [96]Zhang H F, Sun Y, Tang Y J, et al. Melt-peridotite interaction in the Pre-Cambrian mantle beneath the western North China Craton:Petrology, geochemistry and Sr, Nd and Re isotopes. Lithos.2012,149: 100-114.
    [97]Xu Y G, Ma J, Frey F A, et al. Role of lithosphere-asthenosphere interaction in the genesis of Quaternary alkali and tholeiitic basalts from Datong, western North China Craton. Chemical Geology. 2005,224(4):247-271.
    [98]Jian P, Liu D Y, Kroner A, et al. Evolution of a Permian intraoceanic arc-trench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia. Lithos.2010,118(1):169-190.
    [99]Chen B. Jahn B M, Tian W. Evolution of the Solonker suture zone:Constraints from zircon U-P b ages, Hf isotopic ratios and whole-rock Nd-Sr isotope compositions of subduction-and collision-related magmas and forearc sediments. Journal of Asian Earth Sciences.2009,34(3):245-257.
    [100]Jian P, Liu D, Kroner A, et al. Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic Belt, Inner Mongolia of China:implications for continental growth. Lithos.2008,101(3):233-259.
    [101]Xiao W, Windley B F, Hao J, et al. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China:Termination of the central Asian orogenic belt. Tectonics.2003,22(6).
    [102]Wu F Y, Yang J H, Lo C H, et al. The Heilongjiang Group:a Jurassic accretionary complex in the Jiamusi Massif at the western Pacific margin of northeastern China. Island Arc.2007,16(1):156-172.
    [103]Zhang J, Gao S, Ge W, et al. Geochronology of the Mesozoic volcanic rocks in the Great Xing'an Range, northeastern China:Implications for subduction-induced delamination. Chemical Geology.2010, 276(3):144-165.
    [104]洪大卫,王世洗,谢锡林.从中亚正ε(Nd)值花岗岩看超大陆演化和大陆地壳生长的关系.地质学报.2003,77(2):203-209.
    [105]Badarch G, Dickson Cunningham W, Windley B F. A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia. Journal of Asian Earth Sciences.2002, 21(1):87-110.
    [106]苗来成,范蔚茗,张福勤等.小兴安岭西北部新开岭-科洛杂岩锆石SHRIMP年代学研究及其意义.科学通报.2003,48(22):2315-2323.
    [107]葛文春,吴福元,周长勇等.大兴安岭北部塔河花岗岩体的时代及对额尔古纳地块构造归属的制约.科学通报.2005,50(12):1239-1247.
    [108]Jian P, Kroner A, Windley B F, et al. Carboniferous and Cretaceous mafic-ultramafic massifs in Inner Mongolia (China):A SHRIMP zircon and geochemical study of the previously presumed integral Hegenshan ophiolite? Lithos.2012,142:48-66.
    [109]Chen B, Jahn B, Wilde S, et al. Two contrasting Paleozoic magmatic belts in northern Inner Mongolia, China:petrogenesis and tectonic implications. Tectonophysics.2000,328(1):157-182.
    [110]高福红,许文良,杨德彬等.松辽盆地南部丛底花岗质岩石锆石LA-ICP-MS U-Pb定年:对盆地基底形成时代的制约.中国科学(D辑).2007,37(3):331-335.
    [111]Wu F, Sun D, Li H, et al. The nature of basement beneath the Songliao Basin in NE China: geochemical and isotopic constraints. Physics and Chemistry of the Earth, Part A:Solid Earth and Geodesy.2001,26(9):793-803.
    [112]章凤奇,陈汉林,董传万等.松辽盆地北部存在前寒武纪基底的证据.世界地质.2008,35(3):421-428.
    [113]Wilde S A, Wu F, Zhang X. Late Pan-African magmatism in northeastern China:SHRIMP U-Pb zircon evidence from granitoids in the Jiamusi Massif. Precambrian Research.2003,122(1):311-327.
    [114]Wilde S A, Zhang X, Wu F. Extension of a newly identified 500Ma metamorphic terrane in North East China:further U-Pb SHRIMP dating of the Mashan Complex, Heilongjiang Province, China. Tectonophysics.2000,328(1):115-130.
    [115]Zhou J, Wilde S A, Zhang X, et al. A> 1300km late Pan-African metamorphic belt in NE China: New evidence from the Xing'an block and its tectonic implications. Tectonophysics.2011,509(3): 280-292.
    [116]Zhou J, Wilde S A, Zhang X, et al. The onset of Pacific margin accretion in NE China:evidence from the Heilongjiang high-pressure metamorphic belt. Tectonophysics.2009,478(3):230-246.
    [117]Wilde S A, Wu F, Zhao G. The Khanka Block, NE China, and its significance for the evolution of the Central Asian Orogenic Belt and continental accretion. Geological Society, London, Special Publications.2010,338(1):117-137.
    [118]樊棋诚,赵勇伟,李大明等.大兴安岭哈拉哈河-绰尔河第四纪火山分期:K-Ar年代学与火 山地质特征.岩石学报.2011,27(10):2827-2832.
    [119]白志达,田明中,武法东等.焰山,高山:内蒙古阿尔山火山群中的两座活火山.中国地震.2005,21(1):113-117.
    [120]刘若新,陈文寄,孙建中等.中国新生代火山岩的K-Ar年代与构造环境.北京:地震出版社.1992,43:1992.1-43.
    [121]张臣,韩宝福,刘树文.内蒙古阿巴嘎旗新生代玄武岩中超镁铁岩包体的特征.岩石学报.2006,22(11).
    [122]Liu Y, Hu Z, Gao S, et al. In-situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology.2008,257(1):34-43.
    [123]Liu Y, Zong K, Kelemen P B, et al. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole:Subduction and ultrahigh-pressure metamorphism of lower crustal cumulates. Chemical Geology.2008,247(1):133-153.
    [124]Le Maitre R W, Bateman P, Dudek A, et al. A classification of igneous rocks and glossary of terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks, Blackwell Oxford.1989.
    [125]De Hoog J, Gall L, Cornell D H. Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry. Chemical Geology.2010,270(1-4):196-215.
    [126]Hellebrand E, Snow J E, Dick H J, et al. Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature.2001,410(6829):677-681.
    [127]Hart S R, Dunn T. Experimental cpx/melt partitioning of 24 trace elements. Contributions to Mineralogy and Petrology.1993,113(1):1-8.
    [128]Hauri E H, Wagner T P, Grove T L. Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts. Chemical Geology.1994,117(1): 149-166.
    [129]Rampone E, Bottazzi P, Ottolini L. Complementary Ti and Zr anomalies in orthopyroxene and clinopyroxene from mantle peridotites.1991.
    [130]Wells P R. Pyroxene thermometry in simple and complex systems. Contributions to mineralogy and Petrology.1977,62(2):129-139.
    [131]Brey G P, K Hler T. Geothermobarometry in four-phase lherzolites Ⅱ. New thermobarometers, and practical assessment of existing thermobarometers. Journal of Petrology.1990,31(6):1353.
    [132]Witt-Eickschen G, Seek H A. Solubility of Ca and A1 in orthopyroxene from spinel peridotite:an improved version of an empirical geothermometer. Contributions to Mineralogy and Petrology.1991, 106(4):431-439.
    [133]Johnson K T M, Dick H J B, Shimizu N. Melting in the oceanic upper mantle:an ion microprobe study of diopsides in abyssal peridotites. Journal of Geophysical Research.1990,95(B3):2661-2678.
    [134]Hellebrand E. Snow J E, Hoppe P, et al. Garnet-field melting and late-stage refertilization in residual abyssal peridotites from the Central Indian Ridge. Journal of Petrology.2002,43(12): 2305-2338.
    [135]Sun S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes. Geological Society, London, Special Publications.1989,42(1): 313-345.
    [136]Kinzler R J. Melting of mantle peridotite at pressures approaching the spinel to garnet transition: Application to mid-ocean ridge basalt petrogenesis. Journal of Geophysical Research.1997,1O2(B1): 853-874.
    [137]Hart S R, Dunn T. Experimental cpx/melt partitioning of 24 trace elements. Contributions to Mineralogy and Petrology.1993,113(1):1-8.
    [138]Ionov D A, Bodinier J L, Mukasa S B, et al. Mechanisms and sources of mantle metasomatism: major and trace element compositions of peridotite xenoliths from Spitsbergen in the context of numerical modelling. Journal of Petrology.2002,43(12):2219.
    [139]Norman M D. Melting and metasomatism in the continental lithosphere:laser ablation ICPMS analysis of minerals in spinel lherzolites from eastern Australia. Contributions to Mineralogy and Petrology.1998,130(3):240-255.
    [140]Suhr G, Seck H A, Shimizu N, et al. Infiltration of refractory melts into the lowermost oceanic crust:evidence from dunite-and gabbro-hosted clinopyroxenes in the Bay of Islands Ophiolite. Contributions to Mineralogy and Petrology.1998,131(2-3):136-154.
    [141]Walter M J. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. Journal of Petrology.1998,39(1):29-60.
    [142]Zanetti A, Mazzucchelli M, Rivalenti G, et al. The Finero phlogopite-peridotite massif:an example of subduction-related metasomatism. Contributions to Mineralogy and Petrology.1999,134(2):107-122.
    [143]Navon O, Stolper E. Geochemical consequences of melt percolation:the upper mantle as a chromatographic column. The Journal of Geology.1987:285-307.
    [144]Bodinier J L, Vasseur G, Vernieres J, et al. Mechanisms of mantle metasomatism:geochemical evidence from the Lherz orogenic peridotite. Journal of Petrology.1990,31(3):597.
    [145]Yaxley G M, Green D H, Kamenetsky V. Carbonatite metasomatism in the southeastern Australian lithosphere. Journal of Petrology.1998,39(11-12):1917-1930.
    [146]Ionov D A, Dupuy C, O'Reilly S Y, et al. Carbonated peridotite xenoliths from Spitsbergen: implications for trace element signature of mantle carbonate metasomatism. Earth and Planetary Science Letters.1993,119(3):283-297.
    [147]Gregoire M, Mclnnes B I, O'Reilly S Y. Hydrous metasomatism of oceanic sub-arc mantle, Lihir, Papua New Guinea:Part 2. Trace element characteristics of slab-derived fluids. Lithos.2001,59(3): 91-108.
    [148]Stalder R, Foley S F, Brey G P, et al. Mineral-aqueous fluid partitioning of trace elements at 900-1200 C and 3-7 GPa:New experimental data for garnet, clinopyroxene, and rutile, and implications for mantle metasomatism. Geochimica et Cosmochimica Acta.1998,62(10):1781-1801.
    [149]Nelson D R, Chivas A R, Chappell B W, et al. Geochemical and isotopic systematics in carbonatites and implications for the evolution of ocean-island sources. Geochimica et Cosmochimica Acta.1988,52(1):1-17.
    [150]Blundy J D, Robinson J, Wood B J. Heavy REE are compatible in clinopyroxene on the spinel lherzolite solidus. Earth and Planetary Science Letters.1998,160(3):493-504.
    [151]Klemme S, Van der Laan S R, Foley S F, et al. Experimentally determined trace and minor element partitioning between clinopyroxene and carbonatite melt under upper mantle conditions. Earth and Planetary Science Letters.1995,133(3):439-448.
    [152]Eggler D H. Solubility of major and trace elements in mantle metasomatic fluids:experimental constraints. Mantle metasomatism. Academic Press, London.1987:21-41.
    [153]Touron S, Renac C, O'Reilly S Y, et al. Characterization of the metasomatic agent in mantle xenoliths from Deves, Massif Central (France) using coupled in situ trace-element and O, Sr and Nd isotopic compositions. Geological Society, London, Special Publications.2008,293(1):177.
    [154]Coltorti M, Bonadiman C, Hinton R W, et al. Carbonatite metasomatism of the oceanic upper mantle:evidence from clinopyroxenes and glasses in ultramafic xenoliths of Grande Comore, Indian Ocean. Journal of Petrology.1999,40(1):133.
    [155]Dupuy C, Liotard J M, Dostal J. Zr/Hf fractionation in intraplate basaltic rocks:carbonate metasomatism in the mantle source. Geochimica et Cosmochimica Acta.1992,56(6):2417-2423.
    [156]Zheng J, YU C, LU F, et al. Age and Composition of Peridotites:Implications for the Lithospheric Thinning Accompanying with Mantle Replacement Beneath the Eastern North China Craton. Earth Science Frontiers.2007,14(2):87-97.
    [157]Ionov D. Mantle structure and rifting processes in the Baikal-Mongolia region:geophysical data and evidence from xenoliths in volcanic rocks. Tectonophysics.2002,351(1-2):41-60.
    [158]Zheng J, O'Reilly S Y, Griffin W L, et al. Nature and evolution of Mesozoic-Cenozoic lithospheric mantle beneath the Cathaysia block, SE China. Lithos.2004,74(1-2):41-65.
    [159]Lu J, Zheng J, Griffin W L, et al. Petrology and geochemistry of peridotite xenoliths from the Lianshan region:Nature and evolution of lithospheric mantle beneath the lower Yangtze block. Gondwana Research.2013,23(1):161-175.
    [160]Pearce J A, Barker P F, Edwards S J, et al. Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic. Contributions to Mineralogy and Petrology. 2000,139(1):36-53.
    [161]Edwards S J, Malpas J. Melt-peridotite interactions in shallow mantle at the East Pacific Rise: evidence from ODP Site 895 (Hess Deep). Mineralogical Magazine.1996,60:191-206.
    [162]Xu Y, Menzies M A, Thirlwall M F, et al. "Reactive" harzburgites from Huinan, NE China: products of the lithosphere-asthenosphere interaction during lithospheric thinning? Geochimica et Cosmochimica Acta.2003,67(3):487-505.
    [163]Xu Y G, Bodinier J. Contrasting enrichments in high-and low-temperature mantle xenoliths from Nushan, Eastern China:results of a single metasomatic event during lithospheric accretion? Journal of Petrology.2004,45(2):321-341.
    [164]Kempton P D. Mineralogic and geochemical evidence for differing styles of metasomatism in spinel lherzolite xenoliths:enriched mantle source regions of basalts. Mantle metasomatism. Academic Press, London.1987:45-89.
    [165]Menzies M, Kempton P, Dungan M. Interaction of continental lithosphere and asthenospheric melts below the Geronimo volcanic field, Arizona, USA. Journal of petrology.1985,26(3):663-693.
    [166]Bedini R M, Bodinier J, Dautria J, et al. Evolution of LILE-enriched small melt fractions in the lithospheric mantle:a case study from the East African Rift. Earth and Planetary Science Letters.1997, 153(1):67-83.
    [167]Kelemen P B, Whitehead J A, Aharonov E, et al. Experiments on flow focusing in soluble porous media, with applications to melt extraction from the mantle. Journal of Geophysical Research.1995, 100(B1):475-496.
    [168]Mattielli N, Weis D, Scoates J S, et al. Evolution of heterogeneous lithospheric mantle in a plume environment beneath the Kerguelen Archipelago. Journal of Petrology.1999,40(11):1721.
    [169]Dalton J A, Wood B J. The compositions of primary carbonate melts and their evolution through wallrock reaction in the mantle. Earth and Planetary Science Letters.1993,119(4):511-525.
    [170]Boyd F R. Compositional distinction between oceanic and cratonic lithosphere. Earth and Planetary Science Letters.1989,96(1-2):15-26.
    [171]Han G Q, Liu Y, Neubauer F, et al. Origin of terranes in the eastern Central Asian Orogenic Belt, NE China:U-Pb ages of detrital zircons from Ordovician-Devonian sandstones, North Da Xing'an Mts. Tectonophysics.2011,511(3):109-124.
    [172]Levashova N M, Meert J G, Gibsher A S, et al. The origin of microcontinents in the Central Asian Orogenic Belt:Constraints from paleomagnetism and geochronology. Precambrian Research.2011, 185(1):37-54.
    [173]Levashova N M, Kalugin V M, Gibsher A S, et al. The origin of the Baydaric microcontinent, Mongolia:Constraints from paleomagnetism and geochronology. Tectonophysics.2010,485(1): 306-320.
    [174]Kroner A, Windley B F, Badarch G, et al. Accretionary growth and crust formation in the Central Asian Orogenic Belt and comparison with the Arabian-Nubian shield. Geological Society of America Memoirs.2007,200:181-209.
    [175]Helo C, Hegner E, Kroner A, et al. Geochemical signature of Paleozoic accretionary complexes of the Central Asian Orogenic Belt in South Mongolia:Constraints on arc environments and crustal growth. Chemical Geology.2006,227(3):236-257.
    [176]De Jong K, Xiao W, Windley B F, et al. Ordovician 40Ar/39Ar phengite ages from the blueschist-facies Ondor Sum subduction-accretion complex (Inner Mongolia) and implications for the early Paleozoic history of continental blocks in China and adjacent areas. American Journal of Science. 2006,306(10):799-845.
    [177]Xiao W, Zhang L, Qin K, et al. Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China):implications for the continental growth of central Asia. American Journal of Science. 2004,304(4):370-395.
    [178]Buchan C, Pfander J, Kroner A, et al. Timing of accretion and collisional deformation in the Central Asian Orogenic Belt:implications of granite geochronology in the Bayankhongor Ophiolite Zone. Chemical Geology.2002,192(1):23-45.
    [179]Dobretsov N L, Buslov M M, Yu U. Fragments of oceanic islands in accretion-collision areas of Gorny Altai and Salair, southern Siberia, Russia:early stages of continental crustal growth of the Siberian continent in Vendian-Early Cambrian time. Journal of Asian Earth Sciences.2004,23(5): 673-690.
    [180]Zorin Y A. Geodynamics of the western part of the Mongolia-Okhotsk collisional belt, Trans-Baikal region (Russia) and Mongolia. Tectonophysics.1999,306(1):33-56.
    [181]Neil E A, Houseman G A. Rayleigh-Taylor instability of the upper mantle and its role in intraplate orogeny. Geophysical Journal International.1999,138(1):89-107.
    [182]张吉衡.大兴安岭中生代火山岩年代学及地球化学研究.中国地质大学(武汉).2009.
    [183]Ren Z L. Research on geothermal history of Bayindulan Depression in Erlian Basin. ACTA PETROLEI SINICA.2000,4:9-23.
    [184]Li S T, Yu S G, Wu C L, et al. Late Mesozoic rifting in northeast China and northeast Asia fault basin system. Science in China:Series B.1988,31(2):246-256.
    [185]Zheng J P, Griffin W L, Qi L, et al. Age and composition of granulite and pyroxenite xenoliths in Hannuoba basalts reflect Paleogene underplating beneath the North China Craton. Chemical Geology. 2009,264(1):266-280.
    [186]Zhang X, Zhang H, Tang Y, et al. Geochemistry of Permian bimodal volcanic rocks from central Inner Mongolia, North China:Implication for tectonic setting and Phanerozoic continental growth in Central Asian Orogenic Belt. Chemical Geology.2008,249(3):262-281.
    [187]施光海,刘敦一,张福勤等.中国内蒙古锡林郭勒杂岩SHRIMP锆石U-Pb年代学及意义.科学通报.2003,48(20):2187-2192.
    [188]Wu F, Jahn B, Wilde S A, et al. Highly fractionated I-type granites in NE China (Ⅱ):isotopic geochemistry and implications for crustal growth in the Phanerozoic. Lithos.2003,67(3):191-204.
    [189]Zhou J, Wilde S A, Zhang X, et al. Detrital zircons from phanerozoic rocks of the Songliao block, NE China:evidence and tectonic implications. Journal of Asian Earth Sciences.2012,47:21-34.
    [190]宋卫卫,周建波,郭晓丹等.松辽地块大地构造属性:古生界碎屑锆石年代学的制约.世界地质.2012,31(3):522-535.
    [191]Rojas-Agramonte Y, Kr6ner A, Demoux A, et al. Detrital and xenocrystic zircon ages from Neoproterozoic to Palaeozoic arc terranes of Mongolia:Significance for the origin of crustal fragments in the Central Asian Orogenic Belt. Gondwana Research.2011,19(3):751-763.
    [192]Kelty T K. Yin A. Dash B, et al. Detrital-zircon geochronology of Paleozoic sedimentary rocks in the Hangay-Hentey basin, north-central Mongolia:implications for the tectonic evolution of the Mongol Okhotsk Ocean in central Asia. Tectonophysics.2008,451(1):290-311.
    [193]葛梦春,周文孝,于洋等.内蒙古锡林郭勒杂岩解体及表壳岩系年代确定.地学前缘.2011,18(5):182-195.
    [194]朱永峰,孙世华,毛骞等.内蒙古锡林格勒杂岩的地球化学研究-从Rodinia聚合到古亚洲洋闭合后碰撞造山的历史记录.高校地质学报.2004,10(3):343-355.
    [195]Zhou J, Wilde S A, Zhang X, et al. Detrital zircons from phanerozoic rocks of the Songliao block, NE China:evidence and tectonic implications. Journal of Asian Earth Sciences.2012,47:21-34.
    [196]苗来成,刘敦一,张福勤等.大兴安岭韩家园子和新林地区兴华渡口群和扎兰屯群锆石SHRIMP U-Pb年龄.科学通报.2007,52(5):591-601.
    [197]Yang J H, O'Reilly, S, Walker R J, Griffin, W L, et al. Diachronous decratonization of the Sino-Korean craton:Geochemistry of mantle xenoliths from North Korea. Geology.2010,38: 799-802.
    [198]Meisel T, Walker R J, Fan W, et al. Osmium isotopic compositions of mantle xenoliths:a global perspective. Geoehimiea et Cosmoehimiea Acta.2001,65(8):1311-1323.
    [199]张辉煌,徐义刚,葛文春等.吉林伊通-大屯地区中生代-新生代玄武岩的地球化学特征及意义.岩石学报.2006,22(6):1579-1596.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700