用户名: 密码: 验证码:
电流控制型DC-DC级联系统大信号稳定性关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电子信息技术和新能源技术的不断发展,直流分布式电源系统以其独特的优势受到学术界的热切关注,并广泛应用于电动汽车、计算机系统、医疗电子设备以及电信行业等领域。在带来诸多好处的同时,庞大的规模及复杂的结构不仅使系统的稳定性问题凸显,还给稳定性设计带来了很大的难度,若想将其作为整体进行稳定性分析几乎不可能。针对这一重要学术难题,国内外学术界从直流分布式电源系统最基本的连接形式——级联系统入手,基于小信号分析方法取得了一定的理论成果,但仅限于对系统稳态工作点附近的稳定性情况进行研究,不适用于大信号扰动的情况。因此,为全面分析系统的稳定性,深入理解和改善系统在大信号扰动下的运行情况,提高系统的可靠性,极有必要从大信号角度出发,结合非线性理论建立相应的研究方法对级联系统稳定性进行分析。本文从大信号的研究角度出发,结合回转器理论和相关的非线性研究方法对DC-DC级联系统大信号稳定性问题进行了深入探讨,主要包含以下内容:
     在对现有大信号模型进行对比研究的基础上,本文基于回转器理论为电流模式控制型DC-DC变流器建立了统一的大信号模型。该模型克服了现有大信号模型复杂、难以应用于理论分析的缺点,实现了降阶,输入-输出表达式简单,且仅采用单环反馈即可实现电流模式控制的功能,为后续理论分析提供了便利。由于回转器理论的基础是能量守恒定律,故该模型具有普适性,仅需修改一个参数的数值即可实现对不同拓扑变流器的建模分析。在较好地反映原变流器大信号特性的同时,该模型还能够正确反映系统在平衡点附近的小信号特性。模型的简便性、普适性、结构统一性和完备性为理论分析系统稳定性奠定了良好的基础,也为解析形式大信号稳定性判据的提出提供了可能。
     在DC-DC级联系统稳定性分析方面,本文采用李雅普诺夫线性化方法及混合势函数理论分别对级联系统的小信号和大信号稳定性进行了探讨。出于简化分析的目的,采用回转器统一大信号模型和恒功率负载分别对系统中的源、负载变流器进行替代。基于该简化级联系统及李雅普诺夫线性化方法,本文提出了解析形式的小信号稳定性判据。该判据仅需较少的参数即可对稳定性情况进行判断,避免了复杂的阻抗计算过程。同时,本文基于混合势函数理论得到了级联系统在大信号扰动下保持稳定运行所需满足的充分条件,即解析形式的大信号稳定性判据。由于分析时基于相同的简化系统模型,故可将大、小信号判据合二为一,得到了级联系统的统一稳定性判据。当该判据成立时,系统在大、小信号扰动下均能稳定运行,从而使设计过程得以简化。同时,本文对负载变流器响应速度较慢、不具备等效为恒功率负载条件的级联系统稳定性也进行了研究,并得到了相似的结论。为方便应用,仍可采用上述统一稳定性判据对该类级联系统进行分析。
     本文第四章将提出的回转器统一大信号模型和级联系统大信号稳定性理论研究成果应用于直流母线补偿技术领域,提出了一种直流母线电压补偿控制策略。该策略从大信号的研究角度出发,根据级联系统的具体情况对其进行补偿。且该策略由混合势函数理论的稳定性定理推导得出,从理论上保证了加入补偿装置后整个系统在大信号扰动下的稳定性。此外,该控制策略还具有一定的普适性,能够达到较好的补偿效果。
With the development of electronic and renewable energy technique, DC distribution power system (DPS) becomes more and more attractive due to its unique advantages, and it has been widely used in the fields of electric vehicles, computer systems, medical electronic equipment, telecommunications industry, etc. The DC DPS has provided lots of benefits, but also negative factors. Increasingly larger size and complex structure not only highlights the stability issue, but also brings great difficulty for stability design. It is almost impossible to take the DC DPS as a whole for stability analysis. For this important issue, researches and analysis starts with cascaded system which is the most basic connection form of distributed architecture, and some useful theoretical achievements have been made based on small-signal analysis method. But the conclusions are only suitable to analyze the stability around equilibrium point, and will be invalid when large-signal disturbance occurs. Therefore, in order to analyze comprehensively, get in-depth understanding of system operation under large-signal disturbance, and improve system reliability, it is necessary to establish appropriate research methods based on nonlinear theory for large-signal stability analysis. This dissertation investigated and analyzed the large signal stability issue of DC-DC cascaded system in depth based on gyrator theory and relevant nonlinear analysis methods, which mainly contains the contents as below.
     Based on the comparative study of the existing large-signal model, this dissertation proposes a unified large signal model for current-mode controlled DC-DC converter based on the gyrator theory. The proposed model overcomes the shortcomings of existing large-signal models, such as complicated and difficult to be adopted for theoretical analysis. It is order-reduced, and the input-output expression is simple. Only single feedback loop is needed to achieve current mode control function, and it provides convenience for theoretical analysis. Because the gyrator theory is based on the energy conservation law, the proposed large-signal model is generalized and can be applied to all the basic topologies by modifying only one parameter in the model.In addition to reflect large-signal properties of original converter well, this model also includes all the small-signal information around the equilibrium point. Due to the characteristic of simplicity, generalization, structural uniformity, and completeness, this model provides foundation and possibility for theoretical analysis, and analytical large-signal stability criterion could be derived based on it.
     For the stability analysis of DC-DC cascaded system, this dissertation investigates the small-signal and large-signal stability of DC-DC cascaded system based on Lyapunov linearization method and mixed potential theory. To simplify the analysis, the proposed gyrator large-signal model is employed for simplifying the source converter, and the load converter is simplified as a constant power load (CPL). An analytical small-signal stability criterion is obtained based on this simplified system and Lyapunov linearization method. With the proposed criterion, the small-signal stability of system can be judged based on few parameters without complex input-output impedance calculation. Furthermore, the sufficient condition for stable operation of system under large-signal disturbance is proposed based on the mixed potential theory. It is also the analytical large-signal stability criterion for DC-DC cascaded system. Based on the same simplified system model, the proposed small-and large-signal criteria can be combined to derive a general stability criterion. When it holds, the system can work stable under both small-signal and large-signal disturbance, and the design process is simplified. Meanwhile, this dissertation also investigates the cascaded system in which the response speed of load converter is not so fast that it can not be simplified by CPL. Similar conclusion is derived. For convenience of application, the general stability criterion mentioned above can still be used to analyze the stability for this kind of system.
     Based on the proposed gyrator large-signal model and theoretical reseach results of large-signal stability analysis for cascaded system, chapter4of this dissertation studies the compensation methodology of DC bus voltage, and proposes a compensation control law for voltage bus conditioner (VBC). Effective compensation can be done based on the parameters of source and load converters. Meanwhile, the proposed control law is derived from the stability theorem of mixed potential theory, so the stability of cascaded system with VBC under large-signal disturbance is guaranteed theoretically. Besides, the proposed control law is universal, and the compensation result is satisfied.
引文
[1]. Shiguo Luo, A Review of Distributed Power Systems Part Ⅰ:DC Distributed Power System, IEEE Aerospace and Electronic Systems Magazine,2005,20(8):5-16.
    [2]. Constance C. Heath, The Market for Distributed Power Systems, in proceedings of IEEE-APEC,1991: 225-229.
    [3]. Ali Emadi, Alireza Khaligh, Claudio H. Rivetta, Geoffrey A. Williamson, Constant Power Loads and Negative Impedance Instability in Automotive Systems:Definition, Modeling, Stability, and Control of Power Electronic Converters and Motor Drives, IEEE trans. on Vehicular Technology,2006,55(4): 1112-1125.
    [4]. M. J. Riezenman, Fuel Cells for the Long Haul, Batteries for the Spurts, IEEE Spectrum,2001,38(1): 95-97.
    [5]. A. Emadi, S. S. Williamson, Fuel Cell Vehicles:Opportunities and Challenges, in proceedings of IEEE Power Engineering Society General Meeting,2004:1640-1645.
    [6]. S. S. Williamson, A. Emadi, Fuel cell applications in the automotive industry, in proceedings of Electrical Manufacturing and Coil Winding Expo,2002.
    [7]. A. Emadi, M. Ehsani, J. M. Miller, Vehicular Electric Power Systems:Land, Sea, Air, and Space Vehicles. New York:Marcel Dekker, Dec.2003.
    [8]. M. Ehsani, Y. Gao, S. E. Gay, and A. Emadi, Modern Electric, Hybrid Electric, and Fuel Cell Vehicles:Fundamentals, Theory, and Design. Boca Raton, FL:CRC Press, Dec.2004.
    [9]. Watson R., New Techniques in the Design of Distributed Power System, Ph.D. dissertation, CPES, Virginia Tech., Aug.1998.
    [10]. Tabisz W. A., Jovanovic M. M., Lee F. C., Present and Future of Distributed Power System, in proceedings of IEEE-APEC,1992:11-18.
    [11]. Suranyi G. G., The Value of Distributed Power, in proceedings of IEEE-APEC,1995, vol.1:104-110.
    [12]. Mammano B., Distributed Power Systems, in proceedings of Unitrode Power Supply Design Seminar, 1993:1-11.
    [13]. Shi F., Brockschmidt A., Fault Tolerant Distributed Power, in proceedings of IEEE-APEC,1996:671-677.
    [14]. Choi B., Dynamics and Control of Switching Power Conversion in Distributed Power Systems, Ph.D. dissertation, Virginia Tech.,1992.
    [15]. Schulz S., Cho B. H., Lee F. C., Design Consideration for a Distributed Power System, in proceedings ofIEEE-PESC,1990:611-617.
    [16]. Lewis L. R., Cho B. H., Lee F. C., Carpenter B. A., Modeling, Analysis and Design of Distributed Power Systems, in proceedings of IEEE-PESC,1992:152-159.
    [17]. Lee F. C., Modeling and Control, Course notes, VPEC, Virginia Tech,1997.
    [18]. Bruce C., Distributed Power Systems of the Future Utilizing High Frequency Converters, in High-Frequency Power Conversion Conference Record,1987.
    [19]. Hua G. C., Tabisz W. A., Leu C. S., Dai, N., Watson R., Development of a DC Distributed Power System, in proceedings of IEEE-APEC,1994:763-769.
    [20]. Perreault, D. J., Design and Evaluation of Cellular Power Converter Architectures, Ph.D. dissertation, Dept. of EECS, Massachusetts Institute of Technology, June 1997.
    [21]. Terry Ericsen, N.Hingorani, Y. Khersonsky, Power Electronics and Future Marine Electrical Systems, IEEE trans.on Industry Application,2006,42(1):155-163.
    [22]. M. Stecher, N.Jensen, M. Denison, L. Lorenz, Key Technologies for System-Integration in the Automotive and Industrial Applications, IEEE trans on Power Electronics,2005,20(3):537-549.
    [23]. T.Ericsen, Y.Khersonsky, P.K. Steimer, PEBB Concept Applications in High Power Electronics Converters, in proceedings of IEEE-PESC,2005:2284-2289.
    [24]. D.Kehl, B. Beihoff, An Overview of Cellular Power Design, Standard Cell Power, & PEBB, in proceedings of Center for Power Electronic Systems Conference, Blacksburg,74-78.
    [25]. E. W. Gholdston, K. Karimi, F. C. Lee, J. Rajagopalan, Y. Panov, B. Manners, Stability of Large DC Power Systems Using Switching Converters with Application to the International Space Station, in proceedings of IEEE Energy Conversion Engineering Conference,1996:166-171.
    [26]. R. D. Middlebrook, S. Cuk, A General Unified Approach to Modeling Switching-Converter Power Stages, in proceedings of IEEE-PESC,1976:18-34.
    [27]R. D. Middlebrook, Input Filter Considerations in Design and Application of Switching Regulators, in proceedings of IEEE-IAS,1976:366-382.
    [28]. Carl M. Wildrick, Fred C. Lee, Bo H. Cho, Byungcho Choi, A Method of Defining the Load Impedance Specification for A Stable Distributed Power System, IEEE trans. on Power Electronics, 1995,10(3):280-285.
    [29]. Xiaogang Feng, Jinjun Liu, Fred C. Lee, Impedance Specifications for Stable DC Distributed Power Systems, IEEE trans. on Power Electronics,2002,17(2):157-162.
    [30]. Y. Panaov, J. Rajagopalan, F.C. Lee, Analysis and Design of N paralleled DC DC Converters with Master-Slave Current-Sharing Control, in proceedings of IEEE-APEC,1997, vol.1:436-442.
    [31]. Xiaogang Feng, Zhihonh Ye, Kun Xing, Fred C. Lee, Dusan Borojevic, Individual Load Impedance Specification for a Stable DC Distributed Power System, in proceedings of IEEE-APEC,1999, vol.2: 923-929.
    [32]. Sudhoff, S.D., Glover, S.F., Lamm, P.T., Schmucker, D.H., Delisle, D.E., Admittance Space Stability Analysis of Power Electronic Systems, IEEE trans. on Aerospace and Electronic Systems,2000,36(3): 965-973.
    [33]. 张军明,中功率DC/DC变流器模块标准化若干关键问题研究,杭州,浙江大学博士学位论文,2004.
    [34]. Mauricio Cespedes, Jian Sun, Renewable Energy Systems Instability Involving Grid-Parallel Inverters, in proceedings of IEEE-APEC,2009:1971-1977.
    [35]. Jian Sun, Impedance-Based Stability Criterion for Grid-Connected Inverters, IEEE trans. on Power Electronics,2011,26(11):3075-3078.
    [36]. Xiaogang Feng, Fred C. Lee, On-line Measurement on Stability Margin of DC Distributed Power System, in proceedings of IEEE-APEC,2000, vol.2:1190-1196.
    [37]. Jinjun Liu, Xiaogang Feng, Fred C. Lee, Dushan Borojevich, Stability Margin Monitoring for DC Distributed Power Systems via Perturbation Approaches, IEEE trans. on Power Electronics,2003, 18(6):1254-1261.
    [38]. Alireza Khaligh, Realization of Parasitics in Stability of DC-DC Converters Loaded by Constant Power Loads in Advanced Multiconverter Automotive Systems, IEEE trans. on Industrial Electronics, 2008,55(6):2295-2305.
    [39]. M. Usman Iftikhar, A. Bilal, D. Sadarnac, P. Lefranc, C. Karimi, Analysis of Input Filter Interactions in Cascade Buck Converters, in proceedings of IEEE International Conference on Industrial Technology,2008:1-6.
    [40]. Hyoung Y. Cho, Enrico Santi, Modeling and Stability Analysis of Cascaded Multi-Converter Systems including Feedforward and Feedback Control, in proceedings of IEEE-IAS,2008:1-8.
    [41]. Robert W. Erickson, Slobodan Cuk, R. D. Middlebrook, Large-Signal Modelling and Analysis of Switching Regulators, in proceedings of IEEE-PESC,1982:240-250.
    [42]. Ali Emadi, Modeling, Analysis and Stability Assessment of Multi-Converter Power Electronic Systems, Ph.D. dissertation, Texas A&M University, Dec.2000.
    [43]. Yan-Fei Liu, Paresh C. Sen, A General Unified Large Signal Model for Current Programmed DC-to-DC Converters, IEEE trans. on Power Electronics,1994,9(4):414-424.
    [44]. Yan Zhou, Bolin Wang, A Large Signal Dynamic Model for Buck-Cascaded Buck-Boost Converter in Universal-Input PFC Applications, in proceedings of IEEE Electrical Machines and Systems,2008: 4080-4085.
    [45]. Musavi F., Al-Haddad K., Kanaan H.Y., A Novel Large Signal Modeling and Dynamic Analysis of Paralleled DC-DC Converters with Automatic Load Sharing Control, in proceedings of IEEE International Conference on Industrial Technology,2004:536-541.
    [46]. P. Chrin, C. Bunlaksananusorn, Large-Signal Average Modeling and Simulation of DC-DC Converters with SIMULINK, in proceedings of IEEE Power Conversion Conference,2007:27-32.
    [47]. Weiguo Liu, Jianying Gong, Shuanqin Xie, Aircraft Power Distribution System Large-Signal Modeling and Control, in proceedings of IEEE International Conference on Electrical Machines and Systems,2008:4102-4106.
    [48]. V.M. Canalli, J.A. Cobos, J.A. Oliver, J. Uceda, Behavioral Large Signal Averaged Model for DC/DC Switching Power Converters, in proceedings of IEEE-PESC,1996:1675-1681.
    [49]. Edwin van Dijk, Herman J. N. Spruijt, Dermot M. O'Sullivan, J. Ben Klaassens, PWM-Switch Modeling of DC-DC Converters, IEEE trans. on Power Electronics,1995,10(6):659-665.
    [50]. Seth R. Sanders, J. Mark Noworolski, Xiaojun Z. Liu, George C. Verghese, Generalized Averaging Method for Power Conversion Circuits, IEEE trans. on Power Electronics,1991,6(2):251-259.
    [51]. J. Mahdavi, A. Emadi, M.D. Bellar, M.Ehsani, Analysis of Power Electronic Converters Using the Generalized State-Space Averaging Approach, IEEE trans. on Circuits and Systems,1997,44(8):767-770.
    [52]. Ali Emadi, Modeling and Analysis of Multiconverter DC Power Electronic Systems Using the Generalized State-Space Averaging Method, IEEE trans. on Industrial Electronics,2004,51(3):661-668.
    [53]. Tymerski R., Vorperian V., Lee F.C.Y., Baumann, W.T., Nonlinear Modeling of the PWM Switch, IEEE trans. on Power Electronics,1989,4(2):225-233.
    [54]. Runxin Wang, Jinjun Liu, Hao Wang, Universal Approach to Modeling Current Mode Controlled Converters in Distributed Power Systems for Large-Signal Subsystem Interactions Investigation, in proceedings of IEEE-APEC,2007:442-448.
    [55]. Bradley Oraw, Rajapandian Ayyanar, Large Signal Average Model for an Extended Duty Ratio and Conventional Buck, in proceedings of IEEE International Telecommunications Energy Conference, 2008:pp.1-8.
    [56]. Hamill D.C., Jeffries D.J., Subharmonics and Chaos in a Controlled Switched-Mode Power Converter, IEEE trans. on Circuits and Systems,1988,35(8):1059-1061.
    [57]. 罗晓曙,汪秉宏,邹艳丽,DC-DC开关功率变换器的非线性动力学行为研究,力学进展,2003,33(4):471-482.
    [58]. Jonathan H B Deane, Chaos in a Current-Mode Controlled Boost DC-DC Converter, IEEE trans, on Circuit Systems-1,1992,39(8):680-683.
    [59]. Pavljasevic S., Maksimovic D., Using a Discrete-Time Model for Large-Signal Analysis of a Current-Programmed Boost Converter, in proceedings of IEEE-PESC,1991:715-721.
    [60]. C. K. Tse, Y. M. Lai, H. H. C. Iu, Hopf Bifurcation and Chaos in a Free-Running Current-Controlled Cuk Switching Regulator, IEEE trans. on Circuits and Systems,2000,47(4):448-457.
    [61]. H. H. C. Iu, C. K. Tse, Study of Low-Frequency Bifurcation Phenomena of a Parallel-Connected Boost Converter System Via Simple Averaged Models, IEEE trans. on Circuits and Systems,2003, 50(5):679-686.
    [62]. Mohammed Alfayyoumi, Ali H. Nayfeh, Dusan Borojevic, Input Filter Interactions in DC-DC Switching Regulators, in proceedings of IEEE-PESC,1999, vol.2:926-932.
    [63]. Francisco Guinjoan, Javier Calvente, Alberto Poveda, Luis Martinez, Large-Signal Modeling and Simulation of Switching DC-DC Converters, IEEE trans. on Power Electronics,1997,12(3):485-494.
    [64]. S. Y. R. Hui, Christos Christopoulos, Modeling Non-Linear Power Electronic Circuits with the Transmission-Line Modeling Technique, IEEE trans. on Power Electronics,1995,10(1):48-54.
    [65]. 陆益明,张波,DC/DC变换器的切换仿射线性系统模型及控制,中国电机工程学报,2008,28(15):16-22.
    [66]. Levis, A.,Challenges to Control:A Collective View, Report of the Workshop Held at the University of Santa Clara on September 18-19,1986, IEEE trans. on Automatic Control,1987, AC-32(4):275-285.
    [67]. Michael Athans, Command and Control (C2) Theory:A Challenge to Control Science, IEEE trans. on Automatic Control,1987, AC-32(4):286-293.
    [68]. 吴锋,刘文煌,郑应平,混杂系统研究综述,系统工程,1997,15(2):1-7.
    [69]. 陈明亮,马伟明,腾方宏,HS理论在DC/DC变换器建模及仿真中的应用,电力电子技术,2007,41(3):86-88.
    [70]. 马皓,祁峰,张霓,基于混杂系统的DC-DC变换器建模与控制,中国电机工程学报,2007,27(36):92-96.
    [71]. Pettersson S., Analysis and Design of Hybrid Systems, PhD dissertation, Chalmers University of Technology,1999.
    [72]. Matthew Senesky, Gabriel Eirea, T. John Koo, Hybrid Modelling and Control of Power Electronics, in porceedings of 6th International Workshop on Hybrid Systems, Computation and Control,2003, Volume 2993 of Lecture Notes in Computer Science. Springer:450-465.
    [73]. F. Tahami, M. Mobed, B. Molayee, On Piecewise Affined Large-Signal Modeling of PWM converters, in proceedings of IEEE International Conference on Industrial Technology,2006:1419-1423.
    [74]. 马科悦,PWM开关信号流图法建立直流开关电源的动态模型,浙江大学学报,1985,19(6):1-11.
    [75]. Keyue Smedley, Slobodan Cuk, Switching Flow-Graph Nonlinear Modeling Technique, IEEE trans. on Power Electronics,1994,9(4):405-413.
    [76]. Yunhong Ma, Keyue Ma Smedley, Switching Flow-Graph Nonlinear Modeling Method for Multistate-Switching Converters, IEEE trans. on Power Electronics,1997,12(5):854-861.
    [77]. Mummadi Veerachary, General Rules for Signal Flow Graph Modeling and Analysis of DC-DC Converters, IEEE trans. on Aerospace and Electronic Systems,2004,40(1):259-271.
    [78]. Edoardo Maria Guiotto, Keyue Ma Smedley, Switching Flow-Graph Nonlinear Model of Active Power Filters, in proceedings of IEEE-IECON,2003:1067-1073.
    [79]. Jian Sun, Grotstollen H., Symbolic Analysis Methods for Averaged Modeling of Switching Power Converters, IEEE trans. on Power Electronics,1997,12(33):537-546.
    [80]. R. Rand, D. Armbruster, Perturbation Methods, Bifurcation Theory and Computer Algebra, Springer-Verlag, New York,1987.
    [81]. P. Wamback, G. Gielen, W. Sansen, Symbolic Simulation of Harmonic Distortion in Analog Integrated Circuits with Weak Nonlinearities, in proceedings of IEEE International Symposium on Circuits and Systems,1990, vol.1:536-539.
    [82]. S. S. Qiu, I. M. Filanovsky, A Method of Calculation of Steady State Oscillations in Autonomous Non-Linear Systems, Journal of Sound and Vibration,1990,136(1):35-44.
    [83]. 丘水生,开关功率变换器符号分析方法的原理,电子学报,1997,25(1):5-10.
    [84]. 陈文,非线性电路与系统分析方法及符号仿真技术研究,广州,华南理工大学博士学位论文,1994.
    [85]. 陈艳峰,DC-DC开关变换器闭环系统非线性分析方法研究,广州,华南理工大学博士学位论文,2000.
    [86]. 陈艳峰,丘水生,用符号法分析PWM开关功率变换器闭环系统的稳态,电子学报,2000,28(7):130-134.
    网. 林波涛,丘水生,PWM开关变换器的符号分析,电子学报,1996,24(9):83-87.
    Jean-Jacques E. Slotine, Weiping Li, Applied Nonlinear Control, Englewood Cliffs, New Jersey, Prentice Hall:1991.
    [89]. Claudio H. Rivetta, Ali Emadi, Analysis and Control of a Buck DC-DC Converter Operating With Constant Power Load in Sea and Undersea Vehicles, IEEE trans. on Industrial Applications,2006, 42(2):559-572.
    [90]. C. Rivetta, Geoffrey A. Williamson, Large-Signal Analysis of a DC-DC Buck Power Converter Operating with Constant Power Load, in proceedings of IEEE-IECON,2003:732-737.
    [91]. Yefim Berkovich, Adrian Ioinovici, Large-Signal Stability-Oriented Design of Boost Regulators Based on a Lyapunov Criterion With Nonlinear Integral, IEEE trans. on Circuits and Systems,2002, 49(11):1610-1619.
    [92]. Fellipe S. Garcia, Jose A. Pomilio, Grace S. Deaecto, Jose C. Geromel, Analysis and Control of DC-DC Converters Based on Lyapunov Stability Theory, in proceedings of IEEE-ECCE,2009:2920-2927.
    [93]. Yefim Berkovich, Adrian Ioinovici, Large-Signal Stability-Oriented Design of Boost-Type Regulators in Discontinuous Conduction Mode, in proceedings of IEEE International Symposium on Circuits and Systems,2001:5-8.
    [94]. John L. Dixon, Application of Liapunov's Direct Method for Determining Stable Switching Boundaries in the Phase Plane, IEEE trans. on Automatic Control,1966,11 (2):312-313.
    [95]. Mituhiko Araki, Stability of Large-Scale Nonlinear Systems-Quadratic-Order Theory of Composite-System Method Using M-Matrices, IEEE trans. on Automatic Control,1978, AC-23(2):129-142.
    [96]. Mituhiko Araki, B. W. Jikondo, Stability and Transient Behavior of Composite Nonlinear Systems, IEEE trans. on Automatic Control,1972,17(4):537-541.
    [97]. Anthony N. Michel, On the Status of Stability of Interconnected Systems, IEEE trans. on Automatic Control,1983 AC-28(6):639-653.
    [98]. M. Ikeda, D. D. Siljak, Stability of Reduced-Order Models via Vector Liapunov Functions, in proceedings of American Control Conference,1987:482-489.
    [99]. F. N. Bailey, The Application of Lyapunov's Second Method to Interconnected Systems, Journal of the Society for Industrial and Applied Mathematics Series A Control,1965,3(3):443-462.
    [100]. Edward T. Wall, Maynard L. Moe, An Energy Metric Algorithm for the Generation of Liapunov Functions, IEEE trans. on Automatic Control,1968,13(1):121-122.
    [101]. Hassan K.Khalil, Nonlinear Systems (Third Edition), Prentice Hall:2007.
    [102]. Zubov V.I., Methods of A. M. Lyapunov and Their Applications, Noordhoff, Gronigen:1964.
    [103]. C. L. Gupta, A. H. El-Abiad, Determination of the Closest Unstable Equilibrium State for Liapunov Methods in Transient Stability Studies, IEEE trans. on Power Apparatus and Systems,1976, PAS-95(5):1769-1712.
    [104]. Paul M. Julich, On Estimating the Region of Asymptotic Stability Using Liapunov's Method, IEEE trans. on Automatic Control,1967,12(6):787-788.
    [105]. D. Marx, S. Pierfederici, B. Nahid-Mobarakeh, B. Davat, Contribution to Determination of Domain of Attraction in Power Systems:Application to Drives with Input Filter, in proceedings of IEEE-IAS, 2009:1-8.
    [106]. A. Vannelli, M. Vidyasagar, Maximal Lyapunov Functions and Domains of Attraction for Autonomous Nonlinear Systems, Automatica,1985,21(1):69-80.
    [107]. H. K. Law, On the Extent of Asymptotic Stability for Output Variables by Liapunov's Direct Method, Proceedings of the IEEE,1979,67(12):1657-1658.
    [108]. Youping Fan, Bernd Tibken, Estimation of the Domain of Attraction for Polynomial Systems, in proceedings of The Fourth International Workshop on Multidimensional Systems,2005:77-82.
    [109]. Bernd Tibken, Kamil Fatih Dilaver, Computation of Subsets of the Domain of Attraction for Polynomial Systems, in proceedings of the 41st IEEE Conference on Decision and Control,2002, vol.3:2651-2656.
    [110]. Benjamin P. Loop, Scott D. Sudhoff, Stanislaw H. Zak, Edwin L. Zivi, An Optimization Approach to Estimating Stability Regions Using Genetic Algorithms, in proceedings of American Control Conference,2005, vol.1:231-236.
    [111]. B. Tibken, Estimation of the domain of attraction for polynomial systems via LMI's, in proceedings of the 39th IEEE Conference on Decision and Control,2000, vol.4:3860-3864.
    [112]. Rivetta C., Williamson G. A., Global Behaviour Analysis of a DC-DC Boost Power Converter Operating with Constant Power Load, in proceedings of the International Symposium on Circuits and Systems,2004, vol.5:956-959.
    [113]. Rivetta C., Williamson G. A., Large-Signal Analysis and Control of Buck Converters Loaded by DC-DC Converters, in proceedings of IEEE-PESC,2004, vol.5:3675-3680.
    [114]. A. Griffo, J. Wang, D. Howe, Large Signal Stability Analysis of DC Power Systems with Constant Power Loads, in proceedings of IEEE Vehicle Power and Propulsion Conference,2008:1-6.
    [115]. Griffo Antonio, Wang Jiabin, Large Signal Stability Analysis of 'More Electric' Aircraft Power Systems with Constant Power Loads, IEEE trans. on Aerospace and Electronic Systems,2012,48(1): 477-489.
    [116]. R. K. Brayton, J. K. Moser, A Theory of Nonlinear Networks-I, Quarterly of Applied Mathematics, 1964,22:1-33.
    [117]. Xinbo Liu, Yuanjun Zhou, Shuohan Ma, EMI Filter Design for Constant Power Loads in More Electric Aircraft Power Systems, in proceedings of IEEE-IPEMC,2009:2664-2668.
    [118]. Xinbo Liu, Yuanjun Zhou, Wei Zhang, Shuohan Ma, Stability Criteria for Constant Power Loads With Multistage LC Filters, IEEE trans. on Vehicular Technology,2011,60(5):2042-2049.
    [119]. Mohamed Bellthayat, Roger Cooley, Arthur Witulski, Large Signal Stability Criteria for Distributed Systems with Constant Power Loads, in proceedings of IEEE-PESC,1995:1333-1338.
    [120]. Mohamed Belkhayat, Roger Cooley, Eyad H. Abed, Stability and Dynamics of Power Systems with Regulated Converters, in proceedings of IEEE International Symposium on Circuits and Systems, 1995, vol.1:143-145.
    [121]. Didier Marx, Pierre Magne, Babak Nahid-Mobarakeh, Serge Pierfederici, Bernard Davat, Large Signal Stability Analysis Tools in DC Power Systems With Constant Power Loads and Variable Power Loads-A Review, IEEE trans. on Power Electronics,2012,27(4):1773-1787.
    [122]. Phuong Huynh, Stability Analysis of Large Scale Power Electronic System, Ph.D. dissertation, Virginia Polytechnic Institute and State University,1994.
    [123]. E. L. Lasley, A. N. Michel, Input-Output Stability of Interconnected Systems, IEEE Trans. on Automatic Control,1976,21(1):84-89.
    [124]. Frank M. Callier, Wan S. Chan, Charles A. Desoer, Input-Output Stability of Interconnected Systems Using Decompositions:An Improved Formulation, IEEE trans. on Automatic Control,1978, AC-23(2):150-163.
    [125]. Tongwen Chen, Bruce A. Francis, Input-Output Stability of Sampled-Data Systems, IEEE trans. on Automatic Control,1991,36(1):50-58.
    [126]. Willems J. C, Dissipative Dynamical Systems Part 1:General Theory, Arch. Rational Mechanics and Analysis,1972,45:321-351.
    [127]. Willems J. C, Dissipative Dynamical Systems Part 2:Linear Systems with Quadratic Supply Rates, Arch. Rational Mechanics and Analysis,1972,45:352-393.
    [128]兰海,基于耗散理论的电力系统鲁棒非线性控制研究,哈尔滨,哈尔滨工程大学博士学位论文,2004.
    [129]. Mei S. W., Shen T. L., Sun Y. Z., Lu Q. Passivation Control of Nonlinear Systems with Disturbances, Control Theory and Applications,1999,16(6):797-806.
    [130]. Byrnes C. I., A Isidori, J. C. Willems, Passivity, Feedback Equivalence and the Global Stabilization of Minimum Phase Nonlinear Systems, IEEE trans. on Automatic Control,1991,36(11):1228-1240.
    [131]. G. L. Santosuosso, Further Results on Local Stabilization of Weakly Minimum Phase Systems via Feedback Equivalence to Nonlinear Passive Systems, in proceedings of IEEE Control and Decision Conference,1993, vol.3:1972-1977.
    [132]. W Lin, T. L. Shen, Robust Passivity and Feedback Design for Minimum-Phase Nonlinear Systems with Structural Uncertainty, Automatica,1999,35(1):35-47.
    [133]. M. Seron, D. J. Hill, A. L. Fradkov, Nonlinear Adaptive Control of Feedback Passive Systems, Automatica,1995,31(7):1053-1060.
    [134]. 王新生,王琪,徐殿国,DC-DC变换器中的分岔现象综述,哈尔滨工业大学学报,2008,40(5):754-758.
    [135]. J. H. B. Deane, D. C. Hamill, Instability, Subharmonics and Chaos in Power Electronics Systems, IEEE trans. on Power Electronics,1990,5(3):260-268.
    [136]. 李胜男,张浩,马西奎,李明,Buck-Boost DC/DC变换器中边界碰撞分岔现象的实验研究,西安交通大学学报,2006,40(4):454-458.
    [137]张波,曲颖,Buck DC/DC变换器分岔和混沌的精确离散模型及实验研究,中国电机工程学报,2003,23(12):99-103.
    [138]. 张波,齐群,PWM BUCK变换器不同工作方式下的次谐波和混沌行为,中国电机工程学报,2002,22(10):18-21.
    [139]. Tse C.K., Di Bernardo M., Complex Behavior in Switching Power Converters, in Proceedings of the IEEE,2002,90(5):768-781.
    [140]. D. M. Bernardo, F. Vasca, Discrete-Time Maps for the Analysis of Bifurcations and Chaos in DC/DC Converters, IEEE trans. on Circuits and Systems,2000,47(2):130-143.
    [141]. 卢伟国,周雒维,罗全明,张晓峰,电压模式Buck变换器的分岔控制,电工技术学报,2009,24(4):133-138.
    [142]. Pyragas K, Continuous Control of Chaos by Self-Controlling Feedback, Physics Letters A,1992, 170(6):421-428.
    [143]. Lihong He, Meimei Jia, Guangyan Sun, Chaos Control for the Buck-Boost Converter under Current-Mode Control, in proceedings of IEEE International Workshop on Advanced Computational Intelligence,2010:426-431.
    [144]. A.Abbasi, M.Rostami, S.H.Fathi, J.Abdollahi, H.R.Abbasi, The TDFC Method for Control Unstable Chaotic Behaviour in Boost Converter, in proceedings of IEEE International Conference on Computer Applications and Industrial Electronics,2010:110-114.
    [145]. K.un Xing, Jinghong Guo, Wenkang Huang, Dengming Peng, Fred C. Lee, Dusan Borojevic, An Active Bus Conditioner for a Distributed Power System, in proceedings of IEEE-PESC,1999, vol.2: 895-900.
    [146]. Xin Zhang, Xinbo Ruan, Hyok Kim, Chi K. Tse, Adaptive Active Capacitor Converter for Improving Stability of Cascaded DC Power Supply System, IEEE trans. on Power Electronics,2013,28(4): 1807-1816.
    [147]. M. Cespedes, L. Xing, J. Sun, Constant-Power Load System Stabilization by Passive Damping, IEEE trans. on Power Electronics Letter,2011,26(7):1832-1836.
    [148]. Jusoh, A.B., The Instability Effect of Constant Power Loads, in proceedings of National Power and Energy Conference,2004:175-179.
    [149]. Khaligh A., Emadi A., Mixed DCM/CCM Pulse Adjustment with Constant Power Loads, IEEE trans, on Aerospace and Electronic Systems,2008,44(2):766-782.
    [150]. Khaligh A., Rahimi A.M., Emadi A., Negative Impedance Stabilizing Pulse Adjustment Control Technique for DC/DC Converters Operating in Discontinuous Conduction Mode and Driving Constant Power Loads, IEEE trans. on Vehicular Technology,2007,56(4), Part 2:2005-2016.
    [151]. Ciezki J.G., Ashton R.W., The Design of Stabilizing Controls for Shipboard DC-to-DC Buck Choppers Using Feedback Linearization Techniques, in proceedings of IEEE-PESC,1998, vol.1: 335-341.
    [152]. Kondratiev I., Santi E., Dougal R., Veselov G., Synergetic Control for DC-DC Buck Converters with Constant Power Load, in proceedings of IEEE-PESC,2004, vol.5:3758-3764.
    [153]. J. Wang, D. Howe, A Power Shaping Stabilizing Control Strategy for DC Power Systems with Constant Power Loads, IEEE trans. on Power Electronics,2008,23(6):2982-2989.
    [154]. Karppanen M., Hankaniemi M., Suntio T., Sippola M., Dynamical Characterization of Peak-Current-Mode-Controlled Buck Converter With Output-Current Feedforward, IEEE trans. on Power Electronics,2007,22(2):444-451.
    [155]. Xinyun Liu, Forsyth A. J., Cross A. M., Negative Input-Resistance Compensator for a Constant Power Load, IEEE trans. on Industrial Electronics,2007,54(6):3188-3196.
    [156]. Liu X. Y., Forsyth A. J., Comparative Study of Stabilizing Controllers for Brushless DC Motor Drive Systems, in proceedings of IEEE International Conference on Electric Machines and Drives,2005: 1725-1731.
    [157]. X. Liu, N. Fournier, A. J. Forsyth, Active Stabilization of a HVDC Distribution System with Multiple Constant Power Loads, in proceedings of IEEE Vehicle Power Propulsion Conference,2008:1-6.
    [158]. A. Rahimi, A. Emadi, Active Damping in DC/DC Power Electronics Converters:A Novel Method to Overcome the Problems of Constant Power Loads, IEEE trans. on Industrial Electronics,2009,56(5): 1428-1439.
    [159]. Han-sol Chang, Byung-Hun Lee, Hyun-Min Woo, Jae-Du La, Young-Seok Kim, Study of the Control Technique of the Voltage Bus Conditioner for a DC Power Distribution System with Multiple Parallel loads in the Electrical Vehicle, in proceedings of IEEE International Conference on Electrical Machines and Systems,2011:1-5.
    [160]. Jae-du La, Bong-Jun Seok, Bong-Woo Kang, Young-Seok Kim, An Adaptive Control of the Bidirectional DC/DC Converter with the Capacitive Energy Storage in the More and All-Electric Aircraft Systems, in proceedings of IEEE International Conference on Electrical Machines and Systems,2010:362-366.
    [161]. A. J Forsyth, A. Jusoh, Simulation of an Active Damping Device for DC Power Networks, Conference of Power System, Society of Automotive Engineers, Florida, USA, Publication:7503, Oct.,2002 Paper No.2002-01-3191.
    [162]. A. Jusoh, Z. Salam, S. M. Ayob, M. R. Sahid, Simulation and Experimental Results of the Bidirectional DC-DC Converter Operating as an Active Damping Device in a Simple System, in proceedings of IEEE-PEDS,2005:378-382.
    [163]. S.V.Mollov, J.D.La, Study of Control Algorithms for a Voltage Bus Conditioner, in proceedings of IEEE Conference on Vehicle Power and Propulsion,2005:372-378.
    [164]. Richard Bang, Fred C. Lee, Dushan Boroyevich, Changrong Liu, Lijia Chen, AC Load Conditioner and DC Bus Conditioner for a DC Distribution Power System, in proceedings of IEEE-PESC,2000, vol.1:107-112.
    [165]. Richard Zhang, Fred C. Lee, Dushan Boroyevich, Hengchun Mao, New High Power, High Performance Power Converter System, in proceedings of IEEE-PESC,1998:8-14.
    [166]. 张欣,阮新波,用于提高级联型电源系统稳定性的自适应有源电容变换器,电工技术学报,2012,27(2):23-32.
    [167]. Sigmunt Singer, Robert W. Erickson, Canonical Modeling of Power Processing Circuits Based on the POPI Concept, IEEE trans. on Power Electronics,1992,7(1):37-43.
    [168]. 王润新,用于多模块互联系统仿真的电力电子变流器大信号模型研究,西安,西安交通大学博士学位论文,2009.
    [169]. Raymond B. Ridley, A New, Continuous-Time Model For Current-Mode Control, IEEE trans. on Power Electronics,1991,6(2):271-280.
    [170]. Raymond B. Ridley, A New Small-Signal Model for Current Mode Control, Ph.D. dissertation, Virginia Tech, Nov.1990.
    [171]. F. C. Lee, M. F. Mahmoud, Y. Yu, Design Handbook for a Standardized Control Module for DC-to-DC Converters, Volum I, NASA CR-165172, April,1980.
    [172]. F. C. Lee, Mahmoud M.F., Yu Y., Kolecki J.C., Analysis and Design of a Standardized Control Module for Switching Regulators, IEEE trans. on Aerospace and Electronic Systems,1982, AES-18(4):478-496.
    [173]. S. Hsu, A. R. Brown, L. Rensink, R. D. Middlebrook, Modelling and Analysis of Switching DC-to-DC Converters in Constant-Frequency Current-Programmed Mode, in proceedings of IEEE-PESC 1979:284-301.
    [174]. R. D. Middlebrook, Topics in Multiple-Loop Regulators and Current-Mode Programming, in proceedings of IEEE-PESC,1985:716-732.
    [175]. R. D. Middlebrook, Modeling Current-Programmed Buck and Boost Regulators, IEEE trans, on Power Electronics,1990,4(1):36-52.
    [176]. R. Martinelli, The Benefits of Multi-Loop Feedback, in Proc. of Power Convension International Conference,1987, pp.227-245.
    [177]. G. K. Schoneman, D. M. Mitchell, Output Impedance Considerations for Switching Regulators with Current-Injected Control, IEEE trans. on Power Electronics,1989,4(1):25-35.
    [178]. A. S. Kislovski, Controlled-Quantity Concept in Small-Signal Analysis of Switching Power Cells, IEEE trans. on Aerospace and Electronic Systems,1983, AES-19(3):438-446.
    [179]. G. C. Verghese, C. A. Bruzos, K. N. Mahabir, Averaged and Sampled-Data Models for Current Mode Control:A Reexamination, in proceedings of IEEE-PESC,1989:484-491.
    [180]. A. R. Brown, R. D. Middlebrook, Sampled-Data Modeling of Switching Regulators, in proceedings of IEEE-PESC,1981:349-369.
    [181]. A. R. Brown, Topics in the Analysis, Measurement, and Design of High-Performance Switching Regulators, Ph.D. dissertation, California Institute of Technology, May 1981.
    [182]. F. C. Lee, R. P. Iwens, Y. Yu, Generalized Computer-Aided Discrete Time Domain Modeling and Analysis of DC-DC Converters, in proceedings of IEEE-PESC,1977:58-69.
    [183]. C. J. Hsiao, R. B. Ridley, F. C. Lee, Small-Signal Analysis of Switching DC-DC Converters Using the Simulation Program COSMIR, Virginia Power Electronics Center Seminar,1988:219-226.
    [184]. B. Y. Lau, R. D. Middlebrook, Small-Siganl Frequency-Response Theory for Two-Switched Network Piecewise-Constant DC-to-DC Converter Systems, in proceedings of IEEE-PESC,1986:186-199.
    [185]. R. P. E. Tymerski, Frequency Analysis of Time-Interval-Modulated Switched Networks, in proceedings of IEEE-PESC,1990:355-362.
    [186]. J. O. Groves, Small-Signal Analysis of Piecewise-Linear Circuits with Periodic Solutions, Virginia Power Electronics Center Seminar,1990:127-136.
    [187]. Kwang-Hwa Liu, Fred C. Lee, Topological Constraints on Basic PWM Converters, in proceedings of IEEE-PESC,1988:164-172.
    [188]. Laurens Weiss, Wolfgang Mathis, Ljiljana Trajkovic, A Generalization of Brayton-Moser's Mixed Potential Function, IEEE trans. on Circuits and Systems,1998,45(4):423-427.
    [189]. R. K. Brayton, A Canonical Form for Nonlinear RLC Networks, in proceedings of Symp. Syst. Theory, Brooklyn, NY:Polytechnic Inst. Press, Apr.1965:57-65.
    [190]. J. O. Flower, The Topology of the Mixed Potential Function, in proceedings of the IEEE,1968, 56(10):1721-1722.
    [191]. J. O. Flower, The Existence of the Mixed Potential Function, in proceedings of the IEEE,1968, 56(10):1735-1736.
    [192]. L. O. Chua, Stationarity Principles and Potential Functions, J. Franklin Inst.,1973,296(2):91-114.
    [193]. E. H. Homeber, Application of the Mixed Potential for Formulating Normal Form Equations for Nonlinear RLC Networks with Ideal Transformers, Int. J. Circuit Theory Appl.,1978,6:345-362.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700