用户名: 密码: 验证码:
旋转机械的测试信号分析及隐马尔科夫模型应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
旋转机械运行中产生的振动信号包含了丰富的故障信息,通过对其进行处理与分析,可以得到机械设备零部件的状态变化信息,从而判断出机械的运行状态或故障类型。旋转机械测试信号的处理一直是故障诊断和特征识别的重要研究领域,在此背景下,本文对以下内容进行了研究和阐述:
     首先介绍了课题的来源、背景、研究现状及其研究意义,对旋转机械故障诊断的基本过程,研究内容做了详细阐述;介绍了论文的主要工作和创新点。研究了旋转机械的典型故障及其振动特征;
     由于故障而引起的振动其表现形式是多种多样的,为了准确判明引起故障的原因,一般来说,应将振动故障的类型区分清楚,对不同类型的故障以及各自对应的振动特征有明确的了解,只有这样,才能取得故障诊断的成功。因此,在第2章中对旋转机械中的常见典型故障产生的基本理论和相应的振动特征进行了研究。
     研究了旋转机械测试信号的处理方法,并用于旋转机械典型故障的特征提取与诊断;
     对旋转机械故障诊断中的振动信号处理方法进行了研究。首先研究了谱分析的最早形式——傅里叶变换,并将其用于汽轮发电机组的轴瓦以及发电机组给水泵的轴瓦振动信号的分析与故障诊断;在比较了传统的离散频谱校正与细化技术后,提出了离散频谱的频率抽取校正法,仿真算例验证了该方法的有效性;研究了包络分析技术、全息谱技术、高阶统计分析技术;研究了主要的时频分析技术:短时傅里叶变换、小波变换、Winger-Ville分布、Hilbert-Huang变换、Chirplet变换;研究了旋转机械的阶比跟踪滤波技术,并以某汽车的加速振动信号为例,说明了改进后的Gabor阶比跟踪滤波方法的正确性和可行性。研究这些先进的振动信号处理方法,对正确地提取旋转机械的故障特征,保证大型旋转机械设备的安全可靠运行,避免巨额的经济损失和灾难性事故发生,提高经济效益和社会效益有重要的意义。
     介绍了隐马尔科夫模型的基本理论,研究了隐马尔科夫模型的算法及其在故障诊断中的应用;
     介绍了Markov链基本理论,并通过一个简单的实例把它扩展到了隐马尔科夫模型(HMM);然后重点介绍离散HMM的基本概念、理论以及设计时遇到的三个基本问题;分析了HMM在实际应用中所面临的问题并提出了合理的解决方案,最后,分析了HMM在故障诊断中的作用,并介绍了HMM故障诊断的方法。
     介绍了一体化旋转机械特征分析仪的研制与应用;
     介绍了虚拟仪器的产生和发展;对“秦氏模型”进行了简单地描述;根据“秦氏模型”虚拟仪器的思想开发了虚拟式旋转机械特征分析仪,并与一体化仪器技术相结合,形成了QLVC-RM3型一体化旋转机械特征分析仪,将QLVC-RM3型一体化旋转机械特征分析仪应用到了现场,对直流电机驱动的涡轮减速箱振动信号以及转子实验台转子升速振动信号进行了测试与分析,并与B&K公司的PULSE 3560C系统的计算结果进行了对比。
     最后,总结了该论文的内容,并提出了进一步的研究方向。
Vibration signals generated by rotary machinery contain lots of fault information. By analysis into them, state changing of the parts in the mechanical equipment can be recognized, and the fault type can be found out. The test signal process of rotary machinery is always important research field in fault diagnose and character feature recognition. With this background, the following content are researched and described:
     Firstly, the origin, background, current situation for the paper are introduced, especially the significance and research content of fault diagnose for rotary machinery. The primary work and innovative work for the paper are also contained in this chapter.
     The typical fault and vibration feature for rotary machinery are researched in detail.
     The exterior form of vibration caused by fault is various. In order to exactly judge the root, which can cause fault, the vibration fault type should be distinguished clearly. The different type of fault and vibration feature respective should be comprehend too. On in this way, can we achieve the success of fault diagnosis. Then the basic theory and vibration feature of familiar typical faults for rotary machinery are researched deeply in chapter 2.
     Analysis and process methods for test signal of rotary machinery are researched deeply.
     Process methods for test signal of rotary machinery fault diagnosis are researched. Firstly, Fourier Transform (FT), the pioneer form of spectrum analysis, is introduced. And FT was used to signal analysis and fault diagnosis for bushes of turbogenerator and water pump. The spectrum correction method of frequency extracting is proposed after compares the traditional spectrum correction method and spectrum zoom, simulation result proves the method validity. Envelopment analysis technology, holospectrum technology, high-order statistic analysis technology are also researched. Time-frequency analysis technologies including short time Fourier transform, Wavelet transform, Winger-Ville distribution, Hilbert-Huang transform, Chirplet transform are also researched. Finally, order tracking filtering method for rotary machinery is investigated deeply. Take one car’s vibration signal during run-up as an example, the correction and feasibility of improved Gabor order tracking filtering method are approved. Research those above process methods for vibration signal is of great importance to extract fault feature of rotary machinery correctly, assure safe and reliable operation of large rotary machinery and equipment, avoid the huge economic losses and catastrophic accidents and improve the economic and social benefits.
     Introduce the basic theory of hidden Markov model, research algorithm and application in fault diagnosis of HMM
     Introduce the basic theory of Markov chains, and through a simple example to extend it to the Hidden Markov Model (HMM). The basic concept, theory and three problems encountered in the design of discrete HMM are the focus in the following content. Analysis the problems faced in practical applications of HMM, and made a reasonable solution. Finally, analysis the role of HMM in fault diagnosis and presents fault diagnosis method based on HMM.
     Introduce the development and application of integrated rotary machinery feature analyzer.
     Describe the emergence and development of virtual instrument. Introduce the“Qin’s Model”simply. Develop virtual rotary machinery feature analyzer according to“Qin’s Model”. Combine virtual rotary machinery feature analyzer and integrated instrument technology, QLVC-RM3 integrated rotary machinery feature analyzer is developed. Application of QLVC-RM3 integrated rotary machinery feature analyzer includes testing and analyses of vibration signal generated by turbine reduction gearbox and rotor during run-up, and compare the compute result with PULSE 3560C system of B&K company.
     Finally, summarize the contents of the paper, and made further research directions.
引文
[1]屈梁生,何正嘉.机械故障诊断学[M].上海:上海科学技术出版社,1986.
    [2]钟秉林,黄仁.机械故障诊断学[M].北京:机械工业出版社,1997.12.
    [3]范作民,孙春林,白杰.航空发动机故障诊断导论[M].北京:科学出版社,2004.
    [4]徐敏,虞和济,韩捷.设备故障诊断手册[M].西安:西安交通大学出版社,1998.
    [5]陈进.机械设备诊断监测与故障诊断[M].上海:上海交通大学出版社,1999.
    [6]陈大禧,朱铁光.大型回转机械诊断现场实用技术[M].北京:机械工业出版社,2002.
    [7]杨叔子,史铁林,丁洪.机械设备诊断的理论、技术与方法[J].振动工程学报,1992.5(3): 193~201.
    [8]杨叔子,史铁林,丁洪.机械设备的诊断方法与分类[J].华中理工大学学报,1993.21(1):1~5.
    [9] Suh , J.. ON-LINE MACHINERY HEALTH DIAGNOSIS AND PROGNOSIS FOR PREDICTIVE MAINTENANCE AND QUALITY ASSURANCE OF EQUIPMENT FUNCTIONING[M] . Pennsylvania State University Thesis for PhD, 2001.
    [10] Silian Lin,J.N.Y.,LI Zhou,Damage identification of a benchmark building for structural health monitoring[J]. SMART MATERIALS AND STRUCTURES,2005.14(3): 162~169.
    [11]傅忠广,任福春,杨昆,宋之平.弯扭耦合振动模型及重力影响因素初探[J].华北电力大学学报,1998.25(1).
    [12]傅忠广,杨昆,任福春,宋之平,陈椿芳.不平衡转子弯扭振动相互影响的实验研究[J].现代电力,1998.15(4):28~34.
    [13]李小彭,姚红良,李鹤,闻邦椿.齿轮耦合的故障转子系统弯扭耦合振动特性研究[J].机械制造,2005.43(492):31~33.
    [14]闻邦椿,武新华,丁千,韩清凯.故障旋转机械非线性动力学的理论与实验[J].2004,北京:科学出版社.
    [15]秦树人.工程信号处理[M].北京:高等教育出版社,2008.
    [16]何正嘉,誉艳阳,孟庆丰,赵纪元.机械设备非平稳信号的故障诊断及应用[M].北京:高等教育出版社,2001.
    [17]吴今培.模糊诊断理论及其应用[M].北京:科学出版社,1995.
    [18]杨军,冯振声,黄考利.装备智能故障诊断技术[M].北京:国防工业出版社,2004.
    [19]谢锦辉.隐Markov模型(HMM)及其在语音处理中的应用[M].武汉:华中理工大学出版社,1995.
    [20]陈锡先,王立健.多讲话者汉语单字识别[J].北京邮电学院学报.1989,12(2):1~7.
    [21]徐文盛,戴蓓倩等.一种抗噪孤立字语音识别模型[J].中国科学技术大学学报.2000,30(6):659~665.
    [22]钱敏平,龚光鲁.从数学角度看计算智能[J].科学通报,1995,43(16):1651~1792.
    [23] Rablner L R,et al. On the Use of Hidden Markov Models for Speaker Independent Recognition of Isolated Word from a Medium-Size Vocabulary[J]. AT&T Bell Tab Teeh. J. 1984,63(4):627~642.
    [24] Geman S, Geman D. Stochastic Relaxation, Gibbs Distribution,and the Bayesian Restoration of Images[M]. IEEE Trans. PAMI,1984,6(5).
    [25] Qing Wang, Zheru Chi, Feng, D.D., Rongchun Zhao. Hidden Markov random field based approach for off-line handwritten Chinese character recognition[J]. Pattern Recognition, 2000,2:347~350.
    [26]王春立,高文.具有不同数目状态结点的HMMs在中国手语识别中的应用[J].计算机研究与发展.200l,38(l):111~115.
    [27]姚鸿勋,高文等.基于色度分析的唇动特性提取与识别[J].电子学报.2002,30(2):168~172.
    [28]陈友仁,赵正校.基于隐马尔可夫模型的车牌自动识别技术[J].红外与激光工程.2001,30(2):102~107.
    [29]谢贤亚,李焕润等.EM一HMM多频率线跟踪算法[J].电子学报.2002,30(1):22~26.
    [30]李士进,杨静宇等.基于奇异值特征和隐马尔可夫模型的人脸检测[J].中国图像图形学报.2001,6(7):681~688.
    [31] Matrouf, D., Gauvain, J.L. Using AR HMM state-dependent filtering for speeeh enhancement[J]. Aeousties, Speeeh, and Signal Proeessing,1999,2:785~788.
    [32] Bahl L R, Brown P F, De Souza P V, et al. A New Algorithm for the Estimation of Hidden Markov Models Pararmeters[C]. Proe. ICASSP,88,1988:493~496.
    [33]周德全,刘国岁.基于隐Markov模型的雷达目标识别技术研究[J].南京理工大学学报.1998,22(3):224~227,251.
    [34] Baker J K. The DRAGON system-An overview[J]. IEEE Trans. ASSP. 1975,23(l):24~29.
    [35]马晓旭,张传利.基于离散隐马尔科夫模型的变压器励磁涌流鉴别新算法[J].电力系统自动化.2000,24(3):23~28.
    [36] Heck, L. P. Signal processing research in automatic tool wear monitoring. Acoustics, Speeeh, and Signal Processing, 1993. ICASSP-93., 1993 IEEE Intemational Conference on,1993,l:55~58.
    [37] Ailas, L., Ostendorf, M., Bernard,G.D. Hidden Markov models for monitoring machining tool-wear. Acoustics, Speech, and Signal Proeessing, 2000. ICASSP’00. Proeeedings. 2000 IEEE International Conference on,2000,6:3887~3890
    [38] Bahl L R, Brown P F, et al. Maxiumu Mutual Information Estimation of Hidden Markov Parameters for speeeh Reeognition. Proc. ICASSP’86,1986:49~52.
    [39] HatsiPantelis, E., Penman,J. The use of hidden Markov models for condition monitoring electrical machines. Electrical Machines and Drives, 1993. Sixth Intemational Conference on,1993:91~96.
    [40] Ocak, H., Loparo,K. A new bearing fault detection and diagnosis seheme based on hidden Markov modeling of vibration signals. Acoustics, Speech, and Signal Processing, 2001. Proceedings. 2001 IEEE Intemational Conference on, 2001,5:3141~3144.
    [41] Stegemann, D., Reimehe, W., Sudmersen, U., Pietsch,O., Liu,Y, Monitoring and vibrational diagnostic of rotating machinery in power Plants. Power Station Maintenance-Profitability Through Reliability , 1998. First IEE/MechE Intemational Conferenee on(Conf. Publ. No. 452),1998:39~44.
    [42]韩捷,张瑞林.旋转机械故障机理及诊断技术[M].北京:机械工业出版社, 1997.
    [43] Effective Machinery Measurements using Dynamic Signal Analyzers. Application Note 243-1, Hewlett Packard, 2002.
    [44] Cyril M.Harris, Shock and vibration handbook (Third Edition)[M]. New York: McGRAW-HILL BOOK COMPANY, 1988.
    [45]丁康,陈健林,苏向荣.平稳和非平稳振动信号的若干处理方法及发展[J].振动工程学报,2003,16(1):1~10.
    [46]张贤达.现代信号处理[M].北京:清华大学出版社,1995.
    [47]丁康,张晓飞.频谱校正理论的发展[J].振动工程学报,2000,13(1):14~22.
    [48]段虎明,秦树人,李宁.离散频谱校正方法综述[J].振动与冲击, 2007, 11: 138~145.
    [49]段虎明,秦树人,李宁.离散频谱的频率抽取校正法[J].振动与冲击, 2007, 7: 59~62.
    [50]徐峰,王志芳.大型旋转机械振动信号数据采集器的研究[J].清华大学学报,1998,38(6):111~114.
    [51] Xie Ming, Ding Kang. Correction for the frequency,amplitude and phase in FFT of harmonic signal[J]. Mechanical System and Signal Processing, 1996,10(2):211~221.
    [52]丁康,江利旗.离散频谱的能量重心校正法[J].振动工程学报,2001,14(3):354~358.
    [53]陈奎孚,焦群英,高小蓉.提高FFT谱质量的一种新方法[J].振动、测试与诊断,1998,18(3):216~232.
    [54] Ding Kang, Xie Ming. Phase difference correction method for phase and frequency in spectrual analysis[J]. Mechanical System s and Signal Processing, 2000,14(5):835~843.
    [55]吴国乔,王兆华,黄晓红.离散频谱的全相位校正法[J].数据采集与处理.2005,20(3):286~290.
    [56]曹延伟,张昆帆,江志红,等.一种稳健的离散频谱校正方法[J].电子与信息学报2005,27(9):1353~1356.
    [57]史东锋,许锋,郭万林.谐波信号的通用频谱校正算法在回转机械监测中的应用[J].南京航空航天大学学报,2004,36(4):505~510.
    [58]李方泽,刘馥清,方正.工程振动测试与分析[J].北京:高等教育出版社,1992:240~307.
    [59]郝重阳,唐文彬,齐敏,等.一种快速局部细化频谱分析新方法--SSA[J].电子学报,2000,28(3):106~108.
    [60]谢明,丁康.基于复解析带通滤波器的复调制细化谱分析的算法研究[J].振动工程学报,2002,15(4):479~483.
    [61]丁康,米林,王志杰.解调分析在故障诊断中应用的局限性问题[J].振动工程学报,1997,10(3):13~20.
    [62]何岭松,杨叔子.包络检波的数字滤波算法[J].振动工程学报,1997,10(3):362~367.
    [63]朱利民,熊有伦.解调分析中的差频现象的理论分析及细化解调/频谱分析集成算法[J].振动工程学报,2001,14(4):409~413.
    [64]朱利民,许秉林,黄仁.齿轮故障振动信号检波解调分析中的混频效应[J].振动工程学报,1999,12(3):331~337.
    [65]张帆,丁康.广义检波滤波解调分析的三种算法及其局限性分析[J].振动工程学报,2002,15(2):243~248.
    [66]屈梁生,史东峰.全息谱十年:回顾与展望[J].振动、测试与诊断,1998,18(4):235~242.
    [67] Qu L S,Chen Y D,Liu X.The ho1ospectrum-a new method for rotor surveillance and diagnosis[J].Mechanical System and Signal Processing,1989,3(3):855~867.
    [68]屈梁生.机械故障的全息诊断原理[M].北京:科学出版社,2007.
    [69] Yang Jiangtian, Xu Jinwu. Higher order spectral analysis in fault diagnosis of rotors[J]. Chinese Journal of Mechanical Engineering,2001,14(1):40~44.
    [70] Jyoti K,Sinha. Higher order spectra for crack and misalignment identification in the shaft of a rotating machine[J]. Structural Health Monitoring,2007,6(4):325~334.
    [71]杨炯明.虚拟式旋转机械特征分析仪系统的研究与应用[D].重庆:重庆大学,2005.
    [72] D Gabor. Theory of communication[J]. J. Inst. Elec. Eng.,1946,93:429~457.
    [73] R K Potter, G Kopp,H C Green. Visible speech[M]. New York: Van Nostrand,1947.
    [74] J Ville. Theorie et applications de la notion de signal analytique, Cables et Transmission,1948,2A:61~74.
    [75] C H Page. Instantaneous power spectra[J]. J. Appl. Phys.,1952,23:103~106.
    [76] L Cohen. Time-frequency distributions--A review[J]. Proc. IEEE,1989,77:941~981.
    [77] L Cohen. Generalized phase-space distribution functions[J]. J. Math. Phys.,1966,7:781~786.
    [78]张贤达,保铮.非平稳信号分析与处理[M].北京:国防工业出版社,1998:23~42.
    [79] V Namias. The fractional order Fourier Transform and its application to quantum mechanics[J].J.Inst.Math.Appl.1980,25:241~265.
    [80] S Mallat,W L Hwang. Singularity detection and processing with wavelet[J]. IEEE Transaction on Information Theory,1992,38(2):617~643.
    [81] Pan Q,Zhang L,Dai G. Two denoising method by wavelet transform[J]. IEEE Transaction on Signal Processing,1999,47(12):567~589.
    [82] Jin Kook Kim,Jong Beom Ra. A real-time terrain visualization algorithm using wavelet-based compression[J]. The Visual Computer,2004,20(3):67~85.
    [83]李舜酩,许庆余.微弱振动信号的谐波小波频域提取[J].西安交通大学学报,2004,38(1):51~55.
    [84]屈梁生,张海军.机械诊断中的几个基本问题[J].中国机械工程,2000,l1(1):211~2l6.
    [85]何正嘉,李富才,杜远,等.小波技术在机械监测诊断领域的应用现状与进展[J].西安交通大学学报,2001,35(5):540~545.
    [86]訾艳阳,何正嘉,张周锁.小波分形技术及其在机械设备非平稳故障诊断中的应用[J].西安交通大学学报,2000,34(9):82~87.
    [87]刘占生,刘成敏,刘树春,等.小波分析和分形几何在转子动静碰摩故障诊断中的应用[J].哈尔滨工业大学学报,1999,3l(11):55~56.
    [88]钱立军,蒋东翔.小波变换在横向裂纹转子升速过程状态监测中的应用[J].中国电机工程学报,2003,23(5):86~89.
    [89]徐金梧,徐科.小波变换在滚动轴承故障诊断中的应用[J].机械工程学报,1997,33(4):50~55.
    [90]徐科,杨穗斌,徐金梧.小波变换在齿轮局部缺陷诊断中的应用[J].机械工程学报,1999,35(3):105~107.
    [91] Ye Hao,Wang Guizeng,Ding Steven X.A new fault detection approach based on parity relation and stationary wavelet transform[J].American Control Conference,Denver, CO,2003:2991~2996.
    [92]于德介,成琼,程军圣.基于复解析小波变换的瞬时频率分析方法[J].振动与冲击,2004,23(1):108~109.
    [93] Newland D E.Harmonic wavelet analysis.Proc R Soc Lond:A,1993,443:203~225.
    [94] Newland D E.Harmonic wavelets in vibrations and acoustics.Royal Soc Trans,Philos:A,1999,1760(357):2607~2625.
    [95] Sweldens W. The lifting scheme: A construction of second generation wavelets[J]. SIAM J.Math.Anal.1997,29(2):511~546.
    [96]段晨东,何正嘉.一种基于提升小波变换的故障特征提取方法及其应用[J].振动与冲击,2007,26(2):10~13,32.
    [97]焦李成,谭山,刘芳.脊波理论:从脊波变换到Curvelet变换[J].工程数学学报,2005,22(5):761~773.
    [98] Emmanuel J Candès, Laurent Demanet. The curvelet representation of wave propagators is optimally sparse[J]. Communications on Pure and Applied Mathematics,2005,58(11):1472~1528.
    [99] Zeyi Liu,Ziqiang Sun,Ling Xub,et al. Contour representation based on wedgelet[J]. Journal of Systems Engineering and Electronics,2006,17(2):251~257.
    [100]张君,韩璞,董泽,等.基于小波变换的振动信号分析中能量泄漏的研究[J].中国电机工程学报,2004,24(10):238~243.
    [101]张燕平,黄树红,侯敬宏,等.基于连续小波变换的旋转机械振动信号灰度矩研究[J].振动工程学报,2005,18(1):124~126.
    [102] Svaldo A Rosso,Susana Blanco.Wavelet entropy:a new tool for analysis of short duration brain electrical signals[J].Journal of Neuroscience Methods,2001,105:65~75.
    [103] C J Li, J Ma.Wavelet decomposition of vibrations for detection of bearing localized defects[J].NDT&E International(UK),1997,30(3):143~149.
    [104]张中民,卢文祥,杨叔子,等.基于小波系数包络谱的滚动轴承故障诊断[J].振动工程学报,1998,ll(1):65~69.
    [105]桂中华,韩凤琴.小波包-最大熵谱估计及其在水轮机故障诊断中的应用[J].电力系统自动化,2004,28(2):62~66.
    [106]刘彬,王霄,谢平.基于小波多重分形的复杂机械故障诊断方法研究[J].传感技术学报,2006,19(1):232~234,256.
    [107] Jing Lin,Aimin Zhang.Fault feature separation using wavelet-ICA filter[J].NDT&E international,2005,38(6):421~427.
    [108] Brenner M J. Non-stationary dynamics data analysis with wavelet-SVD filtering[J]. Mechanical systems and signal processing, 2003,17(4):765~786.
    [109]王计生,黄惟公,喻俊馨.小波分析和神经网络技术在故障诊断中的应用[J].振动、测试与诊断,2004,24(1):46~49.
    [110]何学文,孙林,付静.基于小波分析和支持向量机的旋转机械故障诊断方法[J].中国工程机械学报,2007,5(1):86~90.
    [111]于德介,程军圣,杨宇.机械故障诊断的Hilbert-Huang变换方法[M].北京:科学出版社,2006.
    [112] S K Lee,P R White. Higher-order time-frequency analysis and its application to fault detection in rotating machinery[J]. Mechanical Systems and Signal Processing,1997,11(4):637~650.
    [113]来五星,轩建平,史铁林,等.Wigner-Ville时频分布研究及其在齿轮故障诊断中的应用[J].振动工程学报,2003,16(2):247~250.
    [114]邹红星,戴琼海,李衍达,等.不含交叉干扰且具有WVD聚集性的时频分布之不存在性[J].中国科学(E辑),2001,31(4):348~354.
    [115] S Qian, D Chen.Signal representation using adaptive normalized Gaussian function[J].Signal Processing,1994,36(1):1~11.
    [116] Mallat S, Zhang Z. Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Processing[J],1993,41(12):3397~3415.
    [117] Mann S, Haykin S. Chirplets and Wavelets: novel time-frequency representations.Electron.Lett.,1992,28(2):114~116.
    [118] D Mihovilovic, R N Bracewell. Whistlers analysis in the time~frequency plane using Chirplets[J]. J. Geophysical Reasearch,1992,97:17199~17204.
    [119] Baraniuk R G, Jones D L. Wigner-based formulation of the Chirplet transform[J]. IEEE Trans. Signal Processing,1996,44(12):3129~3135.
    [120] Bultan A,Akansu A N. Frames in rotated time-frequency planes. Proceedings of IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP),1999,Phoenix:1353~1356.
    [121] Bultan A. A four parameter atomic decomposition of Chirplets[J]. IEEE Trans. Signal Processing,1999,47(3):731~745.
    [122]邹红星.参数化时频信号表示方法研究[D].北京:清华大学,2002.
    [123]邹红星,戴琼海,赵克,等.FMmlet变换的子空间[J].中国科学,E辑,2001,31(5):463~469.
    [124]费晓琪,孟庆丰,何正嘉.基于冲击时频原子的匹配追踪信号分解及机械故障特征提取技术[J].振动与冲击,2003,22(2):26~29,22.
    [125] Cohen L,Time-Frequency distributions-A Review[J]. Proceedings of IEEE, 1989,77(7):941~981.
    [126]胡静涛,郭前进.基于线调频小波变换的旋转机械故障诊断[J].仪器仪表学报,2006,27(6):395~398.
    [127]冯志鹏,褚福磊.基于Chirplet变换的水轮机非平稳振动信号分析[J].机械工程学报,2005,41(10):11~16.
    [128] Wang J, Zhou J. Chirlet-based signal approximation for strong earth ground motion mode[J]. IEEE Trans. Signal Processing Magazine,1996,16(2):94~99.
    [129]孙晖.经验模态分解理论与应用研究[D].浙江:浙江大学,2005.
    [130] Huang N E, Shen Z. The empirical mode decomposition and the Hilbert spectrum for non linear non-stationary time series analysis[J]. Proc.R.Soc, London, 1998,A 454:903~995.
    [131] Huang N E. A new view of nonlinear waves: The Hilbert spectrum. Annual Review of Fluid[J] Mechanics,1999,31:417~457.
    [132] Huang N E,Shih H H,Shen Z,et al. The ages of large amplitude coastal seiches on the Caribbean Coast of Puerto Rico[J]. Journal of Physical Oceanography,2000,30(8):2001~2012.
    [133] Huang N E,Chern C C,Huang K,et al. A new spectral representation of earthquake data: Hilbert spectral analysis of Station TCU129,Chi-Chi, Taiwan,21 September 1999[J].Bulletin of the Seismological Society of America,2001,91(5):1310~1338.
    [134] LOH C H,WU T C,HUANG N E. Application of the empirical mode decomposition Hilbert spectrum method to identify near-fault round-motion characteristics and structural responses[J]. Bulletin of the Seismological Society of America,2001,91:1339~1357.
    [135] Dan jiang Yu,Weixin Ren. EMD-based stochastic subspace identification of structures from operational vibration measurements[J]. Engineering Structures,2005,27:1741~1751.
    [136] Fernando A Marengo Rodriguez,Alejandro Federico,Guillermo H Kaufmann. Phase measurement improvement in temporal speckle pattern interferometry using empirical mode decomposition[J]. Optics Communications,2007,275:38~41.
    [137] Aicha Bouzid,Noureddine Ellouze.Empircal mode decomosition of voiced speech signal[C]. First International Symposium on Control, Communications and Signal Processing,2004:603~606.
    [138] JC Echeverría, JA Crowe, MS Woolfson, et al. Application of empirical mode decomposition to heart rate variability analysis[J]. Medical & Biological Engineering & Computing,2001,(39):471~479.
    [139] Z Lu,J S Smith,Q H Wu,et al. Empirical Mode Decomposition For Power Quality[C]. 2005 IEEE/PES Transmission and Distribution Conference & Exhibition: Asia and Pacific,China,2005:1~5.
    [140] Baozhong Yang, C Steve Suh. Interpretation of crack-induced rotor non-linear response using instantaneous frequency[J]. Mechanical Systems and Signal Processing,2004,18:491~513.
    [141] D Guo,ZK Peng. Vibration analysis of a cracked rotor using Hilbert-Huang transform[J]. Mechanical Systems and Signal Processing,2007,21(8):3030~3041.
    [142]程军圣,于德介,杨宇. EMD方法在转子局部碰摩故障诊断中的应用[J].振动、测试与诊断,2006,26(1):24~27.
    [143] Guanghong Gai. The processing of rotor startup signals based on empiricalmode decomposition[J]. Mechanical Systems and Signal Processing,2006,20(1):222~235.
    [144] Manuel A Andrade, A R Messina, Carlos A Rivera, et al .Identification of instantaneous attributes of torsional shaft signals using the Hilbert transform[J]. IEEE TRANSACTIONS ON POWER SYSTEMS,2004,19(3):1422~1426.
    [145]马孝江,王凤利,蔡悦,等.局域波时频分布在转子系统早期故障诊断中的应用研究[J].中国电机工程学报,2004,24(3):161~164.
    [146] B Liu,S Riemenschneidera,Y Xu. Gearbox fault diagnosis using empirical mode decomposition and Hilbert spectrum[J]. Mechanical Systems and Signal Processing,2006,20:718~734.
    [147] V K Raia,A R Mohanty. Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert-Huang transform[J]. Mechanical Systems and Signal Processing 2007,21(6):2607~2615.
    [148] A M Bassiunya,Xiaoli Lib. Flute breakage detection during end milling using Hilbert-Huang transform and smoothed nonlinear energy operator[J]. International Journal of Machine Tools and Manufacture,2007,47(6):1011~1020.
    [149] Jann N Yang,Ying Lei,Silian Lin,et al. Identification of natural frequencies and dampings of In Situ tall buildings using Ambient wind vibration data[J] .J. Engrg. Mech.,2004,130(5):570~577.
    [150] H G Chen,Y J Yan,J S Jiang. Vibration-based damage detection in composite wingbox structures by HHT[J]. Mechanical Systems and Signal Processing,2007,21(1):307~321.
    [151] HUANG N E. Empirical mode decomposition apparatus, method and article of manufacture for analyzing biological signals and performing curve fitting[P]. United States Patent,6738734,2004-5-18.
    [152] Norden E Huang,Man-Li C Wu, Steven R Long, et al, A confidence limit for the empirical mode decomposition and Hilbert spectral analysis[J]. Proceedings of the Royal Society London A,2003,459(2037):2317~2345.
    [153] SR Long, NE Huang. On the Normalized Hilbert Transform and Its Applications in Remote Sensing. Signal And Image Processing for Remote Sensing[M],USA,CRC Press New York,2006:3~22.
    [154] Norden E Huang,Zhaohua Wu. An Adaptive Data Analysis Method for nonlinear and Nonstationary Time Series:The Empirical Mode Decomposition and Hilbert Spectral Analysis[C]. Proceedings of the 4th International Conference on Wavelet and Its Application, Macao, 2005.12.
    [155] Norden E Huang. Introduction to Hilbert-Huang transform and its associated mathematical problems. Hilbert-Huang Transform in Engineering[M], USA, CRC Press, New York,2005:1~32.
    [156] Rilling G, Flandrin P, Goncalves P. On empirical mode decomposition and its algorithms[J]. IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing,Grado(I),2003:8~11.
    [157] www.ens-lyon.fr/~flandrin/software.html.
    [158] Flandrin P,Rilling G,Goncalves P. Empirical mode decomposition as a filter bank[J]. IEEE Signal Processing Letters,2004,11(2):112~114.
    [159] Wu Zhaohua, Huang N E. A study of the characteristics of white noise using the empirical mode decomposition method[J]. Proceedings of the Royal Society London A,2004,460(2046):1597~1611.
    [160] Wu Zhaohua, Huang N E. Ensemble empirical mode decomposition:a noise assisted data analysis method[M]. Center for Ocean Land Atmosphere Studies, Technical Report,2004,(193):51.
    [161] Z K Peng,P W Tse,F L Chu. A comparison study of improved Hilbert-Huang transform and wavelet transform: Application to fault diagnosis for rolling bearing[J]. Mechanical Systems and Signal Processing,2005,19:974~988.
    [162] Q Chen, N Huang, S Riemenschneider, et al. AB-spline approach for empirical mode decompositions[J]. Advances in Computational Mathematics, 2006(24):171~195.
    [163] Delechelle E,Lemoine J,Oumar Niang. Empirical mode decomposition: an analytical approach for sifting process[J]. Signal Processing Letters,2005,12(11):764~767.
    [164] 35a)Rilling G,Flandrin P. On the influence of sampling on the empirical mode decomposition. ICASSP 2006,3:444~447.
    [165] N Stevenson, M Mesbah , B Boashash. A sampling limit for the Empirical Mode Decomposition. Proc. Int. Symp. on Signal Proc. and its Appl.ISSPA-05, Sydney,2005:647~650.
    [166] Marcus D,Torsten S. Performance and limitations of the Hilbert-Huang transformation(HHT) with an application to inregular water waves[J]. Ocean Engineering,2004,31:1783~1834.
    [167] Ryan Deering,J F Kaiser. The use of a masking signal to improve Empirical Mode Decomposition. ICASSP,2005,IV:485~488.
    [168] Vold H., Leuridan J. Order Tracking at Extreme Slew Rates, Using Kalman Tracking Filters[R]. SAE Paper, Number 931288, 1993.
    [169] Vold H., Mains M., Blough J. The Mathematical Background of the Vold-Kalman Harmonic Tracking Filter[R]. SAE Paper, Number 972007, 1997.
    [170] Vold H., Mains M., Blough J.“Theoretical Foundations for High Performance Order Tracking with the Vold-Kalman Tracking Filter”[R]. SAE Paper, Number 972007, 1997.
    [171] Vold H., Deel J. Vold-Kalman Order Tracking: New Methods for Vehicle Sound Quality and Drive Train NVH Applications[R]. SAE Paper, Number 972033, 1997.
    [172] Havard Vold, Henrik Herlufsen, Michael Mains, Dan Corwin-Renner. Multi Axle Order Tracking with the Vold-Kalman Tracking Filter[J]. Sound and Vibration, 1997.5: 30~34.
    [173] H. Herlufsen, S. Gade, H. Konstantin-Hansen, H. Vold. Characteristics of the Vold-Kalman Order Tracking Filter[J]. Sound and Vibration, 1999.4: 34~44.
    [174] Gabor D., Theory of Communication[J]. J. Inst. Elec. Eng., 1946, 93:429-457.
    [175] Bastiaanst M.J., Gabor’s expansion of a signal into Gaussian elementary signals[J]. Proc. IEEE, 1981, 68:594~598.
    [176] Wexler J. and Raz S., Discrete Gabor Expansions[J]. Signal Processing, 1990, 21:207~220.
    [177] Qian S. and Chen D., Joint Time-Frequency Analysis, Englewood Cliffs, NJ:Prentice-Hall, 1996.
    [178] Qian S. and Chen D., Joint time-frequency analysis[J]. IEEE Signal Processing Magazine, 1999, 16(2): 52~67.
    [179] National Instruments. LabVIEW Order Analysis Toolset User Manual[EB/OL]. Austin, Tex: National Instruments. 2003 [2008-09-18]. http://digital.ni.com/manuals.nsf/websearch/CB41A8D63DCD355B86256D6E006B5DE1.
    [180]杨大地,涂光裕.数值分析[M] .重庆:重庆大学出版社, 2003, 07.
    [181] I. Santamaria, C. Pantaleon, Jesus Ibanez. A Comparative Study of High-Accuracy Frequency Estimation Methods[J]. Mechanical Systems and Signal Processing, 2000, 14(5): 819-834.
    [182] Luo J.W., Liu Y.J. Fast Computation of the Target Signal Phase in Noisy Environments[J]. Applied Mathematics and Computation. 2005, 166: 224-232.
    [183] David I. Bergman. Dynamic Error Correction of a Digitizer for Time-Domain Metrology[J]. IEEE Tranactions on Instrumentation and Measurement. 2004, 53(5): 1384~1390.
    [184]钟佑明,秦树人,汤宝平.Hilbert-Huang变化中的理论研究[J].振动与冲击.2002,12:13~17.
    [185] Bahl L R, Jelinek F. Decoding for Channels with Insection, Deletions,and Substitution with Applications to Speeeh Recognition[J]. IEEE Trans. IT.1975,21(2):401~411.
    [186] Baker J K. The DRAGON System-An Overview[J]. IEEE Trans. ASSP. 1975,23(l):24~29.
    [187] L.R.Rabiner. A tutorial on Hidden Markov Models and selected application in speech recognition[J]. Proc.IEEE,1989,77(2):257~286.
    [188] Nadas A,et al. On a Model-Robust Training Method for Speech Reeognition[J]. IEEE Trans. ASSP,1988,36(9):1432~1436.
    [189] Rabiner L R,Juang B H. An Introduction to Hidden Markov Models[J]. IEEE ASSP Magazine.1986,3(l):4~6.
    [190] Rablner L R,et al. On the Use of Hidden Markov Models for Speeker Independent Reeognition of Isolated Word from a Medium-Size Vocabulary[J]. AT&T Bell Tab,Tech. J. 1984,63(4):627~642.
    [191]冯长建.HMM动态模式识别理论方法以及在旋转机械故障诊断中的应用[D].浙江:浙江大学,2002.
    [192]钱敏平,龚光鲁.从数学角度看计算智能[J].科学通报,1995,43(16):1651~1792.
    [193] Geman S,Geman D. Stochastie Relaxation,Gibbs Distribution,and the Bayesian Restoration of Images[J]. IEEE Trans. PAMI,1984,6(5).
    [194]秦姣华,向旭宇.HMM在汉字识别技术中的应用[J].现代计算机:下半月刊.2000,(97):29~31.
    [195] Hasegawa, T., Yasuda, H., Matsumoto, T. Fast diserete HMM algorithm for online handwriting recognition. Pattem Recognition, 2000.Proeeedings. 15th International Conference , 2000,4:535~538.
    [196] L.R. Rabiner. A tutorial on Hidden Markov Models and selected application in speech reeognition[J]. Proc. IEEE,1989,77(2):257~286.
    [197] Bengio, Y., Frasconi, P. Input-output HMMs for sequence processing[J]. Neural Networks, IEEE Transactions on, 1996,7(5):1231~1249.
    [198] Ruey S. Huang, Chuang J. Kuo, Ling-ling Tsai, Chen, O.T.C.EEG pattern recognition-arousal states detection and classification[J]. Neural Networks, 1996. IEEE International Conference on, 1996,2:641~646.
    [199] Baggenstoss, P.M. A modified Baum-Welch algorithm for hidden Markov Models with multiple observation spaces[J]. Speech and Audio Processing, IEEE Transactions on, 2001,9(4):411~416.
    [200]童进,吴昭同等.大型旋转机械升降速过程故障诊断HMM方法研究[J].机械科学与技术.1999,18(6):973~975.
    [201]童进,吴昭同等.大型旋转机械升降速过程故障诊断HMM-AR方法研究[J].振动与冲击.1999,18(2):79~80.
    [202]茅晓泉,胡光锐.基于最大互信息的离散隐马尔柯夫模型训练方法[J].上海交通大学学报.2001,035(011):1713~1716.
    [203] Bahl L R, Brown P F, et al. Maximum Mutual Information Estimation of Hidden Markov Parameters for Speech Recognition. Proc. ICASSP’86,1986:49~52.
    [204] Normandin Y, Morgan S D. An Improved MMIE Training Algorithm for Speaker-Independent, Small Vocabulary, Continuous Speech Recognition. Proc. ICASSP’91,1991:537~540.
    [205] Juang B H, Rabiner L R. The Segmental K-means Algorithm for Estimating Parameters of Hidden Markov Models[J]. IEEE Trans. ASSP, 1990,38(9):1639~1641.
    [206] Young S J. Competitive Training in Hidden Markov Models. Proc. ICASSP’88,1988:28~31.
    [207] Bahl L R, Brown P F, De Souza P V, et al. A New Algorithm for the Estimation of Hidden Markov Models Parameters. Proc. ICASSP’88,1988:493~496.
    [208] D W Skagen. Estimation of running frequency spectra using a Kalman filtering algorithm[J]. Journal of Biomedical Engineering, 1988,10:275~279.
    [209] R J Meinhold, N D Singpurwalla. Understanding the Kalman Filter[J]. The American Statistician, 1983,37(2):123~127.
    [210] A H Jazwinski. Adaptive filtering[J]. Automation,1969,5:475~485.
    [211] C M Bishop. Neural networks of pattern recognition[M]. Oxford University Press, Oxford, 1995.
    [212]秦树人等.集成测试技术与虚拟式仪器[J].中国机械工程, 1999, 10(1):77~80.
    [213] Qin Shuren. Intelligent virtual controls—new concept of virtual instrument from whole to part. Proceedings of 5th ISMTII(Giza-Cairo, Egypt).2001,9: 285-290.
    [214]汤宝平.秦氏模型智能虚拟控件的实现[J].中国机械工程, 2003,14(7): 1218~1220.
    [215]尹爱军,王见等.秦氏模型—基于智能虚拟控件的仪器(第二版)[M].北京:科学出版社,2008.
    [216]秦树人,汤宝平,钟佑明等.智能控件化虚拟仪器系统——原理与实现[M].北京:科学出版社, 2004.
    [217]秦树人.岩石模型:机械系统大型测试仪器库[J].机械工程学报, 2007, 43(7):68~74.
    [218]尹爱军,秦树人,毛永芳.智能控件化虚拟仪器的模型化开发[J].重庆大学学报(自然科学版).2006,6:7~9.
    [219]秦毅,尹爱军.基于秦氏模型的可复用仪器模块的研究[J].中国机械工程.2007,6(18):711~714.
    [220]秦树人.现代测试测量及仪器技术的发展[J].世界仪表与自动化,2005,10:18~21+16.
    [221] Shuren Qin. Integrated testing technology and virtual instrument. Proceeding of 1st ISIST(Luoyang, China) 1999,4:66~71.
    [222]秦树人.虚拟测试仪器的创新研究[M].机械科学基础研究20年.2007,3:129~133.
    [223]秦树人,汤宝平.面向21世纪的绿色仪器[J].中国机械工程,2000,3:275~278.
    [224]秦树人.虚拟仪器—测试仪器从硬件到软件[J].振动、测试与诊断,2000,3:1~6.
    [225]秦树人.虚拟仪器及其最新发展[J].振动、测试与诊断,2000,6:123~129.
    [226]汤宝平,王见等.秦树人教授科技论文选集[C].北京:科学出版社,2008.
    [227]秦树人.岩石模型:机械系统大型测试仪器库[J].机械工程学报,2007,7:68~74.
    [228]柏林,秦树人等.虚拟仪器流技术的研究[J].中国机械工程, 2005, 16(6): 519-522.
    [229]金涛,季忠,秦树人.虚拟仪器系统中误差分析与修正[J].重庆大学学报(自然科学版), 2004, 27(12): 1-4.
    [230]杜金榜,王跃科.仪器仪表技术的发展趋向[J].仪器仪表学报. 2002, 23(5): 228-230.
    [231] Cao S G, Rees N W, Feng G. Analysis and design for a class of complex control systems[J]. Automation. 1997, 6: 1017-1039.
    [232]尹爱军.秦氏模型虚拟仪器及VMIDS开发系统的研究[D].重庆:重庆大学,2006.
    [233]郭瑜.基于时-频分析的虚拟式旋转机械特征分析仪系统的研究[D].重庆:重庆大学,2003.
    [234]秦树人.尹爱军.李宁.“岩石模型”大型仪器库实现原理的研究[J].机械工程学报.2010,46(6):51-62.
    [235]李宁,秦树人等.基于“秦氏模型”虚拟仪器的模态分析仪[J].现代科学仪器.2010,1:24-28.
    [236]秦毅.信号小波理论与一体化小波分析仪的研究[D].重庆:重庆大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700