用户名: 密码: 验证码:
丙草胺在水体中的光化学降解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要以高压汞灯、紫外灯、太阳光为光源,研究了酰胺类除草剂丙草胺在水溶液中的光解动态,并在高压汞灯光照下,分别研究了温度、水质、pH缓冲液、表面活性剂、硝酸盐和亚硝酸盐、色素、金属离子以及化肥对丙草胺光解的影响,同时以PNDA为探针,初步研究了双氧水对丙草胺光解影响机理。主要研究结果如下:
    1.丙草胺水溶液在太阳光下不易发生直接光解,光解半衰期为87h,在高压汞灯和紫外光下光照下光解迅速,且光解动态符合一级动力学,光解半衰期分别为5.12min、39.8min。
    2.在一定温度范围内,温度能较大地影响丙草胺的光解动态。在10℃、25℃、40℃时丙草胺的光解半衰期分别为26.65min、23.1min、21.3min,随着温度的升高,光解速率增大,但同时增大的幅度逐渐减少。
    3.不同的pH值同样影响丙草胺的光解速率,光解速率为pH9>pH7>pH4,光解半衰期分别为24.96min 、30.66min、 37.67min,光解速度随着pH值增加而增加,即在同等光源下,碱性条件有利于丙草胺的光解。
    4.丙草胺在5种不同水质中的光解速率有明显差异,在高压汞灯光照下光解速率为重蒸水>董铺水库水>巢湖水>琥珀潭水>稻田水,其中重蒸水中的光解半衰期为22.65min,稻田水中为38.5min。影响机理和不同水质的理化性质相关。
    5.阴离子表面活性剂SDBS、阳离子表面活性剂CTAB、混合型表面活性剂0206B对丙草胺均表现出不同程度的整体光猝灭效应,但作用机理却不相同。而非离子型表面活性剂Tween-60对丙草胺表现较明显的光敏化作用。表面活性剂对丙草胺的光敏或猝灭强度受表面活性剂性质、吸收光谱、添加剂量等诸多因素影响。
    混合型表面活性剂0206B的主要成分配比中农乳500和浓乳603分别以1∶0, 0∶1,1∶1,1∶2,2∶1浓度比混合时,均明显地延缓了丙草胺的光解,并且在1:1条件下,这两种成分对丙草胺表现的猝灭作用最强,为协同作用效应。
    6.硝酸盐、亚硝酸盐在实验添加浓度范围内,对丙草胺光解均表现出猝灭效应,效应强度随硝酸盐和亚硝酸盐浓度增加而增强。
    7.Fe3+离子促进了丙草胺的光解,而Cu2+、Pb2+对丙草胺的光解表现出微弱的猝灭作用,这主要与金属离子本身的氧化还原性质相关。
    8.甲基紫的加入对丙草胺的光解表现出猝灭效应,半衰期分别由单独光解的24.31min延长至26.35min、27.18min、32.53min,甲基紫的存在可能参与了丙草胺竞争羟基反应。不同浓度的核黄素均对丙草胺的光解有敏化作用,半衰期分别由5.57min
    
    
    缩短到5.05min、4.78min、4.19min,光解速率随核黄素添加浓度增大而增大。甲基绿等4种色素的加入对丙草胺光解影响不明显。
     9.磷酸二氢钾和氯化钾不同浓度的添加对丙草胺光解均表现出光猝灭作用,猝灭率效率分别和化肥物质添加浓度呈正相关,磷酸二氢钾主要改变了水溶液的pH,而氯化钾主要是由于Cl-的作用。尿素和碳酸氢铵也由于pH对丙草胺光解具有微弱的敏化作用,对丙草胺的光敏率与添加浓度显示出正相关性。
    10. H2O2由于能通过光解产生羟基自由基,从而对丙草胺表现显著的光敏化降解作用。高压汞灯下H2O2使丙草胺的光解速率提高了4.55~1.74倍,但光敏率随H2O2浓度添加至一定量后而减弱。在太阳光下,H2O2使丙草胺的降解速率提高了33.6~81.58倍,敏化作用却随添加浓度而增强,可能两种光源辐射波长的不同,丙草胺的降解方式也有差异。
The photolytic kinetics of Anilide herbicides pretilachlor in aqueous solution irradiated by HPML, UV and sunlight was investigated. The following effects on photolysis of pretilachlor under HPML were also studied: temperature, water types, pH buffers, surfactants, nitrate and nitrite, dyes, metallic ions and fertilizers. At the same time, the effect mechanism of H2O2 on pretilachlor was roughly expounded with PNDA as a·OH probe. The main results were summarized as follows:
    1. The direct photodegradation rate of pretilachlor in aqueous solution by sunlight was slow, the half-life was 87h. however it quickly under HPML and UV irradiation, the half-life was 5.12 and 39.8miniutes.the photolysis follow the first order kinetics.
    2. The photolysis of pretilachlor was greatly affect under different temperature. When the temperature was 10℃,25℃,40℃,the half life of pretilachlor was 26.65min,23.1min,21.3min.
    3.The pH value has significant effect on pretilachlor photolysis, the photolysis rate constant pH9>pH7>pH4, the half-lift was 24.96min 、30.66min、 37.67min.At the same condition, pretilachlor could be easily photodegradated in alkaline solution.
    4.The photolytic rates of pretilachlor in five types of water ranged as: distilled water>reservoir water (DongPu)>lake water(ChaoHu)> pond water (HuPo)> paddy water. The half-life of pretilachlor was 22.65min with distilled water while 38.5min with paddy water. The effect mechanism was related to the physical and chemical properties of the water samples.
     5.Under HPML, surfactant SDBS, CTAB, 0206B both showed photo-quenching effects to pretilachlor. But there mechanisms were different. Nonionic surfactant Tween-60 enhanced the photodegradation rate of pretilachlor. The result showed that the degree of photosensitive or photo-quenching effects of surfactants on the photolysis of pretilachlor was affected by properties of surfactants, UV spectra, the additive dosage and so on.
     The composition of the mixture surfactant 0206B: Nongru 500and Nongru 603 was mixtured by 1∶0,0∶1,1∶1,1∶2,2∶1, they both slow down the photolytic rate of pretilachlor. When 1:1, the photo-quenching rate was the biggest in their added dosage range, and they worked in coordination.
    6. Both nitrate and nitrite showed photoquenching effects on pretilachlor in their added
    
    
    dosage range. The photoquenching rate was improved with the increases of nitrate and nitrite concentration.
    7. Fe3+ enhanced the photodegradation rate of pretilachlor while Cu2+, Pb2+ exhibited photoquenching effects on pretilachlor. The mechanism has relation to the oxidative and reductive properties of metallic ions.
    8.Crystal Violet showed photo-quenching effect on pretilachlor. Different dosages crystal Violet made half-life of pretilachlor prolong from 24.31min to 26.35min, 27.18min, 32.53min. At the same time, crystal viboflavin sensitized the pretilachlor photolysis, and the photolytic rate was improved with the increases of crystal viboflavin concentration. Methyl green, methyl red, methyl blue and methyl orange had little effect on photolysis of pretilachlor.
     9.Different dosages of KH2PO4 and KCl both showed photo-quenching effects on pretilachlor, and photo quenching rate improved with the increases of fertilizer concentration. NH4HCO3 and urea sensitized the pretilachlor photolysis. But their mechanisms were different. KH2PO4, NH4HCO3 and urea change the pH value of solution because of their properties. The Cl- of KCl could absorb·OH competing with pretilachlor.
     10. H2O2 produced hydroxyl radical (·OH) upon UV irradiation, so the photodegradation of pretilachlor was greatly promoted. Under HPML irradiation, the photolysis rates of pretilachlor were improved about 4.55~1.74 times. But with the increasing of H2O2 dosage, the photosensitive rate was decreased. Under sunlight, the photolysis rates of pretilachlor were improved about 33.6~81.58 times with H2O2. and the photosensitive rate was improved with increasing dosage of H2O2. The photodegradation path of pretilachlor may be different und
引文
1. 喻子牛,柯云.微生物农药在病虫害可持续控制中的应用及发展策略. 微生物农药及其产业化 . 科学出版社. 北京,1997,1~2.
    2. 顾宝根,姜辉. 我国生物农药的现状及问题.微生物农药及其产业化.科学出版社.北京,13~14.
    3. 华小梅,单正军. 我国农药的生产使用现状及其污染环境因子分析. 环境科学进展. 1996,4(2):33~45.
    4. 卢植新. 当前农药发展趋势和农药开发工作综述.广西植保,2002, 15(1):17~21.
    5. 上海师范大学,福建师范大学主编. 化工基础. 北京高等教育出版社,2001:74~90.
    6. 边丽,毛雁升. 化学农药的投放使用对环境安全性的评价. 伊犁教育学院学报, 2001,14(1): 56~60.
    7. 张秋芳,叶华仙,雷锦桂等. 有机农药的微生物降解研究. 福建环境, 2000,17(3): 34~37.
    8. Toshinobu Mursi ,曹如珍译. 农药在环境中的光化学分解作用. 农药译丛,1983 ,5(5):44~47.
    9. Whetael, N.K. and Creeger S.M., Hazard evaluation division standard evaluation procedure soil photolysis studies. 1985,EPA-540/9-85-016.
    10. 姚建仁,焦淑贞.化学农药光解研究进展.农药译丛,1989, 11:26~30.
    11. 岳永德, 刘根风.农药的环境化学及其应用.安徽农业大学学报,1995,22(4):339~345.
    12. 方晓航,仇荣亮.农药在土壤环境中的行为研究. 土壤与环境, 2002,11(1):94~97.
    13. Miller G..G., Zepp R.G. Extrapolating Photolysis rate from the laboratory to the environment. Residue Rev . 1983, 85:89~110.
    14. Burkhand N., 朱树泽译. 有机农药在表土中的光解作用. 原子能农业译丛,1980(4):49~52.
    15. Zabik.M.J.,Leavitt R.A. Photochemistry of bioactive compounds:A review of pesticide Photochemistry. Annual Review of Entomology,1976(21):61~72.
    16 王琴孙,刘玉鑫. 有机磷农药在表土中的光解. 农药,1981, 5:1~7.
    17. 岳永德. 高效薄层析进行农药吸附态光解的研究. 环境科学,1995,16(4):16~18.
    18. 陈宗懋. 三十六种化学农药光解速率的比较研究. 环境科学学报,1985.5(1):70~84.
    19. Ivie.G.W., J.E. sensitied photodecomposition and photosensitizer activity of pesticide chemicals exposed to sunlight on silica Gel chromatoplates. J.Agric. Food Chem., 1971,19(3):405~409.
    20. Ruzo L. O., Holmstead R. L. and Casida J. E. Pyrethroid photochemistry: Decamethrin. J. Agric. Food Chem., 1977,25(6):1385~1394.
    21. 岳永德,花日茂,汤锋.土壤粒径对农药在土壤中的分布和光解的影响.安徽农业大学学报,1993,20(4):309~314
    22. 岳永德,汤峰,花日茂.土壤质地和湿度对农药在土壤中光解德影响.安徽农业大学学报,1995,22(4):351~355.
    
    23. 徐宝才.多菌灵在环境中德光化学转化研究.安徽农业大学硕士学位论文,1999.
    24. Gauhan L. C. and Casoida J. E. Degradation of trans and cis-ermethin on cotton and bean plants. J. Agric. Food Chem.,1978,26(3):525~523.
    25. Holmstead R.L., Casida J.E., Ruzo L.O. et al. Pyrethroid photodecomposition: Permethrin. J. Agric. Food Chem.,1978,26(3):590~595.
    26. Holmstead R.L., Fullmer D.G., Ruzo L.O. et al Pyrethroid photodecomposition: Pydrin .J. Afric .Food Chem. 1978,26(4):954~959.
    27. 花日茂,岳永德,汤锋. 除草剂丁草胺在溶剂中德光化学降解作用研究.植物保护研究进展,第一版,中国科学技术出版社.北京,1995,278~281.
    28. Jirkocsky J., Faure V. and Boule. P. Photolysis of diuron .pestic. Sci. 1997,50: 42~52.
    29. Sharma K.K. and Chibber S.S. Photolysis of dinisonazole-munder sunnight. pestic. Sci. 1997, 49:115~118.
    30. Kochany J. and Maguire R.J. Sunlight photodegradation of metolachlor on water. J. Afric. Food Chem. 1994,42:406~412.
    31. Choudhury P.P. and Durdja P. Studies in photodegradation of chlorimuron-ethyl in soil. Pestic. Sci. 1997, 51:501~205.
    32. Hapeman C.J.,Bilboulian S. and Anderson B.G. et al. Structrual influences of low-molecular-weight dissolved organic car bonmimics on the photolytic fate of atrazine. Environmental Toxicology and Chemistry, 1998,17(6):975~981.
    33. Millet M.,Palm W. U. and Zetzsch C. investigation of the photochemistry of urea herbicides (chlorotoluron and isoproturon) and quantum yields using polychromatic irradiation. Environmental Toxicology and Chemistry, 1998,17(2):258-264.
    34. Marchererre L., Choudhry G.G. and Webster G. R.B. Environmental photochemistry of herbicides. Reviews of environmental Contamination and Toxicology,1998,103:61~120.
    35. Miller G.C. and Zepp R. G. Extrapolating photolysis rates from the laboratory to the environment. Residue Review,1983,8 5:89~107.
    36. Zepp R.G.and Cline D.M. Rales of direct photolysis in aquatic environment. Environment Science and Technology, 1977,11(4):359~366.
    37. Zepp R.G. Experimental approaches to environment photochemistry. The handbook of Environment Chemistry. Edit by Hutzinger, Part B, 1982, 2:19~44.
    38. 陈锡岭, 石明旺.新型杀菌剂叶青双光解动态研究.农业环境保护,2000,19(40):239~241.
    39. Lemaire, J.,Guth,J.A.,Klais,O. Ring test of a method for the phototransformation of chemicals in water. Chemosphere,1985, 14(1):53~77.
    40. Mansour,M.,Feicht,E.A.,Beheshti,A. experimental approaches to studying the photo stability of
    
    
    selected pesticides in water and soil. Chemosphere,1997,35: 39~50.
    41. Mansour,M.,Feicht,E.A.Behechti,A. Determination photo stability of selected agrochemicals in water and soil.chemosphere,1999,39(4):575~585.
    42. Burrows,H.D.,M.Canle L, Santaballa, J.A., Steenken, S. Reaction pathways and mechanisms of photodegradation of pesticides. Journal of Photochemistry and Photobiology B: Biology .2002, 67:71~108.
    43.王连生编. 有机污染物化学(上册).科学出版社.北京,1990.
    44. 陶庆会. 氟乐灵的光稳定化研究. 安徽农业大学硕士学位论文, 2001.
    45.(英)J.尔特洛浦J.科伊尔著,宋心琦等译. 光化学原理. 清华大学出版社.北京, 第一版.
    46. 岳永德,陶庆会,汤锋等. 表面活性剂对甲基对硫磷光解的影响. 安徽农业大学学报,2000,27(2):103~107.
    47. PH.Schnitt.,王春霞,彭安等. 不同来源腐殖酸的光解及过氧化氢对其光解的影响. 环境科学学报,1996,Vol.16,No.3:270~275.
    48. 毕刚,田世忠, 冯子刚等. 氯氰菊酯光敏降解中单线态氧机理研究. 分析科学学报,2000,Vol.16,No.6:450~455.
    49. T.A. Albanis, IK. Konstantinou. Photodegradation of selected herbicides in various natural waters and soil-sorbed phase under environmental conditions. Abstr. Paper Am. Chem. Soc, 217.
    50. Crosby, D.G. et. al. J. Agric. Food Chem. 1976, 24:707.
    51. Ivie.G.W., J.E..sensitied. photodecomposition and photosensitizer activity of pesticide chemicals exposed to sunlight on silica Gel chromatoplates. J.Agric. Food Chem., 1971.19(3):405~409.
    52. 花日茂, 汤锋, 岳永德等. 甲基对硫磷与r-六六六在水中光化学降解相互作用的研究.安徽农业大学学报. 1994,21(4):458~462.
    53. 岳永德, 汤锋,花日茂等. 混合农药及表面活性剂对毒死蜱光解影响的研究. 安徽农业大学学报,2000,27(1):1~4.
    54. 农用化学品手册.化学工业出版社,北京.
    55. 韩熹莱.农药概论.北京农业出版社.北京,214~217.
    56. R.M.Bhagat S.I., Bhuiyan. K. Moody. et al. Effect of water, tillage and herbicide on ecology of weed communit ies in intensive wet-seeded rice system.. Crop Protection. 1999,293~303.
    57. G.K. patnaik. Effect of herbicides on nitrogen fixation associated with rice rhizosphere. Chemosphere. 1995,vol.30,No.2:339~343.
    58. 郑和辉,叶常明. 乙草胺和丁草胺的水解及其动力学.环境化学,2001,vol.20, No.2, 168~171.
    59. 郑和辉, 叶常明.甲草胺和丁草胺等除草剂在多介质环境中环境行为综述.环境科学进展,1999,vol.7,No.3,1~10.
    60. 王琪全, 刘维屏.乙草胺和异丙甲草胺在土壤中吸附的研究.土壤学报, 2000,vol.37,No.1,95~
    
    
    101.
    61. 郑和辉, 叶常明. 乙草胺在水中的光化学降解动态研究. 农药科学与管理,2001,vol.22,No.6 12~13.
    62. 花日茂, 岳永德, 邢建国等. 腐殖质对乙草胺的光猝灭降解作用的效应. 安徽农业大学学报,  2000,27(2):108~111.
    63. Galassi,S .,Provini A.,Mangiapan s. and Benfenati.E. Alachlor and its metabolites in surface water Chemosphere. 1996, vol.32, No.2, 229~237.
    64. C.Mouvet. Stability of isoproturon, bentazone, terbuthylazine and alachlor in natural groundwater, surface water and soil water samples stored under laboratory conditions Chemosphere. 1997, vol.35,No.5,1083~1097.
    65. Paige J.Novak, Kinetics of alachlor transform and identification of metabilities under anaerobic conditions, water Res. 1997,31(12): 3107~3115.
    66. 张秋芳,叶华仙,雷锦桂等. 有机农药的微生物降解研究. 福建环境, 2000,Vol.17,No.3,34~37.
    67. Beetman, G.B. and Deming, J. M. dissipation of acetanilide herbicide from soil. Agronomy journal, 66(2):308~331.
    68. 黄欣. 六价铬对土壤中丁草胺降解作用的影响. 农药, 1989,28(3):21~22.
    69. 叶央芳,闵航, 杜宇峰. 一个硫酸盐还原细菌富级物对丁草胺的厌氧降解.环境科学学报,2000,20(3)68:394~399.
    70. Chen , Yuh-Lin., Wu,Tien-Chi. Degradation of Herbicide Butachlor by Soil Microbes. Pesticide Sci.1987,3:411~417.
    71.Chakraborty, S.k. Anjan Bhattacharyya. Degradation of butachlor by two soil fungi. Chemosphere,1991,23(1):99~105.
    72. Yuh-Lin Chen. Degradation of butachlor in paddy fields FAO. Weed Control. 1982, 121~142
    73. Ronald M, Atlas. Microbiology Fundamentals and Applications. 1998:426.
    74. Chie Itoh, Atsuo Nagamatsu. An aminoptidase activity from porcine kidney that hydrolyzes oxytocin and vasopressin: purification and partial characterization. Biochimica biophysica acta 1995,203~208.
    75. P.R.Underhill, D.L.DuQuesnay. The reaction of water with abraded aluminum surfaces as studied by Fourier transform infrared spectroscopy (FTIR). Applied surface science .1999,138~140.
    76. David S. Ross, Indira Jayaweera. The hydrothermolysis of the picrate anion: kinetics and mechanism. Thermochimica Acta 2002,155~162.
    77. 郑巍. 新农药吡虫啉水解动力学和机理研究. 环境科学学报,1999,Vol.19,No.1:101~104.
    78. Victor Glezer. Hydrolysis of haloacetonitriles: linear free energy relationship, kinetics and products. Elsevier science Ltd, 1999, Vol.33, No.8,1938~1948.
    
    79. James A. Vitarius and Lester G. .Sultatos. The role of calcium the hydrolysis of the organophosphate paraoxon by human serum A-esterase. Elsevier Ltd.1995, Vol.56, No.2,125~134.
    80. 王一茹,刘长武, 牛成玉等. 丁草胺在水体中的光解和稻田中归趋的研究. 环境科学学报,1996,Vol.16,No.4:475~481.
    81. 朱忠林. 溴氰菊酯的光解、水解与土壤降解. 农村生态环境, 1996, 12(4):5~7.
    82. 李伟. 氯磺隆的化学行为. 四川师范大学学报(自然科学版),2002,Vol.25,No.5:521~524.
    83. 陈锡岭,徐新明,樊德方. 温度和pH值对雷克拉水解速率的影响. 农业环境保护,1999,18(6):275~277.
    84. 郑和辉,叶常明. 乙草胺和丁草胺的水解及其动力学.环境化学,2001,vol.20, No.2, 168~171.
    85. 郑和辉,叶常明. 乙草胺在水中的光化学降解动态研究. 农药科学与管理,2001,vol.22,No.6 12~13.
    86. 王琪全, 彭展雄.几种酰胺类除草剂的光降解及其致突变性.环境科学.1999,20(4):21 ~22.
    87. Jennifer Fulkerson Brekken. Indirect photolysis of acetochlor: Rate constant of a nitrate-mediated hydroxyl radical reaction. Chemosphere, 1998, Vol.36, No.12, 2699~2704.
    88. Chen, Yu-Lin.,Chen,Chien-Chih. Photodecomposition of a Herbicide, Butachlor. Pesticide Sci.1978,3:143~148.
    89. Gustavo A. Penuela and Damia Barcele. Comparative degradation kinetics of alachlor in water by photocatalysis with FeCl3, TiO2 and photolysis, studied by solid phase disk extraction followed by gas chromatographic techniques. J. Chromatogr.A., 1996.754:187~195.
    90. Serge Chiron, Joaquin Abian, Matra Ferrer et al. Comparative photodegradation rates of atachlor and bentazone in natural water and determination of breakdown products. Environmental Toxicology and Chemistry,1995.14(8):1287~1298.
    91. Mangiapan,S., Benfenati, E. Pergnolato, M., et al. Metabolites of Alachlor in water: Identification by Mass Spectrometry and Chemical Synthesis. Environ Sci Technol. 1997,31:3637~3634.
    92. S.Y. Yuaqn,Biodegradation of phenanthrene in river sediment, Chemosphere, 2001,Vol.43,273~278.
    93. Wataru Nishijima, Improvement of biodegradation of organic substance by addition of phosphorus in biological activated carbon Elsevier Science 1997, Vol .36, No. 12, pp.251~257.
    94. 潘祖仁主编. 高分子化学. 化学工业出版社.北京, 270~276.
    95. Mutasem E.F. Simulation of alachlor fate and transport: model calibration and sensitivity analysis. Intern .J. Environ. Studies,2001.58:609~624.
    96. Beltran F., Acedo B.and Rivas J., Use of hydrogen peroxide to remove alachlor from surface water. Environmental Contamination and Toxicology,1999.63:9~23.
    
    97. Graham D.W.,Katy Miley M.,Frank Denoyelles, et al. Alachlor transformation patterns in aquatic field mesocosms under variable oxygen and nutrient conditions.Wat. Res.,2000.34(16):4054~4062.
    98. Galassi S.,Provini A., Mangiapan S. and Benfenati E. Alachlor and its metabolites in surface water. Chemosphere, 1996.32(2):229~237.
    99. 徐利. 乙草胺在水中光化学降解机理研究. 硕士学位论文, 安徽农业大学, 2003..
    100. 李文忠主编. 有机化学.上海交通大学出版社, 1997, 156~158.
    101. 奚旦立,孙裕生,刘秀英编. 环境监测.高等教育出版社.北京, 44~78.
    102. R.A. Larson, E.J. Weber, Reaction Mechanisms in Environmental Organic Chemistry, CRC Press, Boca Raton, FL, 1994, 359.
    103. H. Gao, R.G. Zepp, Environ. Sci. Technol. 1998,32: 2940.
    104. O.C. Zafiriou, J. Joussot-Dubien, R.G. Zepp, R.G. Zika, Environ. Sci. Technol. 1984,18 : 358.
    105. P.P. Vaughan, N.V. Blough, Environ. Sci. Technol. 1998,32 :2947.
    106. Komives,C.F.,Lilley,J.Russell. Biodegradation of pesticides in nonionic water-in-oil micromulsions of Tween 85: relationship between micelle structure and activity, Biotechnology and Bioengineer in. 1994,43:946~959.
    107. Baldwin,W.S.;S.E.Graham;d.Shea;G.A.Leblanc. Altered metabolic elimination of testosterone and associated following exposure of Daphnia magna to nonylphenol polyethoxylate. Ecotoxicology and Environmental Safety,(B), 1998,139:101~111.
    108. 戴树桂,张东海. SDBS及腐殖酸对涕灭威及其氧化物水解影响. 中国环境科学, 2002.22(3)193~197.
    109. 王如意.二种酞酸酯在水溶液中的光化学降解研究. 硕士学位论文, 安徽农业大学, 2002.
    110. 水环境中阴离子对表面活性剂光催化降解的影响. 北京师范大学学报(自然科学版) 2000, 36(1):?127~131.
    111. 夏星辉,许嘉琳,戚慧心等. 十二烷基苯磺酸钠的光催化降解研究. 中国环境科学, 2002,22(3) :263~267.
    112.王占生,刘文君编.微污染水源饮用水处理.中国建筑工业出版社.北京,1999.
    113. John Mack,James. R.Bolton, Photochemistry of nitrite and nitrate in aqueous solution: a review,Journal of Photochemistry and Photobiology A: Chemistry. 1999,128:1-13.
    114. 朱承驻. 等离子体降解水相中有机污染物的机理研究. 环境科学学报, 2002 22(4):428~433.
    115. Sorensen M, Frimmel F H. Photochemical degradation of hydrophilic xenobiotics in the UV/H2O2 process: influence of nitrate on the degradation rate of EDTA, 2-amino-1-naphthalenesulfonate, diphenyl-4-sulfonate and 4,4’-diaminostilbene-2, 2’-disulfonate. Wat.Res.,1997, 31(11):2885~2991.
    116. Faust B.C., Hoigne J. Treatment of textile wastewater by fenton’s reagent. Atmos.
    
    
    Environ.,1990,24:79.
    117. Benkelerg H.J.,Warnech P.J. Electrical and chemical potentials in quantum mechanical conductor, Phys. Chem.1995,199:5214.
    118. 张莉, 杨桂朋.海洋中铁猛铜等过渡金属元素的光化学研究进展.海洋化学, 2002,24(10):33~36.
    119. 张文兵,肖贤明,傅家谟等. 溶液中阴离子对UV/H2O2 降解4-硝基酚的影响. 中国环境科学 2002,22(4) :301~304.
    120 郭振良.甲基紫褪色光度法测定酸性光亮镀铜液中的铜. 材料保护, 2003, 36(10):57~58.
    121. 朱兴松,甲基紫光度法测定Fenton体系中产生的羟自由基. 哈尔滨商业大学学报(自然科学版) , 2003,19(5):592~594.
    122. 陆长远,韩镇辉. 核黄素(维生素B2)的光物理和光化学性质.中国科学(B),2000 30(5):428~435.
    123. 岳永德主编. 环境保护学. 中国农业出版社. 北京, 1999.
    124. 中国土壤协会.中国土壤科学的现状和展望.南京: 科技出版社,1997,249~254.
    125. 皮广洁主编.农业资源利用与管理.中国林业出版社.北京,2000, 217~218.
    126. 刘中林.苯酚水溶液光催化降解的盐效应. 中国环境科学,?2003 ,23(5):539~542.
    127. 陈达美. TiO2悬浮体系光催化降解染料动力学研究. 精细化工, 2002, 19(1): 55~58.
    128. Oliver, C., Zafiriou, J.J.D, Richard, G.Z., et al. Photochemistry of natural waters. Environ. Sci. Technol. 1984, 18(12): 358~371.
    129. 王一茹,刘长武,牛成玉等. 水体中农药与氢氧基的反应活性及持久性的关系.环境化学, 1998 37(1):60~67.
    130. Soo-M.K,Sven-U.G.,Alfons.V.Landfill leachate treatment by a photoassisted Fenton reaction. Wat. Sci. Tech.1997,35(4):239~248.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700