用户名: 密码: 验证码:
DATS逆转人类骨肉瘤多药耐药株耐药及对类肿瘤干细胞作用的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:骨肉瘤是骨外科常见于青少年患者的恶性肿瘤,虽然近年来在外科手术以及新辅助化疗上取得了很大进展,但死亡率仍很高。骨肉瘤易复发转移及患者对化疗药物的原发或继发耐药是导致治疗失败的主要原因。尽管临床已开发出多种针对肿瘤耐药的药物,但临床疗效仍不满意,肿瘤干细胞假说为探寻骨肉瘤的发生转移及耐药机制,寻找有效治疗药物指明了方向。
     肿瘤干细胞(Tumor stem cells)的发现为揭开肿瘤的发生、发展及侵袭转移耐药机制,寻找肿瘤预防治疗的方法等展示出广阔的前景。早在上世纪中叶,科学家们从恶性畸胎瘤与胎儿组织的相似性,特别是癌组织与胚胎组织相似的多向潜能分化性,认识到二者可能密切相关。近年来的研究表明,在白血病以及部分实体瘤中(如乳腺癌、脑瘤等),只有一小部分肿瘤细胞具有无限增殖能力,并可形成新的肿瘤灶,这种细胞被认为是肿瘤干细胞。当前所指的肿瘤细胞的异质性不仅包括肿瘤内细胞的异形性,对化疗放疗反应的差异以及侵袭和转移能力的不同,还包括肿瘤中存在有肿瘤干细胞和非肿瘤干细胞。多数细胞没有无限增殖和成瘤能力,只有肿瘤干细胞可自我更新产生新的肿瘤干细胞和无致瘤能力的肿瘤细胞。
     肿瘤干细胞假说的提出是人类认识肿瘤发生机制的一大进步,它在理论上丰富了肿瘤发生的理论,在临床实践中提示人们杀伤肿瘤细胞(虽然它们也不断地增殖)并不能治愈肿瘤,原因是肿瘤干细胞表达ABC转运蛋白,参与多药耐药,并表达与干细胞共同的维持未分化的关键调控基因,如Sox2,Nanog,Oct4等,能够保持并具有很强的自我更新能力和抗凋亡能力,使得它们可逃逸当前的标准治疗方法,成为复发转移的“源泉”,因此,肿瘤干细胞被认为是肿瘤治疗研究的新靶点,成为根治恶性肿瘤的希望所在。
     寻找肿瘤干细胞的表面分子标记,一直是研究的热点。1997年,Bonnet等研究发现,人急性粒细胞白血病(acute myeloid leukemia,AML)中的CD34+CD38-亚群细胞,虽然仅占总数的0.2%,但是唯一可在免疫缺陷鼠具有成瘤性的细胞;2003年,Singh SK等发现脑肿瘤细胞在无血清培养中仅占总细胞数少数的CD133+群细胞可形成肿瘤细胞球,而CD133-群细胞不能形成,在第二年他们又发现CD133+群细胞移植到NOD/SCID鼠脑内,可诱发脑肿瘤,但CD133-群细胞却不能。2006年后,研究发现越来越多的肿瘤干细胞与CD133+群细胞有关,Suetsugua从肝癌细胞株Huh-7中,Ricci-Vitiani L和O'Brien CA分别在结肠癌组织中均分离出CD133+细胞,并证明该群细胞为肿瘤干细胞。目前,骨肉瘤肿瘤干细胞尚无公认的表面标记。
     当前的许多研究认为,肿瘤干细胞是造成肿瘤耐药的最根本原因,肿瘤细胞对化疗药物的耐受性是肿瘤治疗的主要障碍。现有治疗肿瘤的方法主要是针对肿瘤组织内的大多数细胞,而不是肿瘤干细胞。肿瘤干细胞与正常干细胞具有许多相似的特征,如大多处于细胞周期的G0期,具有自我更新和分化能力,表达特定的干细胞表面标记,共用相同的干细胞调控通路等。研究证明,肿瘤干细胞致瘤性强,并多表达特异性的ATP结合盒转运蛋白(ATP-binding cassettetransporter,ABC transporter),如ABCB1、ABCG2等介导的膜泵耐药分子,使其对化疗天然耐药。ABCB1、ABCG2是从肿瘤组织中分离出来的最基本的肿瘤多药耐药基因,ABCB1编码P-gp,ABCG2编码BCRP;这些转运蛋白通过利用ATP分解产生的能量主动将细胞内的药物泵出,从而保护自身免受细胞毒性药物的损伤,对化疗药物不敏感。肿瘤干细胞高表达这类分子,可以将化疗药物泵出细胞,降低细胞内的药物浓度,导致肿瘤化疗后少数肿瘤干细胞仍然存活,目前认为这是肿瘤耐药、复发转移的重要机制。
     为了寻找逆转肿瘤多药耐药的方法,科学家们实验了许多药物,诸如:钙离子通道阻滞剂,免疫抑制剂以及激素类药物等等药物,取得了一定的效果,但是,这类药物在产生逆转效应剂量上,都具有一些毒副作用,限制了临床应用。因此,许多研究者开始转向一些天然药物。大蒜中的成分DAS,就已经被证明在低毒性的剂量上,有能力逆转P-gp介导的K562白血病耐药株的多药耐药性。近年来的流行病学研究已经证实,大蒜与人体许多种癌症的发病率下降有密切的关系,这应归功于从粉碎的新鲜大蒜中提取的有机硫化合物(organosulfurcompounds,OSCs),主要包括DAS(diallyl sulfide,二烯丙基一硫化物)、DADS(diallyl disulfide,二烯丙基二硫化物)、DATS(diallyl trisulfide,二烯丙基三硫化物,又称为大蒜素)。我们曾经对DATS对于骨肉瘤细胞系Saos-2作用进行研究,发现DATS对Saos-2细胞具有明显的抑制作用。而对于DATS是否具有和DAS类似的逆转P-gp介导的多药耐药性的作用,目前还未见有报道。
     本研究对人类骨肉瘤及Saos-2细胞系中的肿瘤干细胞标记物CD133表达进行研究,并用免疫磁珠细胞分选(MACS)方法分离Saos-2细胞系中的CD133阳性(CD133+)群细胞,对其分化、细胞周期、致瘤性以及与多药耐药相关和干细胞调控相关的MDR1、Sox2基因表达进行研究,以研究该群细胞的干细胞特性。使用逐步递增氨甲喋呤(MTX)浓度方法诱导建立骨肉瘤多药耐药系Saos-2/R,评估大蒜素(DATS)逆转骨肉瘤耐药的能力,并研究DATS逆转耐药后,培养基中MTX对Saos-2/R中肿瘤干细胞标记物CD133表达百分率的影响。
     目的:检测肿瘤干细胞的表面分子标记CD133在骨肉瘤组织细胞中的表达,分析骨肉瘤细胞系Saos-2中CD133+群细胞的干细胞特性。以Saos-2为母本,诱导建立骨肉瘤耐药细胞系,研究大蒜素(DATS)逆转骨肉瘤耐药的潜力,并研究逆转耐药前后,对骨肉瘤肿瘤干细胞群的影响。
     方法:免疫组化研究CD133的表达:取自本院病理科的骨肉瘤常规石蜡包埋组织蜡块标本55例,其中骨旁骨肉瘤4例,纤维母细胞型骨肉瘤13例,软骨母细胞型骨肉瘤12例,骨母细胞型骨肉瘤26例,切成3μm的组织切片备用。取Saos-2细胞系对数增长期细胞,传代于放置有消毒后盖玻片的培养皿中,培养24h制备细胞爬片,使用70%乙醇固定20分钟备用。CD133表达流式细胞仪分析:分析对数生长期的骨肉瘤细胞系Saos-2细胞的CD133表达百分率。分离去除死细胞后,使细胞与CD133-PE抗体结合,上机检测CD133表达百分比率。CD133+Saos-2细胞分化研究:检测CD133阳性细胞加入完全培养基前后的细胞周期及CD133百分率变化;收集细胞后,按照操作手册,MACS去除死细胞,然后同样用MACS方法分离CD133+群细胞,流式细胞分析该群细胞在加入全培养基前的第0天,以及加入全培养基后第3及10天的CD133阳性细胞群的百分率的变化,并以Saos-2细胞做对照,分析第0天及第10天的细胞周期变化。CD133+/-群细胞MDR1,Sox2基因表达Real-time PCR分析:使用Real-time PCR分析CD133+群细胞涉及多药耐药及干细胞分化调控的关键基因MDR1、Sox2的表达情况;收集细胞,按照操作步骤去除死细胞,分选出CD133+/-群细胞,按照步骤行RNA抽提及逆转录,并行Real-time PCR分析。CD133+/-群细胞平板克隆形成实验:细胞平板克隆形成实验检测CD133+/-群的细胞克隆形成能力,分析其致瘤性差别;收集细胞后,按照操作手册,MACS去除死细胞,然后MACS方法分离CD133+/-群细胞,将细胞悬液做倍数稀释,按每皿150、100、200个细胞梯度密度,分别接种于含10ml预温37℃培养液的培养皿中,晃动培养皿使细胞分散均匀,将平皿移入培养箱中,在37℃,5%CO2及饱和湿度环境下,静止培养3周,将平皿放置在显微镜下,肉眼直接计数克隆数,按照公式:克隆形成率(%)=克隆数/接种细胞数×100,计算克隆形成率。
     使用氨甲喋呤(MTX)浓度递增法诱导培养Saos-2细胞系,使Saos-2逐渐产生耐药性,命名为Saos-2/R,使用RT-PCR及Western blotting方法研究其P-gp(MDR1)的表达情况;使用MTT法验证Saos-2/R对多种化疗药物的药物敏感性变化,确定其是否产生多药耐药;DATS逆转耐药研究:应用含梯度浓度的DATS的完全培养基孵育Saos-2/R 48h,RT-PCR及Western blotting方法检测Saos-2/R的P-gp(MDR1)表达变化,分析能够下调P-gp(MDR1)表达的最低DATS逆转浓度;MTT药敏实验检测DATS作用后,Saos-2/R对不同化疗药物敏感性的变化。DATS逆转耐药后对CD133+群细胞的影响:使用含有最低逆转浓度的DATS及梯度浓度MTX的完全培养基孵育Saos-2/R细胞48h,并与不含DATS,但含有同样梯度浓度MTX完全培养基孵育的Saos-2/R细胞做对照,流式细胞仪分析梯度浓度的化疗药物MTX对Saos-2/R中的CD133+群细胞所占比例的影响。
     结果:在人体骨肉瘤组织中普遍存在CD133+群细胞,约占5-14%,而在对人类骨肉瘤细胞系Saos-2的研究中发现,CD133+群Saos-2细胞在Saos-2细胞中约占5%左右,在使用MACS分离提纯后,对比CD133+群细胞在加入完全培养基前后的细胞周期及CD133表达百分率变化,发现CD133+群百分率在第0,3及10天出现迅速的时间依赖性下降,并且第10天时的细胞周期的G0/G1,G2及S期细胞比例与对照组Saos-2细胞的细胞周期相似,而与第0天细胞周期相比,第10天的细胞周期G0/G1期细胞明显减少,G2及S期细胞比例明显增加。我们还发现CD133+群比CD133-群细胞具有更高的细胞克隆形成率,并且CD133+群细胞与CD133-群细胞相比过表达MDR1及Sox2基因,而MDR1了是肿瘤干细胞耐药性的一个重要原因,Sox2基因则是干细胞调节网络的核心因子之一。
     RT-PCR及Westem blotting结果显示,Saos-2/R相对于Saos-2细胞过表达P-gp(MDR1),MTT药敏实验显示Saos-2/R细胞对多种化疗药物耐药,具有多药耐药性,DAYS逆转耐药实验显示,随着DAYS梯度浓度增高,Saos-2/R的P-gp(MDR1)表达出现浓度依赖性下调,10μM DATS即可有效下调P-gp(MDR1)表达,MTT实验显示,10μM DATS存在下,Saos-2/R对多种化疗药物的敏感性增加,多药耐药性被逆转。使用CD133作为肿瘤干细胞标志物,研究了耐药株Saos-2/R在DAYS逆转耐药后,CD133+群细胞比例的变化。我们假设CD133+群的细胞百分比在DATS逆转耐药后,会无法耐受化疗药物的毒性而出现下降。我们检测对比了仅有梯度浓度MTX孵育的和同时有DAYS存在的Saos-2/R细胞中的CD133百分比率,我们发现,在没有DATS存在下,CD133+群百分比率在梯度浓度的MTX作用下是稳定的,但是在10μM DAYS存在下,这一百分比率随着MTX梯度浓度的提高而出现浓度依赖性下降。
     结论:骨肉瘤Saos-2细胞系中的CD133+群细胞具有少量、处于静止期、分化增殖潜能特点,并表达干细胞关键调控基因及耐药相关基因等肿瘤干细胞的特征,我们称其为“类肿瘤干细胞”。DAYS可有效下调P-gp(MDR1)的表达并逆转耐药,是有应用潜力的逆转骨肉瘤P-gp介导多药耐药的逆转剂。经过DATS逆转耐药后的Saos-2/R中的类肿瘤干细胞---CD133+群细胞---无法耐受MTX的作用,而出现浓度依赖性百分率降低,我们推断DATS逆转耐药同时,可能具有逆转类肿瘤干细胞耐药的作用,使得类肿瘤干细胞对MTX的耐受性下降而出现细胞比例下降。
Background: Osteosarcoma is the most common primary bone malignancy in children and adolescents. Despite advances in surgery and multi-agent chemotherapy, long-term survival rates have stagnated at approximately 65%. The perplexing problem preventing successful chemotherapy is recurrence, metastasis and multidrug resistance of osteosarcoma. Although several drugs have been developed to treat osteosarcoma, the clinical effects are not so good. However, the hypothesis of tumor stem cells might point out the direction for future cancer research.
     The hypothesis of tumor stem cells have very important prospect in the study of mechanism tumorigenicity, metastasis and drug resistance. In fact, scientists had found the correlation of stem cell and cancer cells through observeing the similarity between cancer tissue and embryonic tissue. Recent reserches have shown that there are only a small fraction of tumor cells having unlimited proliferative capacity in leukemia and part of solid tumors cells. The small fraction of tumor cells, which are able to form new tumor foci, are referred to as tumor stem cells. The current concept of heterogeneity of tumor cells also includes the differences of tumor stem cells and non-tumor stem cells in addition to differences in response to chemotherapy and in the capacity of invasion and metastasis outside. Most tumor cells do not have unlimited capacity of proliferation except for tumor stem cells, which can generate a new self-renewing tumor stem cells and non-tumorigenic capacity of tumor cells.
     It is a big step forward in the process of exploring the mechanism of human tumor oncogenesis, etastasis and drug resistance mechanisms that tumor stem cell hypothesis. It has enriched the mechanism of human tumor oncogenesis in theory. In clinical practice, it remind us that the reason of our traditional failure chemotherapy is the tumor stem cell. The tumor stem cell over-express the protein of ABC transporters, which result in tumor stem cells escaping the current standard method of treatment, and to be the "source" of recurrence and metastasis. Therefore, the tumor stem cells have been considered a new target for the treatment of the tumor reserch, which has become a "radical" malignant hope.
     It is the research hotspot to seek for the tumor stem cells marker. In 1997, Bonnet reported that CD34+ CD38- cells of acute myeloid leukemia cells have the stem cell characteristics. Even though they accounted for only 0.2 percent of the total number of cells, but they are only oncogenous cells group in the SCID rat. In 2003, Singh SK found that CD133 + cells group, which are only a small number of the total cell number of the brain tumor cells, can form tumor cell balls in serum-free culture and CD133- cells group didn't. In the next year, they found that the CD133 + cells group of the brain tumor cells, which were transplanted into NOD / SCID mouse's brain, can cause brain tumors. But the CD133- cells group didn't. After 2006, more and more studies showed that CD133+ group cells is closely related to tumor stem cells. Suetsugua, Ricci-Vitiani L and O'Brien CA showed that they isolated CD133 + cells group from the hepatoma cell line Huh-7 and colon cancer tissues, respectively. And they proved that the cells group were tumor stem cells. At present, there is no recognized surface tumor stem cells markers of human osteosarcoma.
     Lot of the current studies suggest that tumor stem cells are the most fundamental reason that result in chemotherapeutic drugs resistant of tumor cells, which are the main obstacles to the treatment of malignant. The existing method of treatment of tumor is mainly directed against the majority of cells, rather than tumor stem cells. Tumor and normal stem cells have many similar characteristics, which are in the GO cell cycle phase and expression of specific ATP-binding cassette (ATP-binding cassette, ABC), such as ABCB1, ABCG2 and so on. These membrane pump-mediated resistance elements resulted in their natural resistance to chemotherapy. ABCB1, ABCG2 from tumor tissues are tumor multidrug resistance gene. ABCB1 encode P-gp, and ABCG2 encode BCRP. These transporter protein, which use the energy generated for ATP decomposition, will pump the intracellular drugs out and protect tumor stem cells from cytotoxic drug damage. Because tumor stem cells over expressed ATP-binding cassette, chemotherapeutic drugs can be pumped out of cells and intracellular drug concentrations be reduced. After tumor chemotherapy, there are still a small number of tumor stem cells survive. We believed that this is an important mechanism of the tumor drug resistant, recurrence and metastasis.
     In order to look for the way of reversal multidrug resistance of tumor, scientists have experimented with many drugs, such as calcium channel blockers, immunosuppressive agents, as well as hormone drugs and so on. They have achieved some results. However, some side effects of these drugs have limited the clinical application. Therefore, many researchers began to study some natural medicines. The ingredients of garlic, DAS, has been proved to have the ability to reverse P-gp-mediated leukemia K562 multidrug resistance at the low toxicity doses. In recent years, epidemiological studies have confirmed that garlic has a close relationship with the many types of human cancer incidence rates drop. This should be attributed to crush fresh garlic from the extracted organic sulfur compounds (organosulfur compounds, OSCs), mainly including the DAS (diallyl sulfide, diallyl sulfide 1), DADS (diallyl disulfide, diallyl disulfide ) and DATS (diallyl trisulfide, diallyl trisulfide, also known as allicin). We ever studied the role of DATS on osteosarcoma cell line Saos-2. We found that DATS is able to inhibite osteosarcoma cells. However, as for the question of the DAS and DATS have a similar reversal of P-gp-mediated multidrug resistance role, there are not related studies yet.
     In this study, we studied the tumor stem cell markers CD133 expression on human osteosarcoma cells. And we sort out the CD133-positive (CD133 +) group of cells from Saos-2 osteosarcoma cell lines using magnetic separation methods. We studied these cells differentiation, cell cycle, tumorigenicity and MDR1, Sox2 gene expression, which are related to multidrug resistance-associated and stem cell regulation and control. Additionally, we set up multi-drug resistance in osteosarcoma line Saos-2/R using methotrexate (MTX)-induced concentration ways. The ability of DATS reversing drug-resistant osteosarcoma cells were assessed. Finally, the imact of MTX on CD133 marker percentage were studied after DATS reversing drug-resistant of Saos-2/R.
     Objective: To analyze the authentication osteosarcoma tumor stem cell surface molecular markers. To set up drug-resistant osteosarcoma cell lines and research DATS's potential of reversing drug resistance in osteosarcoma cell.To study the imact of MTX on CD133 marker percentage before and after DATS reversing drug resistance of osteosarcoma tumor cells.
     Methods: Immunohistochemical study of CD133 expression: 55 cases osteosarcoma conventional paraffin-embedded tissues specimens come from Pathology Department Qilu Hospital Shandong University, including 4 cases parosteal osteosarcoma, 13 cases fibroblast-type osteosarcoma , 12 cases chondroblastic osteosarcoma and 26 cases Osteoblastoma osteosarcoma. They were cut into 3μm standby. Check logarithmic growth phase Saos-2 cells subcultured in Petri dish with the coverslip, which has been sterilized. When the cells have adhered to coverslip after being cultured for 24h, we use 70% ethanol to fix the cells for 20 minutes standby. CD133 expression by flow cytometry analysis: To analyze percentage of CD133 expression in the logarithmic phase of osteosarcoma cell line Saos-2 cells. After removing dead cells using Dead Die cell separation kit, cells were incubated with monoclonal anti-CD 133 conjugated to PE and detected the percentage of CD133 expression using a FACScan. CD133-positive Saos-2 cell differentiation: To detect the changes of CD133 positive percentage and the cell cycle before and after CD133-positive Saos-2 cell incubated in complete medium and. To remove dead cells using MACS MicroBeads separation, then sort out CD133 + cells from Saos-2 cells and analyze changes of CD133 positive percentage at 0~(th), 3~(th) and 10~(th) day after incubating in complete culture medium. And to analyze changes of the cell cycle at 0~(th) and 10~(th) day after incubating in complete culture medium. MDR1, Sox2 gene expression of CD133 + / - cells, by Real-time PCR analysis: Using Real-time PCR to analyze MDR1 and Sox2 expression of CD133+ cells, which are related to multidrug resistance and stem cell differentiation regulation. To remove dead cells using MACS MicroBeads separation, then sort out CD133 +/- cells from Saos-2 cells. According to operation Manual, RNA extraction and reverse transcription-line were done and then MDR1 and Sox2 expression were analyzed by Real-time PCR. CD133 + / - cells colony forming test: To analyze the differences of CD133+/- cells tumorigenicity using flat cell cloning test. Using MACS to remove dead cells and sort out CD133+/-cells from Saos-2 cells according to operating manuals. To dilute make cell suspension according to 50,100 and 200 cells per dish density gradient. They were inoculated in the Petri dish with 10ml pre-heating at 37℃culture medium. To shake up the Petri dish so that cells dispersed sloshing uniform. And then the Petri dish were plate into the incubator at 37℃, 5% CO2 and saturated humidity environment. After the static cultivate for three weeks, the Petri dish were placed on the plate under the microscope and the number of clones were counted directly by the naked eye. Then, Cell s colony forming efficiency was calculated according to the formula: cells colony forming efficiency (%) = Cloning number / inoculation cell number×100. A cell line resistant to MTX cytotoxicity (named for the Saos-2 / R) was established in our laboratory by progressive adaptation of MTX-sensitive Saos-2 parental cells to increasing concentrations of MTX. To study the P-gp (MDR1) expression of Saos-2/R using RT-PCR and Western blotting. To detect changes in drug sensitivity on a variety of chemotherapy drugs and to determine whether they have multi-drug resistance with MTT test. DATS reverse drug resistance research: Saos-2 / R cells were incubated for 48h with the complete medium containing the gradient concentration of DATS of incubated with 48h. To detect the changes of P-gp (MDR1) expression using RT-PCR and Western blotting method to analyze the lowest DATS reversing concentration. Assay of MTX reducing the tumor stem-like cells after DATS reversing drug resistance of Saos-2/R: Saos-2 / R cells were incubated with complete medium containing DATS of lowest reversing concentration, and the MTX gradient concentration for 48h. And the Saos-2 / R incubated in complet medium without DATS to be the control cells. They also contain the same MTX concentration gradient. To analyze the changes of CD133+ cells percentage using flow cytometry analysis.
     Results: CD133 + cells were is commonly found in human osteosarcoma tissue accounting for about 5-14%, while they were also found in the human osteosarcoma cell line Saos-2 accounting for around 5%. CD133 + cells were put in complete medium after being sorted out from Saos-2 cells using MACS. And then, the percentage of CD133 + cells were detected by FCM. We found the percentage declined rapidly with the extension of time to cultivate. At the same time, the cell cycle at 10~(th) day is similar to nomal Saos-2 cell cycle, and there is significant difference compared with that at 0~(th) day. We also found that CD133 + cells have higher rates of colony-forming cells than that of CD133- cells. And CD133 + cells over-expressed MDR1 and Sox2 genes compared with CD133- cells. As mentioned earlier, it is an important reason of tumor stem cells MDR that MDR1 over-expression. And Sox2 gene is one of important core member of stem cell gene regulatory network. In the light of the above, we believe that CD133 + cells group of Saos-2 cells have some of key features of tumor stem cells. We call them tumor stem-like cells. We use CD133 as a marker to study the percentage of changes of CD133+ Saos-2/R cells after the Saos-2 / R drug-resistant being reversed by DATS. We assume that groups of CD133 + cells percentage will decline after drug resistance being reversed by DATS for not tolerating the toxicity of chemotherapy drugs. We compared the CD133 percentage changes of Saos-2/R incubated in complete medium with MTX concentration gradient with/without 10uM DATS. We found that the presence of CD133 + cells is stable in the group absence of DATS, while the percentage declined gradiently in the presence of 10μM DATS.
     Conclusion: CD133 + cells were is commonly found in human osteosarcoma tissue and human osteosarcoma cell line(Saos-2) with a small amount. The CD133 + group of Saos-2 cells are at a quiescent cell cycle period and over-express key regulatory genes of nomal stem cells and drug resistance-related genes. And they have highly tumorigenic characteristics. These results showed CD133 + group of Saos-2 cells have the characteristics of tumor stem cells. We called tumor stem-like cells. The drug-resistance cells line Saos-2/R, which we set up using MTX inducing, have MDR characteristics. DATS can effectively reduce P-gp (MDR1) expression of Saos-2/R and reverse its drug resistance. After the Saos-2 / R drug-resistant being reversed, CD133 + cells percentage of Saos-2/R reduce for not being tolerated the toxicity of MTX. DATS may reverse the role of drug resistance of tumor stem-like cells while reversing drug resistance of Saos-2/R.
引文
1. Nowell PC. The clonal evolution of tumor cell populations. Science 1976;194(4260):23-8.
    
    2. Huntly BJ, Gilliland DG. Leukaemia stem cells and the evolution of cancer-stem-cell research. Nat Rev Cancer 2005; 5(4): 311-21.
    
    3. Bruce Wr, Van Der Gaag H.A. Quantitative assay for the number of murine lymphoma cells capable of proliferation in vivo. Nature 1963; 199: 79-80.
    
    4. Griffin JD, Lowenberg B. Clonogenic cells in acute myeloblastic leukemia. Blood 1986; 68(6):1185-95.
    
    5. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001; 414(6859): 105-11.
    
    6. Marx J. Cancer research. Mutant stem cells may seed cancer. Science 2003; 301(5638): 1308-1310.
    
    7. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3(7): 730-737.
    
    8. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100(7):3983-3988.
    
    9. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB. Identification of human brain tumour initiating cells. Nature 2004; 432(7015): 396-401.
    
    10. Gros P, Croop J. Housman D.Mammalian multidrug resistance gene: complete cDNA sequence indicates strong homology to bacterial transport proteins. Cell 1986;47(3):371-380.
    
    11. Gottesman MM, Ling V. The molecular basis of multidrug resistance in cancer: the early years of P-glycoprotein research. FEBS Lett 2006; 580(4): 998-1009.
    
    12. Chaudhary PM, Roninson IB. Expression and activity of P-glycoprotein, a multidrug efflux pump, in human hematopoietic stem cells. Cell 1991; 66(1): 85-94.
    13. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 1996; 183(4): 1797-1806.
    
    14. Sato T, Laver JH, Ogawa M. Reversible expression of CD34 by murine hematopoietic stem cells. Blood 1999; 94(8): 2548-2554.
    
    15. Zhang P, Zuo H, Ozaki T, Nakagomi N, Kakudo K.Cancer stem cell hypothesis in thyroid cancer. Pathol Int 2006; 56(9):485-489.
    
    16. Bachoo RM, Maher EA, Ligon KL, Sharpless NE, Chan SS, You MJ, Tang Y, DeFrances J, Stover E, Weissleder R, Rowitch DH, Louis DN, DePinho RA. Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell 2002; 1(3): 269-277.
    
    17. Caussinus E, Gonzalez C.Induction of tumor growth by altered stem-cell asymmetric division in Drosophila melanogaster. Nat Genet 2005; 37(10): 1125-1129.
    
    18. Morrison SJ, Kimble J. Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 2006; 441(7097): 1068-1074.
    
    19. Gournay J, Auvigne I, Pichard V, Ligeza C, Bralet MP, Ferry N. In vivo cell lineage analysis during chemical hepatocarcinogenesis in rats using retroviral-mediated gene transfer: evidence for dedifferentiation of mature hepatocytes. Lab Invest 2002; 82(6): 781-788.
    
    20. Collins AT, Maitland NJ. Prostate cancer stem cells. Eur J Cancer 2006; 42(9): 1213-1218.
    
    21. Krivtsov AV, Twomey D, Feng Z, Stubbs MC, Wang Y, Faber J, Levine JE, Wang J, Hahn WC, Gilliland DG, Golub TR, Armstrong SA.Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9 Nature 2006; 442(7104): 818-822.
    
    22. Vignery A. Osteoclasts and giant cells: macrophage-macrophage fusion mechanism. Int J Exp Pathol 2000; 81(5): 291-304.
    
    23. Holmgren L, Bergsmedh A, Spetz AL. Horizontal transfer of DNA by the uptake of apoptotic bodies. Vox Sang. 2002; 83: 305-306.
    
    24. Hadnagy A, Gaboury L, Beaulieu R, Balicki D. SP analysis may be used to identify cancer stem cell populations. Exp Cell Res 2006; 312(19): 3701-3710.
    
    25. Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 2003; 3(12): 895-902.
    
    26. Meyers PA. Schwartz CL, Krailo M, Kleinerman ES, Betcher D, Bernstein ML, Conrad E, Ferguson W, Gebhardt M, Goorin AM, Harris MB, Healey J, Huvos A, Link M, Montebello J, Nadel H, Nieder M, Sato J, Siegal G, Weiner M, Wells R, Wold L, Womer R, Grier H. Osteosarcoma: a randomized, prospective trial of the addition of ifosfamide and/or muramyl tripeptide to cisplatin, doxorubicin, and high-dose methotrexate. J Clin Oncol 2005; 23(9): 2004-2011.
    
    27. Gibbs CP, Kukekov VG, Reith JD, Tchigrinova O, Suslov ON, Scott EW, Ghivizzani SC, Ignatova TN, Steindler DA.Stem-like cells in bone sarcomas: implications for tumorigenesis. Neoplasia 2005; 7(11): 967-976.
    
    28. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, Gifford DK, Melton DA, Jaenisch R, Young RA. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 2005; 122(6): 947-956.
    
    29. Loh YH, Wu Q, Chew JL, Vega VB, Zhang W, Chen X, Bourque G, George J, Leong B, Liu J, Wong KY, Sung KW, Lee CW, Zhao XD, Chiu KP, Lipovich L, Kuznetsov VA, Robson P, Stanton LW, Wei CL, Ruan Y, Lim B, Ng HH. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 2006; 38(4): 431-440.
    
    30. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA. Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells. Science 2007; 318(5858): 1917-1920.
    
    31. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131(5): 861-872.
    32. Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, Lerou PH, Lensch MW, Daley GQ. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 2008;451(7175):141-146.
    
    33. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MR Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100(7): 3983-3988.
    
    34. Singh SK, Clarke ID, Hide T, Dirks PB. Cancer stem cells in nervous system tumors. Oncogene 2004; 23:7267-7273.
    
    35. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 2005. 65(23): 10946-10951.
    
    36. Yin S, Li J, Hu C, Chen X, Yao M, Yan M, Jiang G, Ge C, Xie H, Wan D, Yang S, Zheng S, Gu J. 2007. CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int. J. Cancer. 120(7): 1444-1450.
    
    37. Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, Bruns CJ, Heeschen C. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007, 1(3): 313-323.
    
    38. Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A, Conticello C, Ruco L, Peschle C, De Maria R. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ, 2008,15(3): 504-514.
    
    39. Nowell PC. The clonal evolution of tumor cell populations. Science 1976; 194 (4260): 23- 28.
    
    40. Marx J. Mutant stem cells may seed cancer. Science 2003; 301 (5638) : 1308-1310.
    
    41. Bonnet D, Dick JE. Human acute myeloidleukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3 (7) : 730-737.
    
    42. Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, Bronson RT, Jacks T. Identificat ion of bronchioalveolar stem cells in normal lung and lung cancer. Cell 2005; 121(6): 823- 835.
    
    43. Fang D, Nguyen TK, Leishear K, Finko R, Kulp AN, Hotz S, Van Belle PA, Xu X, Elder DE, Herlyn M. A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 2005; 65(20): 9328-9337.
    
    44. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 2005; 65 (23): 10946-10951.
    
    45. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R. Identification and expansion of human colon-cancer-initiating cells. Nature 2007; 445 (7123): 111-115.
    
    46. Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, Weissman IL, Clarke MF, Allies LE. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA 2007; 104 (3): 973-978.
    
    47. Clarke MF. Self-renewal and solid-tumor stem cells. Biol Blood Marrow Transplant 2005; 11(2): 14-16.
    
    48. Chambers I, Smith A. Self-renewal of teratocarcinoma and embryonic stem cells. Oncogene 2004; 23(43): 7150-7160.
    
    49. GAO Weibo , CHEN Shu. Chang , ZHAO Chunhua. Cancer stem cells and drug resistance. Basic Clinical Medicine 2006;26(6):662-667.
    
    50. Kucia M, Reca R, Miekus K, Wanzeck J, Wojakowski W, Janowska-Wieczorek A, Ratajczak J, Ratajczak MZ. Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: pivotal role of the SDF-1-CXCR4 axis. Stem Cells 2005; 23(7): 879-894.
    
    51. Li L, Neaves WB. Normal stem cells and cancer stem cells: the niche matters. Cancer Res 2006; 66(9): 4553-4557.
    
    52. Budak-Alpdogan T, Banerjee D, Bertino J R. Hematopoieticstem cell gene therapy with drug resistance genes: an update.Cancer Gene Ther 2005; 12(11): 849-863.
    53. Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer, 2005, 5(4): 275-284.
    
    54. Donnenberg V S, Donnenberg A D. Multiple drug resistance in cancer revisited: the cancer stem cell hypothesis. J Clin Pharmacol 2005; 45(8): 872-877.
    
    55. Gerson SL. Drug resistance gene transfer: Stem cell protection and therapeutic efficacy. Exp Hematol 2000; 28(12): 1315-1324.
    
    56. Richardson C, Bank A. Preselection of transduced murine hematopoietic stem cell populations leads to increased longterm stability and expression of the human multiple drug resistance gene. Blood 1995; 86(7): 2579-2589.
    
    57. Leslie EM, Deeley RG, Cole SP. Multidrug resistance proteins: role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense. Toxicol Appl Pharmacol 2005; 204(3): 216-237.
    
    58. Dietrich CG, Geier A, Oude Elferink RP.ABC of oral bioavailability: transporters as gatekeepers in the gut. Gut. 2003; 52(12): 1788-1795.
    
    59. Zhou S, Morris JJ, Barnes Y, Lan L, Schuetz JD, Sorrentino BP. Bcrp1 gene expression is required for normal numbers of side population stem cells in mice, and confers relative protection to mitoxantrone in hematopoietic cells in vivo. Proc Natl Acad Sci U S A 2002; 99(19): 12339-12344.
    
    60. Staud F, Pavek P. Breast cancer resistance protein (BCRP/ABCG2). Int J Biochem Cell Biol. 2005; 37(4): 720-725.
    1.Meyers PA,Schwartz CL,Krailo M,Kleinerman ES,Betcher D,Bernstein ML.Osteosarcoma:a randomized,prospective trial of the addition of ifosfamide and/or muramyl tripeptide to cisplatin,doxorubicin,and high-dose methotrexate.J Clin Oncol 2005;23(9):2004-2011.
    2.Leslie EM,Deeley RG,Cole SP.Multidrug resistance proteins:role of P-glycoprotein,MRP1,MRP2,and BCRP(ABCG2) in tissue defense.Toxicol Appl Pharmacol 2005;204(3):216-237.
    3.Dietrich CG,Geier A,Oude Elferink RP.ABC of oral bioavailability:transporters as gatekeepers in the gut.Gut.2003;52(12):1788-1795.
    4.Staud F,Pavek P.Breast cancer resistance protein(BCRP/ABCG2).Int J Biochem Cell Biol 2005;37(4):720-725.
    5.Labialle S,Gayet L,Marthinet E,Rigal D,Baggetto LG.Transcriptional regulators of the human multidrug resistance 1 gene:recent views.Biochem Pharmacol 2002;64(5-6):943-948.
    6.魏玲,宋现让,王兴武,李敏,左文述.MDR1和GST-π在骨软组织肉瘤中的表达及其与化疗耐药的关系.中华肿瘤杂志2006;28(6):321-325.
    7.Malayeri R,Filipits M,Suchomel RW,Z(o|¨)chbauer S,Lechner K,Pirker R..Multidrug resistance in leukemias and its reversal.Leuk Lymphoma.1996;23(5-6):451-458.
    8.Gomes CM,van Paassen H,Romeo S,Welling MM,Feitsma RI,Abrunhosa AJ,Botelho MF,Hogendoorn PC,Pauwels E,Cleton-Jansen AM.Multidrug resistance mediated by ABC transporters in osteosarcoma cell lines:mRNA analysis and functional radiotracer studies.Nucl Med Biol 2006;33(7):831-840.
    9.Zhou SF.Structure,function and regulation of P-glycoprotein and its clinical relevance in drug disposition.Xenobiotica.2008;38(7-8):802-832.
    10.Ross DD,Wooten PJ,Sridhara R,Ordo(?)ez JV,Lee EJ,Schiffer CA.Enhancement of daunorubicin accumulation,retention and cytotoxicity by verapamil or cyclosporin A in blast cells from patients with previously untreated acute myeloid leukaemia. Blood 1993; 82(4): 1288-1299.
    
    11. Sikic BI, Fisher GA, Lum BL, Halsey J, Beketic-Oreskovic L, Chen G. Modulation and prevention of multidrug resistance by inhibitors of P-glycoprotein. Cancer Chemother Pharmacol 1997; 40 Suppl: S13-19.
    
    12. Watanabe T, Tsuge H, Oh-Hara T, Naito M, Tsuruo T. Comparative study on reversal efficacy of SDZ PSC 833, cyclosporin A and verapamil on multidrug resistance in vitro and in vivo. Acta Oncol 1995; 34(2): 235-241.
    
    13. Arora A, Seth K, Shukla Y. Reversal of P-glycoprotein-mediated multidrug resistance by diallyl sulfide in K562 leukemic cells and in mouse liver. Carcinogenesis 2004; 25 (6): 941-949.
    
    14. Xiao D, Herman-Antosiewicz A, Antosiewicz J, Xiao H, Brisson M, Lazo JS, Singh SV. Diallyl trisulfide-induced G(2)-M phase cell cycle arrest in human prostate cancer cells is caused by reactive oxygen species-dependent destruction and hyperphosphorylation of Cdc 25 C. Oncogene 2005; 24(41): 6256-6268.
    
    15. Herman-Antosiewicz A, Singh SV. Checkpoint kinase 1 regulates diallyl trisulfide-induced mitotic arrest in human prostate cancer cells. J Biol Chem 2005; 280(31): 28519-28528.
    
    16. Yongkui ZH, Jianmin L. The inheibitory effects of DATS on human osteosarcoma cells proliferation as well as on the induction of apotosis. Cancer Invest 2009; 3:1. [Epub ahead of print]
    
    17. Beachy PA, Karhadkar SS, Berman DM. Tissue repair and stem cell renewal in carcinogenesis. Nature 2004; 432(7015): 324-331.
    
    18. Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer 2005; 5(4): 275-284.
    
    19. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001; 414(6859): 105-111.
    
    20. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994; 367(6464): 645-648.
    21. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3(7): 730-737.
    
    22. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MR Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100(7): 3983-3988.
    
    23. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB. Identification of human brain tumour initiating cells. Nature 2004; 432(7015): 396-401.
    
    24. Singh SK, Clarke ID, Hide T, Dirks PB. Cancer stem cells in nervous system tumors. Oncogene 2004; 23: 7267-7273.
    
    25. Ma S, Chan KW, Hu L, Lee TK, Wo JY, Ng IO, Zheng BJ, Guan XY. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology 2007; 132(7): 2542-2556.
    
    26. Suetsugu A, Nagaki M, Aoki H, Motohashi T, Kunisada T, Moriwaki H. Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys Res Commun 2006; 351: 820-824.
    
    27. O'Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007; 445: 106-110.
    
    28. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R. Identification and expansion of human colon-cancer-initiating cells. Nature 2007; 445: 111-115.
    
    29. Gibbs CP, Kukekov VG, Reith JD, Tchigrinova O, Suslov ON, Scott EW, Ghivizzani SC, Ignatova TN, Steindler DA.Stem-like cells in bone sarcomas: implications for tumorigenesis. Neoplasia 2005; 7(11): 967-976.
    
    30. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, Gifford DK, Melton DA, Jaenisch R, Young RA. Core transcnptional regulatory circuitry in human embryonic stem cells. Cell 2005; 122(6): 947-956.
    
    31. Chaudhary PM, Roninson IB. Expression and activity of P-glycoprotein, a multidrug efflux pump, in human hematopoietic stem cells. Cell 1991; 66(1): 85-94.
    
    32. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 1996; 183(4): 1797-1806.
    
    33. Sato T, Laver JH, Ogawa M. Reversible expression of CD34 by murine hematopoietic stem cells. Blood 1999; 94(8): 2548-2554.
    
    34. Yang YM, Chang JW. Current status and issues in cancer stem cell study. Cancer Invest 2008; 26(1):741 -755.
    
    35. Mizrak D, Brittan M, Alison MR. CD133: molecule of the moment. Pathol J 2008; 214:3-9.
    
    36. Clarke RB. Isolation and characterization of human mammary stem cells. Cell Prolif 2005; 38(6): 375-386.
    
    37. Hadnagy A, Gaboury L, Beaulieu R, Balicki D. SP analysis may be used to identify cancer stem cell populations. Exp Cell Res 2006; 312(19): 3701-3710.
    
    38. Snow K, Judd W. Characterisation of adriamycin- and amsacrine-resistant human leukaemic T cell lines. Br J Cancer 1991; 63:17-28.
    
    39. Gottesman MM. How cancer cells evade chemotherapy: sixteenth Richard and Hinda Rosenthal Foundation Award Lecture. Cancer Res 1993; 53(4): 747-754.
    
    40. Pastan I, Gottesman M. Multiple-drug resistance in human cancer. N Engl J Med 1987;VV316(22): 1388-1393.
    
    41. Gottesman MM, Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 1993; 62: 385-427
    
    42. Chaudhary PM, Roninson IB. Expression and activity of P-glycoprotein, a multidrug efflux pump, in human hematopoietic stem cells. Cell 1991; 66(1):85-94.
    
    43. Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ, Lagutina I, Grosveld GC, Osawa M, Nakauchi H, Sorrentino BP. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 2001; 7(9): 1028-1034.
    
    44. Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2002; 2(1): 48-58.
    
    45. Al-Hajj M, Becker MW, WichaM. Therapeutic implication of cancer stem cels. Curr Opin Gene Deve 2004; 14(3): 43-47.
    
    46. Blanca SP, Enrique PC, Lucia Taja-Chayeb. Global DNA hypermethylation-associated cancer chemotherapy resistance and its reversion with the demethylating agent hydralazine. Journal of Translational Medicine 2006; 32(4):5876-5882.
    
    47. Hideki E, Hiroaki S, Shinji U. Smoking Influences Aberrant CpG Hypermethylation of Multiple Genes in Human Prostate Carcinoma. Cancer 2006; 106(1): 79-85.
    
    48. Kuo MT, Liu Z, Wei Y, Lin-Lee YC, Tatebe S, Mills GB, Unate H. Induction of human MDR1 gene expression by 2-acetylaminofluorene is mediated by effectors of the phosphoinositide 3-kinase pathway that activate NF-kappaB signaling. Oncogene 2002; 21(13): 1945-1954.
    
    49. Ogretmen B, Safa AR. Negative regulation of MDR1 promoter activity in MCF-7, but not in multidrug resistant MCF-7/Adr, cells by cross-coupled NF-kappa B/p65 and c-Fos transcription factors and their interaction with the CAAT region. Biochemistry 1999; 38(7): 2189-2199.
    
    50. Takada Y, Kobayashi Y, Aggarwal BB. Evodiamine abolishes constitutive and inducible NF-kappaB activation by inhibiting IkappaBalpha kinase activation, thereby suppressing NF-kappaB-regulated antiapoptotic and metastatic gene expression, up-regulating apoptosis, and inhibiting invasion. J Biol Chem 2005; 280(17):17203-17212.
    
    51. Vaiman AV, Stromskaya TP, Rybalkina EY, Sorokin AV, Guryanov SG, Zabotina TN, Mechetner EB, Ovchinnikov LP, Stavrovskaya AA.. Intracellular Localization and Content of YB-1 Protein in Multidrug Resistant Tumor Cells. Biochemistry 2006; 71(2): 146-154.
    
    52. Zhou J, Liu M, Aneja R, Chandra R, Lage H, Joshi HC. Reversal of P-glycoprotein-mediated multidrug resistance in cancer cells by the c-Jun NH2-terminal kinase. Cancer Res 2006; 66(1): 445-452.
    53. Chen GK, Sale S, Tan T, Ermoian RP, Sikic BI. CCAAT/enhancer-binding protein beta (nuclear factor for interleukin 6) transactivates the human MDR1 gene by interaction with an inverted CCAAT box in human cancer cells. Mol Pharmacol 2004; 65(4): 906-916.
    
    54. Los M, Burek CJ, Stroh C, Benedyk K, Hug H, Mackiewicz A. Anticancer drugs of tomorrow: apoptotic pathways as targets for drug design. Drug Discov Today 2003; 8(2):67-77.
    
    55. Xiao D, Choi S, Johnson DE. Diallyl trisulfide-induced apoptosis in human prostate cancer cells involves c-Jun N-terminal kinase and extracellular signal regulated kinase-mediated phosphorylation of Bcl-2. Oncogene, 2004,23(33): 5594-5606.
    
    56. Xiao D, Singh SV. Diallyl trisulfide, a constituent of processed garlic, inactivates Akt to trigger mitochondrial translocation of BAD and caspase-mediated apoptosis in human prostate cancer cells. Carcinogenesis 2006; 27(3):533-540.
    
    57. Herman-Antosiewicz A, Singh SV. Signal transduction pathways leading to cell cycle arrest and apoptosis induction in cancer cells by Allium vegetable-derived organosulfur compounds: a review. Mutat Res 2004; 555(1-2):121-131.
    
    58. Takashi H, Tomomi F, Jun O. Diallyl trisulfide suppresses the proliferation and induces apoptosis of human colon cancer cells through oxidative modification of β-tubulin. J Biol Chem 2005; 280(50): 41487-41493.
    
    59. Arditti FD, Rabinkov A, Miron T, Reisner Y, Berrebi A, Wilchek M, Mirelman D. Apoptotic killing of B-chronic lymphocytic leukemia tumor cells by allicin generated in situ using a rituximab-alliinase conjugate. Mol Cancer Ther 2005; 4(2): 325-331.
    
    60. Sun L, Wang X. Effects of allicin on both telomerase activity and apoptosis in gastric cancer SGC27901 cells. World J Gastroenterol 2003; 9(9): 1930-1934.
    
    61. Filomeni G, Aquilano K, Rotilio G, Ciriolo MR. Reactive oxygen species-dependent c-Jun NH2-terminal kinase/c-Jun signaling cascade mediates neuroblastoma cell death induced by diallyl disulfide. Cancer Res 2003; 63(18): 5940-5949.
    62. Hassan H T. Ajoene (natural garlic compound): a new anti-leukaemia agent for AML therapy. Leuk Res 2004; 28(7): 667-671.
    
    63. Oommen S, Anto RJ, Srinivas G, Karunagaran D. Allicin (from garlic) induces caspase-mediated apoptosis in cancer cells. Eur J Pharmacol 2004; 485(1-3): 97-103.
    
    64. Zamora JM, Pearce HL, Beck WT. Physical-chemical properties shared by compounds that modulate multidrug resistance in human leukemia cells. Mol Pharmacol 1988; 33,454-462.
    
    65. Wunder JS, Bull SB, Aneliunas V, Lee PD, Davis AM, Beauchamp CP, Conrad EU, Grimer RJ, Healey JH, Rock MJ, Bell RS, Andrulis IL. MDR1 gene expression and outcome in osteosarcoma: a prospective, multicenter study. J Clin Oncol 2000; 18(14): 2685-2694.
    
    66. Shnyder SD, Hayes AJ, Pringle J, Archer CW. P-glycoprotein and metallothionein expression and resistance to chemotherapy in osteosarcoma. Br J Cancer 1998; 78 (6): 757-759.
    
    67. Bodey B, Taylor CR, Siegel SE, Kaiser HE. Immunocytochemical observation of multidrug resistance (MDR) p170 glycoprotein expression in human osteosarcoma cells. The clinical significance of MDR protein overexpression. Anticancer Res 1995; 15(6B): 2461-2468.
    
    68. Chan HS, Grogan TM, Haddad G, DeBoer G, Ling V. P-glycoprotein expression: critical determinant in the response to osteosarcoma chemotherapy. J Natl Cancer Inst 1997; 89: 1706-1715.
    
    69. Imanishi T, Abe Y, Suto R, Higaki S, Ueyama Y, Nakamura M, Tamaoki N, Fukuda H, Imai N. Expression of the human multidrug resistance gene (MDR1) and prognostic correlation in human osteogenic sarcoma. Tokai J Exp Clin Med 1994; 19(1-2): 39-46.
    
    70. Suto R, Abe Y, Nakamura M, Ohnishi Y, Yoshimura M, Lee YH, Imanishi T, Yamazaki H, Kijima H, Tokunaga T, Oshika Y, Hiraoka N, Tamaoki N, Fukuda H, Ueyama Y. Multidrug resistance mediated by overexpression of P-glycoprotein in human osteosarcoma in vivo. Int J Oncol 1998; 12(2): 287-291.
    1. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature, 2001,414 (6859):105-111.
    
    2. Huntly BJ, Gilliland DG. Leukaemia stem cells and the evolution of cancer stem cell research. Nat Rev Cancer, 2005, 5 (4):311-321.
    
    3. Marx J. Mutant stem cells may seed cancer. Science, 2003, 301 (5638): 308-1310.
    
    4. AlHajj M, Wicha M S, Benito-Hernandez A , et al. Prospective identification of tumorigenic breast cancer cells. P roc N at 1A cad SciU SA , 2003, 100 (7) : 3983-3988.
    
    5. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB. Identification of human brain tumour initiating cells. Nature, 2004,432 (7015):396-401.
    
    6. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med, 1996,183(4):1797-1806.
    
    7. Meyers PA, Schwartz CL, Krailo M, Kleinerman ES, Betcher D, Bernstein ML, Conrad E, Ferguson W, Gebhardt M, Goorin AM, Harris MB, Healey J, Huvos A, Link M, Montebello J, Nadel H, Nieder M, Sato J, Siegal G, Weiner M, Wells R, Wold L, Womer R, Grier H. Osteosarcoma: a randomized, prospective trial of the addition of ifosfamide and/or muramyl tripeptide to cisplatin, doxorubicin, and high-dose methotrexate. J Clin Oncol. 2005, 23(9): 2004-2011.
    
    8. Budak-Alpdogan T, Banerjee D, Bertino J R. Hematopoieticstem cell gene therapy with drug resistance genes: an update. Cancer Gene Ther, 2005, 12(11): 849-863.
    
    9. Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer, 2005, 5(4): 275-284.
    
    10. Donnenberg VS, Donnenberg AD. Multiple drug resistance in cancer revisited: the cancer stem cell hypothesis. J Clin Pharmacol, 2005,45(8): 872-877.
    
    11. Gerson S L. Drug resistance gene transfer: Stem cell protection and therapeutic efficacy. Exp Hematol, 2000,28(12): 1315-1324.
    
    12. Richardson C, Bank A. Preselection of transduced murine hematopoietic stem cell populations leads to increased longterm stability and expression of the human multiple drug resistance gene. Blood, 1995, 86(7): 2579-2589.
    
    13. Gibbs CP, Kukekov VG, Reith JD, Tchigrinova O, Suslov ON, Scott EW, Ghivizzani SC, Ignatova TN, Steindler DA.Stem-like cells in bone sarcomas: implications for tumorigenesis. Neoplasia, 2005, 7(11):9 67-976;
    
    14. Yin AH, Miraglia S, Zanjani ED, Almeida-Porada G, Ogawa M, Leary AG, Olweus J, Kearney J, Buck DW. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood. 1997, 90(12): 5002-5012.
    
    15. Lee A, Kessler JD, Read TA, Kaiser C, Corbeil D, Huttner WB, Johnson JE, Wechsler-Reya RJ. Isolation of neural stem cells from the postnatal cerebellum. Nat. Neurosci. 2005, 8(6): 723-729.
    
    16. Sagrinati C, Netti GS, Mazzinghi B, Lazzeri E, Liotta F, Frosali F, Ronconi E, Meini C, Gacci M, Squecco R, Carini M, Gesualdo L, Francini F, Maggi E, Annunziato F, Lasagni L, Serio M, Romagnani S, Romagnani P. Isolation and characterization of multipotent progenitor cells from the Bowman's capsule of adult human kidneys. J Am Soc Nephrol, 2006, 17(9): 2443-2456.
    
    17. Richardson GD, Robson CN, Lang SH, Neal DE, Maitland NJ, Collins AT. CD133, a novel marker for human prostatic epithelial stem cells. J. Cell Sci. 2004, 117:3539-3545
    
    18. Kordes C, Sawitza I, Muller-Marbach A, Ale-Agha N, Keitel V, Klonowski-Stumpe H, Haussinger D. CD 133+ hepatic stellate cells are progenitor cells. Biochem Biophys Res Commun, 2007, 352(2): 410-417.
    19. Sugiyama T, Rodriguez RT, McLean GW, Kim SK. Conserved markers of fetal pancreatic epithelium permit prospective isolation of islet progenitor cells by FACS. Proc. Natl Acad Sci U S A, 2007,104(1): 175-180.
    
    20. Ito Y, Hamazaki TS, Ohnuma K, Tamaki K, Asashima M, Okochi H. Isolation of murine hair-inducing cells using the cell surface marker prominin-1/CD133. J Invest Dermatol, 2006, 127(5): 1052-1060.
    
    21. Singh, S.K., et al. 2004. Identification of human brain tumor initiating cells. Nature. 432:396-401.
    
    22. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 2005. 65(23): 10946-10951.
    
    23. Yin S, Li J, Hu C, Chen X, Yao M, Yan M, Jiang G, Ge C, Xie H, Wan D, Yang S, Zheng S, Gu J. 2007. CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int. J. Cancer. 120(7): 1444-1450.
    
    24. Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, Bruns CJ, Heeschen C. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007, 1(3): 313-323.
    
    25. Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A, Conticello C, Ruco L, Peschle C, De Maria R. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ, 2008,15(3): 504-514.
    
    26. Reya T, Morrison SJ, Clarke MF, et al. Stem cells, cancer, and cancer stem cells [J]. Nature, 2001,414 (6859): 105-111.
    
    27. Marx J. Mutant stem cells may seed cancer. Science, 2003, 301 (5638): 1308-1310.
    
    28. Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, Bronson RT, Jacks T. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell, 2005, 121 (6): 823-835.
    
    29. Fang D, Nguyen TK, Leishear K, Finko R, Kulp AN, Hotz S, Van Belle PA, Xu X, Elder DE, Herlyn M. A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res, 2005, 65 (20): 9328-9337.
    
    30. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res, 2005, 65 (23): 10946-10951.
    
    31. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R. Identification and expansion of human colon cancer initiating cells. Nature, 2007,445 (7123): 111-115.
    
    32. Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, Weissman IL, Clarke MF, Ailles LE. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. PNAS, 2007,104 (3): 973-978.
    
    33. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. PNAS, 2003,100(7): 3983-3988.
    
    34. Chambers I, Smith A. Self-renewal of teratocarcinoma and embryonic stem cells. Oncogene, 2004,23(43): 7150-7160.
    
    35. Gao WB, Chen SC, Zhao CH. Cancer stem cells and drug resistance. Asic& Clinical Medicine, 2006,26(6):662-667.
    
    36. Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumor initiating cells. Nature, 2004,432(7015): 396-401.
    
    37. Leslie EM, Deeley RG, Cole SP. Multidrug resistance proteins: role of P-glycoprotein, MRP1, MRP2, and BCRP(ABCG2) in tissue defense. Toxicol Appl Pharmacol, 2005, 204(3): 216-237.
    
    38. Dietrich CG, Geier A, Oude Elferink RP. ABC of oral bioavailability: transporters as gatekeepers in the gut Gut, 2003, 52(12): 1788-1795.
    
    39. Staud F, Pavek P. Breast cancer resistance protein (BCRP/ABCG2). Int J Biochem Cell Biol, 2005, 37(4): 720-725.
    
    40. Dean M, Fojo T, Bates S. Tumor stem cells and drug resistance. Nat Rev Cancer, 2005, 5(4): 275-284.
    [1] GOTTESMAN MM, PASTAN I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 1993; 62: 385-427.
    
    [2] MALAYERI R, FILIPITS M, SUCHOMEL RW et al. Multidrug resistance in leukemias and its reversal. Leuk Lymphoma. 1996; 23:451-458.
    [3] GOMES CM, VAN PAASSEN H, ROMEO S et al. Multidrug resistance mediated by ABC transporters in osteosarcoma cell line: mRNA analysis and functional radiotracer studies. Nucl Med Biol 2006; 33: 831-840.
    [4] MA S, CHAN KW, HU L et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology 2007; 132:2542-2556.
    [5] SINGH SK, CLARKE ID, HIDE T et al. Cancer stem cells in nervous system tumors. Oncogene 2004; 23: 7267-7273.
    [6] RICCI-VITIANI L, LOMBARDI DG, PILOZZI E et al. Identification and expansion of human colon-cancer-initiating cells. Nature 2007; 445: 111-115.
    [7] YANG YM, CHANG JW. Current status and issues in cancer stem cell study. Cancer Invest 2008; 26:741-755.
    [8] MIZRAK D, BRITTAN M, ALISON MR. CD133: molecule of the moment. Pathol J 2008; 214: 3-9.
    [9] CLARKE RB. Isolation and characterization of human mammary stem cells. Cell Prolif 2005; 38: 375-386.
    [10]HADNAGY A, GABOURY L, BEAULIEU R, BALICKI D. SP analysis may be used to identify cancer stem cell populations. Exp Cell Res 2006; 312: 3701-3710.
    [11] SINGH SK, HAWKINS C, CLARKE ID et al. Identification of human brain tumour initiating cells. Nature 2004; 432: 396-401.
    [12]SUETSUGU A, NAGAKI M, AOKI H et al. Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys Res Commun 2006; 351: 820-824.
    [13] O'BRIEN CA, POLLETT A, GALLINGER S et al. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007; 445: 106-110.
    [14]KHANUM F, ANILAKUMAR KR, VISWANATHAN KR. Anticarcinogenic properties of garlic: a review. Crit Rev Food Sci Nutr 2004; 44: 479-488.
    [15] ARORA A, SETH K, SHUKLA Y. Reversal of P-glycoprotein-mediated multidrug resistance by diallyl sulfide in K562 leukemic cells and in mouse liver. Carcinogenesis 2004; 25: 941-949.
    [16] SNOW K, JUDD W. Characterisation of adriamycin- and amsacrine-resistant human leukaemic T cell lines. Br J Cancer 1991;63:17-28.
    [17]Imanishi T, Abe Y, Suto R et al. Expression of the human multidrug resistance gene (MDR1) and prognostic correlation in human osteogenic sarcoma. Tokai J Exp Clin Med 1994; 19: 39-46.
    [18] Suto R, Abe Y, Nakamura M et al. Multidrug resistance mediated by overexpression of P-glycoprotein in human osteosarcoma in vivo. Int J Oncol 1998; 12: 287-291.
    [19]Bodey B, Taylor CR, Siegel SE et al. Immunocytochemical observation of multidrug resistance (MDR) p170 glycoprotein expression in human osteosarcoma cells. The clinical significance of MDR protein overexpression. Anticancer Res 1995; 15: 2461-2468.
    [20] Chan HS, Grogan TM, Haddad G et al. P-glycoprotein expression: critical determinant in the response to osteosarcoma chemotherapy. J Natl Cancer Inst 1997; 89: 1706-1715.
    [21] Wunder JS, Bull SB, Aneliunas V et al. MDR1 gene expression and outcome in osteosarcoma: a prospective, multicenter study. J Clin Oncol 2000; 18: 2685-2694.
    [22] Shnyder SD, Hayes AJ, Pringle J et al. P-glycoprotein and metallothionein expression and resistance to chemotherapy in osteosarcoma. Br J Cancer 1998; 78: 757-759.
    [23] Jakubikova J, Sedlak J. Garlic-derived organosulfides induce cytotoxicity, apoptosis, cell cycle arrest and oxidative stress in human colon carcinoma cell lines. Neoplasma 2006; 53: 191-199.
    [24] Das A, Banik NL, Ray SK. Garlic compounds generate reactive oxygen species leading to activation of stress kinases and cysteine proteases for apoptosis in human glioblastoma T98G and U87MG cells. Cancer 2007; 110: 1083-1095.
    [25] Kim YA, Xiao D, Xiao H, et al. Mitochondria-mediated apoptosis by diallyl trisulfide in human prostate cancer cells is associated with generation of reactive oxygen species and regulated by Bax/Bak. Mol Cancer Ther 2007; 6: 1599-1609.
    [26] Chaudhary PM, Roninson IB. Expression and activity of P-glycoprotein, a multidrug efflux pump, in human hematopoietic stem cells. Cell 1991; 66: 85-94.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700