用户名: 密码: 验证码:
噻唑烷酮类及纳米材料化合物库的合成、表征及生物活性筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
组合化学发展至今,其平行合成、分析及纯化技术均得到了较大的提高,随着高通量筛选技术的不断发展,组合化学在先导化合物的开发和优化过程中得到了广泛的应用。本课题致力于开发新的抗肿瘤药物,这种药物能同时杀死对药物敏感的肺癌细胞H460及多药耐药性的肺癌细胞H460/TaxR,而且对人正常成纤维细胞(NHFB)不表现毒性。在已知噻唑烷酮类先导化合物的前提下,我们用液相组合化学及氟化学方法合成了多个噻唑烷酮类化合物库来优化其抗肿瘤活性及选择性。在得到初步构效关系基础上我们设计了优化化合物库来进一步优化其抗肿瘤活性并利用P糖蛋白(P-gp)模型来深入研究其构效关系,我们还设计了活性化合物结构模型来对所得结果进行解释。
     活性小分子要成为药物需要具备很多条件,很多在细胞实验中有很好的活性的小分子因为较低的水溶性和渗透性,或者较高的体内毒性而被淘汰。小分子的物理化学性质可以通过结构修饰或是聚合物包被来改善,但总是受操作性或颗粒大小的限制,把小分子修饰于纳米材料表面是改善其性质的一种新的方法。随着纳米材料在生命体系中的广泛应用,纳米材料的生物相容性和毒性问题越来越受到大家的关注,解决纳米材料生物相容性的方法是表面化学修饰。本课题将组合化学技术运用于纳米材料的表面修饰,对多壁碳纳米管(MWNTs)表面进行共价组合化学修饰,通过多重生物实验来检测其生物相容性,在得到了生物相容性好的多壁碳纳米管的同时得到了初步的纳米材料表面化学修饰与生物相容性的构效关系。
     制约纳米材料表面修饰化学的一个主要因素为纳米材料的表面化学分析,在多壁碳纳米管化合物的合成过程中,我们在定性、定量碳纳米管表面官能团方面积累了一些经验,发展了诸如傅立叶变换红外光谱(FTIR)和魔角核磁技术(MAS NMR)在碳纳米管表面化学分析中的应用。为了验证并拓展MAS NMR在纳米表面化学分析中的应用,我们设计并合成了另外一种被广泛研究的纳米材料-金纳米颗粒(GNPs),通过NMR条件的优化,得到了较高质量的GNPs的~1H及2D核磁谱图。在MAS ~1H NMR中,氢的信号强度与其距离金纳米表面的远近有显著的关系,距离越近,信号越弱;同时苯环及其附近的氢在魔角核磁谱图中总以宽峰形式出现。最后我们在这些经验基础上设计合成了系列双官能团修饰的金纳米颗粒化合物库,为其生物学实验提供了材料。
     本论文共分为两个部分,第一部分为噻唑烷酮类化合物库的合成、抗癌活性及构效关系研究,第二部分为生物相容性纳米材料的设计、合成及表征。
     第一部分噻唑烷酮类化合物库的合成、抗癌活性及构效关系研究
     肺癌是世界上死亡率最高的癌症之一,其中超过80%的肺癌为非小细胞肺癌(NSCLC)。但是癌症治疗的瓶颈并非人们没有发现能杀死癌细胞的药物,而是很少发现在能杀死癌细胞的同时对正常细胞无毒性作用的药物。另一方面,癌症治疗失败的原因往往因为高剂量给药而产生的多药耐药性(MDR)。因此剂量引发的毒性和耐药性的产生是癌症治疗失败的两个主要原因。MDR可由多种机制产生,其一为与耐药相关的一些药物转运蛋白的高表达。在MDR中起主要作用而且研究最为深入的是MDR/P-gp高表达。因此我们急需研发新一类非P-gp底物的抗癌药物,这类药物在能同时杀死药物敏感和多药耐药性癌细胞的同时对正常细胞不表现毒性。
     前期的细胞实验筛选得到两个噻唑烷酮类化合物,这两个化合物能杀死对紫杉醇敏感和已产生耐药性的NSCLC细胞H460和H460/TaxR,同时对作为对照的NHFB无明显毒性。基于此,我们设计了一系列化合物库来改善噻唑烷酮类化合物对NSCLC细胞的活性和选择性,同时研究此类化合物抗癌活性-化合物结构关系。在第一轮活性实验中,我们用液相组合化学方法合成了185个2-芳基亚胺基取代-4-噻唑烷酮类化合物和17个2-芳基亚胺基-3-取代-4-噻唑烷酮类化合物,用氟化学手段合成了45个2-芳基-4-噻唑烷酮类化合物。所有化合物在10μM浓度下对H460、H460/TaxR和NHFB进行活性筛选,能杀死两个NSCLC细胞系但对正常细胞无毒性的化合物被筛选出来。初期实验表明3-位胺基位置取代使噻唑烷酮类化合物失去了抗癌活性和选择性,同时2-位芳基亚氨基为保持其抗癌选择性必需基团。重复实验筛选得到11个最有活性的化合物。为了进一步改善其抗癌选择性并研究其构效关系,我们对活性化合物结构进行分析并在此基础上设计并合成了包含170个化合物的优化化合物库,化合物的平均纯度达到95%。经过10μM浓度下初步筛选得到40个活性化合物,用5μM浓度筛选得到11个较高活性化合物。对11个化合物的剂量依赖实验得到此类化合物对H460和H460/TaxR的最佳半数抑制浓度为300 nM,同时即使在最高作用浓度下(100μM),绝大多数活性化合物对NHFB仍没有达到半数抑制,其抗癌选择性得到显著提高。
     选取13个能杀死H460但不能杀死耐药性H460/TaxR和11个能同时杀死H460和H460/TaxR的噻唑烷酮化合物进行P-gp底物模拟实验。第一组中有9个化合物符合P-gp底物药物模型(70%),但第二组中仅有4个化合物符合(36%)。药物模型实验表明活性化合物极有可能不是P-gp底物。构效关系研究表明活性化合物在噻唑烷酮的2-和4-位取代芳基位置多为供电基团,2-位芳胺基中的取代基团可以在苯环的2-和4-位,但是在4-位芳亚甲基中的取代基团只能发生在4-位。噻唑烷酮中的胺基不能被取代。通过对11个活性化合物进行结构模型分析表明活性化合物共同特征为两个氢键受体和3个疏水性部位,结构模型的建立可以指导将来的此类化合物的设计。
     第二部分生物相容性纳米材料的设计、合成及表征
     每年有成千上万的活性小分子被筛选出来,而真正能成为药物的小分子少之又少,这是因为从小分子到药物需要具备很多条件,因此很多在细胞实验中活性很好的化合物因为低的水溶性或渗透性而被淘汰。改善小分子物理化学性质的两个常用方法为化学修饰和用高聚物进行包被,然而两种方法或者太费时费力,或者因为粒子半径太大而受到限制。与此同时,随着纳米技术的发展,将小分子连接于纳米材料表面来改善小分子在生命体系中的性质越来越受到大家的关注。MWNTs是被广泛应用于材料、电子及生命体系的纳米材料之一,但是我们有必要来寻找较高生物相容性的MWNTs来将其更好地用于生命体系,改善其生物相容性的方法之一即为纳米材料的表面修饰。
     我们设计了一系列实验来定性研究纳米材料的生物相容性,如蛋白结合、细胞毒性和免疫反应实验等。组合化学法修饰纳米材料来筛选生物相容性纳米材料的优势在于其不仅能通过筛选实验得到理想的纳米材料,还可以通过生物相容性与结构关系研究来指导纳米材料性质的优化。在没有前期经验的前提下,我们计划通过最大的结构多样性来修饰碳纳米管。化学修饰通过羧基化MWNTs与酪氨酸的反应来进行。酪氨酸选来作为连接体是因为它有三个活性基团,当一个反应基团用来连接MWNTs后,剩余基团仍可以仍可在两个反应位点进行多样性修饰,同时因为酪氨酸作为氨基酸具有生物相容性。8种有机胺和9种酰氯被选择来组建一个包含80种f-MWNTs的化合物库(其中8种为反应中间体)。LC/MS被用来监测洗涤过程的效率及最终纳米材料的纯度。FTIR用来表征功能化MWNTs(f-MWNTs)表面特征官能团,例如当原始多壁碳纳米管被氧化为羧基碳纳米管时,在1713cm~(-1)左右出现的IR吸收峰即为羧基中羰基的特征吸收。我们首次将装备nano probe的MAS NMR技术应用于f-MWNTs的表面化学分析中,以f-MWNTs 26、50、28和76为例,它们含有相似的苯磺酰基,所不同的是与f-MWNTs 26和50相比,f-MWNTs 28和76在苯环3-位有一硝基,硝基的出现降低了苯环上的电子云密度,所以比较而言f-MWNTs 28和76的苯环的MASNMR信号(7.64-8.71ppm)比f-MWNTs 26和50(7.29-7.94ppm)向低场移动。f-MWNTs表面官能团的含量由元素分析中氮和氢的含量来计算,对其中的部分中间体,表面官能团的含量由UV-Vis测定其裂解Fmoc含量的方法进行确证。
     为了筛选出合适的f-MWNTs来进行优化,我们对其进行了蛋白结合实验、细胞毒性实验和免疫反应实验研究,所有f-MWNTs按蛋白结合能力、细胞毒性和免疫反应由低到高进行排序,然后对每一个f-MWNTs的各项排序指标进行加和,所以较低的指标加和说明一个f-MWNTs具有较好的生物相容性。生物相容性与结构进行构效关系分析显示,前5名生物相容性好的f-MWNTs有3个包含AC005结构单元,同时所有包含AC005结构单元的f-MWNTs都位于前25名生物相容性好的f-MWNTs中。同样AC008、AC006、AC004、AM003和AM004为有益于增强生物相容性的结构单元。通过这种利用最大多样性设计f-MWNTs纳米材料化合物库来筛选生物相容性f-MWNTs的实验,我们证明了组合化学方法在纳米材料的表面修饰中的应用价值。
     受MAS NMR在f-MWNTs纳米材料化合物库的分析过程中应用的启发,我们设计并合成了4种化学修饰的GNPs,并成功地将MAS NMR技术应用于GNPs表面化学分析。与f-MWNTs相比,GNPs具有较好的生物相容性,简单的合成方法及统一的粒子半径等优点。在利用TEM和FTIR对纳米材料进行初步表征基础上,从溶剂、温度及转速等多个方面对MAS NMR进行优化。在优化条件下,得到了GNPs的较高分辨率的MAS ~1H和2D NMR谱图,包括COSY、TOCSY和HSQC。结果显示在MAS ~1H NMR谱图中,氢的信号强度与其所在位置距离GNPs表面的远近有显著关系,距离越小,信号强度越小。同时,GNPs表面的苯环官能团及基附近氢总以宽峰形式出现,推测是因为不同苯环的π-π共扼作用所致。通过对2D谱图信号的归属,我们可以确定GNPs表面的复杂结构。
     纳米材料的另一个优点是其多官能团修饰,即可以将具有不同功能的官能团同时修饰于一种纳米材料表面。在化学表征及生物筛选方法建立的基础上,我们设计并合成了一系列双官能团修饰的GNPs。FTIR结果及对其裂解产物进行LC/MS表征确定了两种官能团在纳米材料表面同时存在并且其相对含量的多少,同时纳米材料表面小分子的含量与反应过程中小分子的用量有对应关系,其绝对含量可由LC/CLND来计算(实验未完成)。当用荧光材料FITC和叶酸(FolicAcid,FA)来修饰GNPs时,荧光分析确定了GNPs表面FITC的存在。用FA受体高表达的KB细胞系和不表达FA受体的A594细胞进行细胞摄取实验,结果证实了GNPs表面FA的存在。应用上述实验建立的优化条件及分析方法,我们设计并合成了一个包含42种纳米材料的GNPs化合物库,关于这一个化合物库的生物筛选实验正在进行中。
The developments of combinatorial chemistry,parallel synthesis,analysis, automatic purification,and high throughput screening techniques have been greatly improved in the past decades.The application of combinatorial chemistry has been widely applied in the discovery and optimization of lead compounds.This study is committed to the development of new anti-cancer drugs,which can kill both the drug-sensitive lung cancer cells H460 and paclitaxel-resistant lung cancer cells H460/TaxR,but do not show toxicity towards normal human fibroblast(NHFB). Using thizaolidinones as lead compounds,solution-phase combinatorial chemistry and fluorous chemistry were adapted to synthesize a series of 4-thiazolidinone libraries.Based on the preliminary structure-activity relationship(SAR) exploration, a lead optimization library was designed and synthesized to further optimize the anti-tumor activity and cytoselective toxicity.A series of potent compounds with less toxicity and a much wider expected therapeutic window for their cytoselective toxicity for both multidrug-sensitive and -resistant cancer cells were identified.A separate pharmacophore for the most active compounds showed a common arrangement of two hydrogen bond acceptors and three hydrophobic regions.These most active compounds were less likely to be P-glycoprotein(P-gp) substrates.
     A number of conditions are required for an active small molecule to be a drug. Many active compounds in cell screening are abandoned due to low aqueous solubility,low permeability or high toxicity in vivo.The physicochemical properties of small molecules can be changed by chemical modification or encapsulation of small molecules with polymeric micelles as well as dendrimers.However,they are always subjected to operational restrictions,or particle sizes.An alternative new approach to improve the nature of small molecules is small-molecule surface modification on nanoparticles.With the application of nanoparticles in biological systems,the concern about the biocompatibility and toxicity is increasing.Surface chemical modification is one of the methods to address such problems.In this study, combinatorial chemistry technology was firstly applied to the surface modification of multi-walled carbon nanotubes(MWNTs).Through multiple biological screening, such as protein binding assay,cyototoxicity and immune response,the MWNTs with better biocompatibility were identified as well as the structure-biocompatibility relationship.
     The surface characterization restricts the development of chemical modification of nanoparticles.In the synthesis of MWNT library,we developed several methods for qualitatively and quantitatively determination of surface functional groups on MWNTs,such as FTIR and magic angle spinning NMR(MAS NMR).In order to verify and expand the usage of MAS NMR in the nano-surface chemical analysis,we designed and synthesized another widely studied nanoparticles,gold nanoparticles (GNPs).Through the optimization of NMR conditions,the high quality of ~1H and 2D NMR spectra were obtained.In the ~1H MAS NMR spectrum,the signal density of hydrogen is highly dependent on the distance between the surface of GNPs and protons in the ligand molecule.The closer the distance,the weaker the signal density is.Furthermore,NMR spectra of aromatic protons seem to always have a broad base compared with aliphatic ligands,indicating some degree ofπ-πstacking effects.The final parts of this study focus on the design and synthesis of a series of bifunctional GNPs for biological experiments.
     PartⅠ:Design,Synthesis,Cytoselective Toxicity,and Structure Activity Relationships(SAR) of Thiazolidinone Derivatives
     Lung cancer is the number one cause of cancer-related deaths worldwide.More than 80%of bronchogenic malignancy is from non-small cell lung cancer(NSCLC). However the bottleneck to the development of effective anticancer drugs does not lie on an inability to identify chemicals that will kill cancer cells.Instead,the bottleneck lies on our inability to identify chemicals that will kill cancer cells at concentrations that do not harm patients.On the other hand,currently available therapies have been only temporarily successful for most cancer patients because they frequently lead to resistance.Thus,resistance to treatment and dose-limiting toxicity are two primary reasons for the failure of anticancer therapies.Resistance to treatment may arise through multidrug resistance(MDR),which is a phenotype of cross-resistance to multiple drugs.One mechanism underpinning MDR is the overexpression of the MDR-1 gene that encodes the transmembrane,ATP-dependent,drug efflux transporter P-gp in response to chemotherapy.Therefore,it's an important step for the success of cancer therapy to discover new compounds that are not substrates of P-gp and are affective against both drug-sensitive and drug-resistant cancer cells but spare normal human cells.
     Two thiazolidinone derivatives have been identified to inhibit the growth of paclitaxel-sensitive and -resistant NSCLC cell lines H460 and H460/TaxR.Both of them showed relatively low toxicity toward NHFB.To search more active compounds with an acceptable therapeutic window,thus helping to reveal structure-activity relationship for cytoselective anticancer activity,a series of thiazolidinone derivatives were designed.185 2-arylimino-4-thiazolidinones and 17 2-arylimino-3-substituted-4-thiazolidinones were successfully prepared using solution phase parallel synthesis method and 45 2-aryl-4-thiazolidinones were synthesized using fluorous chemistry method.In the primary screening,all compounds were tested against H460,H460/TaxR and NHFB at a concentration of 10μM.Compounds which exhibited toxicity to both cancer cells but not to normal cells were selected. Primary screening indicated that the nitrogen substitution blocked the cytoselective toxicity of the compounds and the imino group at 2-positon of thiazolidinones was necessary for keeping activities.The confirmation assays identified 11 compounds as potent agents for inducing cytoselective toxicity.To optimized the cytoselectivity and explore the structure-activity relationship of active compounds,the early lead optimization library was designed based on those potent compounds.We synthesized, purified and obtained 170 designed compounds with an average purity of 95%.The single-concentration(10μM) primary screening identified 40 hits.Using a lower concentration(5μM),11 compounds were confirmed and selected for dose-response studies,the 50%inhibitory concentration(IC_(50)) of the 11 compounds for H460 and H460_(taxR) cells was as low as 300 nM.For most of active compounds,NHFBs did not reach 50%cell killing at the highest compound concentration used(100μM).One of the most potent compounds possessed IC_(50) against H460 at 500 nM and H460/taxR at 210 nM.
     Structures of 13 compounds that killed H460,but not drug-resistant H460/taxR, and 11 active compounds that killed both cancer cells,but not normal cells were selected for P-gp pharmacophore modeling studies.9 of 13 molecules(70%) were found to map to the P-gp substrate pharmacophore in group 1.In contrast,only 4 of 11 molecules(36%) in group 2 mapped to the P-gp substrate pharmacophore.This suggested that active compounds were less likely to be P-gp substrates.SAR analysis showed that substitution groups were dominantly electron-donating groups at the 2- or 4-position for both rings.Substitution at phenylimino position allowed groups such as -Me,-Cl at both the 2- and 4-positions.However,Substitution at benzylidene position was restricted to only the -NMe_2 group at the 4-position.Compounds with nitrogen substitutions on the 4-thiazolidinone ring B did not show any cytoselective toxicity. We,therefore,tentatively concluded that nitrogen substitution blocked such activity. Anti-cancer molecule pharmacophore was generated with 11 most active compounds. The results indicated that two hydrogen bond acceptors and three hydrophobic regions were common features for all active compounds.This anticancer compound pharmacophore may be useful in further database searching to scaffold-hop to find novel anticancer molecules.Further studies to determine the mechanism of these anticancer compounds,as well as to optimize anticancer activity within this series of compounds,will be desirable.
     PartⅡ:Design and synthesis of nanoparticles with better characterization and biocompatibility
     Hundreds of thousands of active compounds are screened for best drug candidates each year,however,only a few less of them can be drugs in the end.That's because a lot of factors are needed for an active compound to become a drug,i.e.some active compounds in vitro experiment are restricted by bad aqueous solubility or poor permeability in vivo.Chemical modification and encapsulation of drug molecules with the core of polymeric micelles as well as dendrimers are two common methods to address the problems;however,the methods are time-consuming or restricted by the large sizes.Interestingly,the use of nanoparticulate pharmaceutical carries,which have small size from 1 to 100 nm,to enhance the efficiency of many drugs well were established over the past decades.MWNTs have attracted wide biological and medical interests besides the vast interests in their technological and engineering applications. For applications of MWNTs in biological systems,it is urgent to explore the MWNTs with better biocompatibility.Surface modification is an solution to enhance the biocompatibility of nanoparticles.
     Combinatorial modifications of MWNTs' surface would enable us to map unknown chemical space more effectively and to rapidly discover biocpmpatible functional MWNTs(f-MWNTs) with reduced toxicity,and reveal structure-activity relationships at the same time.Nano-combinatorial chemistry will accomplish two missions:1) to search for an initial lead candidate through combinatorial synthesis and screening and 2) once a lead is available,to optimize the lead in order to meet a set of criteria for nanomedicine candidate.To discover biocompatible nanotubes without a prior knowledge of targets,we decided to expose multiple biological targets to the maximum surface structural diversity.Starting with carboxylated f-MWNT,a tyrosine molecule is first attached as a linker because of its biocompatibility as an amino acid and its two reacting points(amine and carboxyl groups) for further diversification in two dimensions.8 amines and 9 acylators were selected for library synthesis(80 members including 8 intermediates in library).To confirm the purity of final f-MWNTs,LC/MS method was developed for monitoring the effectiveness of each purification process.FTIR was adapted for characterization of special functional groups on the surface of MWNTs,For example,when pristine-MWNT was oxidized, an FTIR band at 1713 cm~(-1) appeared indicating the formation of carboxylic acid groups.We were the first to use MAS NMR with Nano probe to acquire ~1H NMR spectra of nanotube-bond molecules in this investigation.F-MWNTs 26,50,28,and 76 have a benzenesulfonyl group except that there was a nitro group at 3-position in 28 and 76.The existence of nitro group reduced the electron density of the phenyl ring and caused a downfield shift in 28 and 76(7.64-8.71 ppm) compared to 26 and 50(7.29-7.94 ppm).The loading of selected f-MWNTs were calculated by elemental analysis and confirmed by quantification of released Fmoc group from intermediates with UV-Vis spectroscopy.
     In order to select suitable candidates for further optimization and in vivo study,we studied the protein binding properties,cytotoxicity and immune response of the f-MWNT library.The f-MWNTs with less protein binding,immune response,and cytotoxicity were ranked from 1 to 80.The sum of a f-MWNT's ranking was named multi-assay score.Smaller multi-assay score is superior in term of overall biocompatibility.Structure-biocompatibility relationship analysis showed that three out of the top five lead candidates,contained the building block AC005 and all eight AC005 containing f-MWNTs were in the top 25 in term of multi-assay score.AC008, AC006,AC004,AM004 and AM003 also showed moderate correlation to the multi-assay score.By rapidly approaching to surface molecular diversity on MWNTs and accelerating discovery of biocompatible nanomedicine carriers,we demonstrated the general utility of nano combinatorial chemistry approach in nanomedicine discovery.
     Encouraged by the primary results of the usage of MAS NMR for surface characterization of MWNTs,we successfully expanded the method to GNPs for full structural characterization.Compared with MWNTs,GNPs had advantages of better biocompatibility,easier synthesis process and unique size distribution.We effectively optimized high resolution MAS NMR(HRMAS NMR) experimental conditions by selecting solvent,temperature,spinning speed and pulse sequence for GNPs.Using the optimized condition,we also successfully obtained the ~1H and 2D HRMAS NMR for GNPs,such as COSY,TOCSY and HSQC.We found that there are significant differences in detection sensitivity depending on the distance between the surface of GNP and protons in the ligand molecule,and the loss of sensitivity for protons closer to the nanoparticle surface is consistent with an early finding.Furthermore,NMR spectra of aromatic protons of ligands attached to GNP seem to have a broad base compared with aliphatic ligands,indicating some degree ofπ-πstacking effects. Chemical shift assignment was useful for characterization of more complex structure by 2D spectra.Our results demonstrate that ~1H HRMAS NMR holds great potential for structural elucidation of molecules bound to nanoparticle surface.
     Recognizing that nanoparticles had the advantages of multifunctionalization,we designed and synthesized double functional GNPs with different ratios of two free ligands.We tried different methods to determine the loading of each ligands, including FTIR and cleavage-LC/MS.The loading of certain ligand increased with the increased usage of the free ligand.The conclusion was confirmed by design and synthesis of another group of double functional GNPs.When FITC and folic acid(FA) were used to construct multifunctional GNPs,the existence of FITC was confirmed by fluorescence spectroscopy of the GNPs.Two cell lines,KB cells over expressing FA receptors and A495 with low content of FA receptors,were used for cell uptake experiments.The difference of Confocal images of two cell lines demonstrated the existence of FA on the surface of GNPs.Using the optimized conditions,a double-functional GNP nano-combinatorial library containing 42 members was successfully synthesized and characterized.The development of new quantitative method for GNPs and the bioassays for the GNP library are on going.
引文
1. Kaelin, W. G., The concept of synthetic lethality in the context of anticancer therapy. Nature Reviews Cancer 2005, 5, (9), 689-698.
    2. Teraishi, F.; Wu, S. H.; Sasaki, J.; Zhang, L. D.; Zhu, H. B.; Davis, J. J.; Fang, B. L., P-glycoprotein-independent apoptosis induction by a novel synthetic compound, MMPT [5-[(4-methylphenyl)methylene]-2-(phenylamino)-4 (5H)-thiazolone]. Journal of Pharmacology and Experimental Therapeutics 2005,314, (1), 355-362.
    3. Ling, V., Multidrug resistance: Molecular mechanisms and clinical relevance. Cancer Chemotherapy and Pharmacology 1997,40, S3-S8.
    4. Green, D. R.; Evan, G. I., A matter of life and death. Cancer Cell 2002, 1,(1), 19-30.
    5. Kartner, N.; Riordan, J. R.; Ling, V., Cell-surface P-glycoprotein associated with multidrug resistance in mammalian-cell lines. Science 1983,221, (4617), 1285-1288.
    6. Ueda, K.; Cardarelli, C.; Gottesman, M. M.; Pastan, I., Expression of a full-length CDNA for the human DMR1 gene confers resistance to colchicine, doxorubicin, and vinblastine. Proceedings of the National Academy of Sciences of the United States of America 1987, 84, (9), 3004-3008.
    7. Yusuf, R. Z.; Duan, Z.; Lamendola, D. E.; Penson, R. T.; Seiden, M. V., Paclitaxel resistance: Molecular mechanisms and pharmacologic manipulation. Current Cancer Drug Targets 2003,3, (1), 1-19.
    8. Dumontet, C.; Sikic, B. I., Mechanisms of action of and resistance to antitubulin agents: Microtubule dynamics, drug transport, and cell death. Journal of Clinical Oncology 1999,17, (3), 1061-1070.
    9. Alvarez, M.; Paull, K.; Monks, A.; Hose, C.; Lee, J. S.; Weinstein, J.; Grever, M.; Bates, S.; Fojo, T., Generation of a drug-resistance profile by quantitation of MDR1/P-glycoprotein in the cell-lines of the national-cancer-institute anticancer drug screen. Journal of Clinical Investigation 1995, 95, (5), 2205-2214.
    10. Lanni, J. S.; Lowe, S. W.; Licitra, E. J.; Liu, J. O.; Jacks, T., p53-independent apoptosis induced by paclitaxel through an indirect mechanism.Proceedings of the National Academy of Sciences of the United States of America 1997,94,(18),9679-9683.
    11.Haldar,S.;Basu,A.;Croce,C.M.,Bc12 is the guardian of microtubule integrity.Cancer Research 1997,57,(2),229-233.
    12.Gottesman,M.M.;Fojo,T.;Bates,S.E.,Multidrug resistance in cancer:Role of ATP-dependent transporters.Nature Reviews Cancer 2002,2,(1),48-58.
    13.Ambudkar,S.V.;Kimchi-Sarfaty,C.;Sauna,Z.E.;Gottesman,M.M.,P-glycoprotein:from genomics to mechanism.Oncogene 2003,22,(47),7468-7485.
    14.Aller,S.G.;Yu,J.;Ward,A.;Weng,Y.;Chittaboina,S.;Zhuo,R.P.;Harrell,P.M.;Trinh,Y.T.;Zhang,Q.H.;Urbatsch,I.L.;Chang,G.,Structure of P-Glycoprotein Reveals a Molecular Basis for Poly-Specific Drug Binding.Science 2009,323,(5922),1718-1722.
    15.Chin,J.E.;Soffir,R.;Noonan,K.E.;Choi,K.;Roninson,I.B.,Structure and expression of the human MDR(P-glycoprotein) gene family.Molecular and Cellular Biology 1989,9,(9),3808-3820.
    16.Fojo,A.T.;Ueda,K.;Slamon,D.J.;Poplack,D.G.;Gottesman,M.M.;Pastan,I.,Expression of a multidrug-resistance gene in human-tumors and tissues.Proceedings of the National Academy of Sciences of the United States of America 1987,84,(1),265-269.
    17.Teraishi,F.;Wu,S.;Sasaki,J.;Zhang,L.;Davis,J.J.;Guo,W.;Dong,F.;Fang,B.,JNK1-dependent antimitotic activity of thiazolidin compounds in human non-small-cell lung and colon cancer cells.Cellular and Molecular Life Sciences 2005,62,(19-20),2382-2389.
    18.Teraishi,F.;Wu,S.H.;Inoue,S.;Zhang,L.D.;Davis,J.J.;Guo,W.;Dong,F.Q.;Fang,B.L.,Antitumor activity and downregulation of pro-angiogenic molecules in human prostate cancer cells by a novel thiazolidione compound.Prostate 2006,66,(4),430-438.
    19.Teraishi,F.;Wu,S.H.;Zhang,L.D.;Guo,W.;Davis,J.J.;Dong,F.Q.;Fang,B.L.,Identification of a novel synthetic thiazolidin compound capable of inducing c-Jun NH2-tkinase-dependent apoptosis in human colon cancer cells. Cancer Research 2005,65, (14), 6380-6387.
    
    20. Ferry, D. R.; Traunecker, H.; Kerr, D. J., Clinical trials of P-glycoprotein reversal in solid tumours. European Journal of Cancer 1996,32 A, (6), 1070-1081.
    21. Samuels, B. L.; Hollis, D. R.; Rosner, G. L.; Trump, D. L.; Shapiro, C. L.; Vogelzang, N. J.; Schilsky, R. L., Modulation of vinblastine resistance in metastatic renal cell carcinoma with cyclosporine a or tamoxifen: A Cancer and Leukemia Group B study. Clinical Cancer Research 1997,3, (11), 1977-1984.
    22. Advani, R.; Fisher, G. A.; Lum, B. L.; Hausdorff, J.; Halsey, J.; Litchman, M.; Sikic, B. I., A phase I trial of doxorubicin, paclitaxel, and valspodar (PSC 833), a modulator of multidrug resistance. Clinical Cancer Research 2001,7, (5), 1221-1229.
    23. Fisher, G. A.; Lum, B. L.; Hausdorff, J.; Sikic, B. I., Pharmacological considerations in the modulation of multidrug resistance. European Journal of Cancer 1996,32A, (6), 1082-1088.
    24. Torrance, C. J.; Agrawal, V.; Vogelstein, B.; Kinzler, K. W., Use of isogenic human cancer cells for high-throughput screening and drug discovery. Nature Biotechnology 2001,19, (10), 940-945.
    25. Merrifield, R. B., Solid phase peptide synthesis 1. synthesis of a tetrapeptide. Journal of the American Chemical Society 1963,85, (14), 2149-&.
    26. Geysen, H. M.; Rodda, S. J.; Mason, T. J., The delineation of peptides able to mimic assembled epitopes. Ciba Foundation Symposia 1986,119, 130-149.
    27. Lam, K. S.; Lebl, M.; Krchnak, V., The "One-Bead-One-Compound" Combinatorial Library Method. Chemical Reviews 1997,97, (2), 411-448.
    28. Guillier, F.; Orain, D.; Bradley, M., Linkers and Cleavage Strategies in Solid-Phase Organic Synthesis and Combinatorial Chemistry. Chemical Reviews 2000, 100, (6), 2091-2158.
    29. Thompson, L. A.; Ellman, J. A., Synthesis and Applications of Small Molecule Libraries. Chemical Reviews 1996,96, (1), 555-600.
    
    30. Yan, B., Monitoring the Progress and the Yield of Solid-Phase Organic Reactions Directly on Resin Supports. Accounts of Chemical Research 1998, 31,(10), 621-630.
    31.Yan,B.;Kumaravel,G.;Anjaria,H.;Wu,A.;Petter,R.C.;Jewell,C.F.;Wareing,J.R.,Infrared spectrum of a single resin bead for real-time monitoring of solid-phase reactions.The Journal of Organic Chemistry 1995,60,(17),5736-5738.
    32.Warrass,R.;Wieruszeski,J.M.;Lippens,G.,Efficient suppression of solvent resonances in HR-MAS of resin-supported molecules.Journal of the American Chemical Society 1999,121,(15),3787-3788.
    33.Warrass,R.;Wieruszeski,J.M.;Boutillon,C.;Lippens,G.,High-resolution magic angle spinning NMR study of resin-bound polyalanine peptides.Journal of the American Chemical Society 2000,122,(8),1789-1795.
    34.Curran,D.P.;Hadida,S.;He,M.,Thermal allylations of aldehydes with a fluorous allylstannane.Separation of organic and fluorous products by solid phase extraction with fluorous reverse phase silica gel.Journal of Organic Chemistry 1997,62,(20),6714-6715.
    35.Zhang,W.,Fluorous synthesis of heterocyclic systems.Chemical Reviews 2004,104,(5),2531-2556.
    36.Zhang,W.,Fluorous technologies for solution-phase high-throughput organic synthesis.Tetrahedron 2003,59,(25),4475-4489.
    37.Zhang,W.,Fluorous Linker-Facilitated Chemical Synthesis.Chemical Reviews 2009,109,(2),749-795.
    38.Erol,S.;Dogan,I.,Axially chiral 2-arylimino-3-aryl-thiazolidine-4-one derivatives:Enantiomeric separation and determination of racemization barriers by chiral HPLC.Journal of Organic Chemistry 2007,72,(7),2494-2500.
    39.Vicini,P.;Geronikaki,A.;Anastasia,K.;Incerti,M.;Zani,F.,Synthesis and antimicrobial activity of novel 2-thiazolylimino-5-arylidene-4-thiazolidinones.Bioorganic & Medicinal Chemistry 2006,14,(11),3859-3864.
    40.Rawal,R.K.;Prabhakar,Y.S.;Katti,S.B.;De Clercq,E.,2-(Aryl)-3-furan-2-ylmethyl-thiazolidin-4-ones as selective HIV-RT Inhibitors.Bioorganic & Medicinal Chemistry 2005,13,(24),6771-6776.
    41.Rawal,R.K.;Tripathi,R.;Katti,S.B.;Pannecouque,C.;De Clercq,E.,Design,synthesis,and evaluation of 2-aryl-3-heteroaryl-1,3-thiazolidin-4-ones as anti-HIV agents. Bioorganic & Medicinal Chemistry 2007,15, (4), 1725-1731.
    42. Kato, T.; Ozaki, T.; Tamura, K.; Suzuki, Y.; Akima, M.; Ohi, N., Novel calcium antagonists with both calcium overload inhibition and antioxidant activity. 2. Structure-activity relationships of thiazolidinone derivatives. Journal of Medicinal Chemistry 1999,42, (16), 3134-3146.
    43. Janovec, L.; Sabolova, D.; Kozurkova, M.; Paulikova, H.; Kristian, P.; Ungvarsky, J.; Moravcikova, E.; Bajdichova, M.; Podhradsky, D.; Imrich, J., Synthesis, DNA interaction, and cytotoxic activity of a novel proflavine-dithiazolidinone pharmacophore. Bioconjugate Chemistry 2007,18, (1), 93-100.
    44. Kline, T.; Felise, H. B.; Barry, K. C.; Jackson, S. R.; Nguyen, H. V.; Miller, S. I., Substituted 2-Imino-5-arylidenethiazolidin-4-one Inhibitors of Bacterial Type III Secretion. Journal of Medicinal Chemistry 2008,51, (22), 7065-7074.
    45. Harnden, M. R.; Bailey, S.; Boyd, M. R.; Taylor, D. R.; Wright, N. D., Thiazolinone analogs of indolmycin with anti-viral and antibacterial activity. Journal of Medicinal Chemistry 1978,21, (1), 82-87.
    46. Elbarbary, A. A.; Khodair, A. I.; Pedersen, E. B.; Nielsen, C., S-glucosylated hydantoins as new antiviral agents. Journal of Medicinal Chemistry 1994, 37, (1), 73-77.
    47. Blanchet, J.; Zhu, J. P., Reeve's synthesis of 2-imino-4-thiazolidinone from alkyl (aryl) trichloromethylcarbinol revisited, a three-component process from aldehyde, chloroform and thiourea. Tetrahedron Letters 2004,45, (23), 4449-4452.
    48. Fan, Y. H.; Chen, H.; Natarajan, A.; Guo, Y. H.; Harbinski, F.; Iyasere, J.; Christ, W.; Aktas, H.; Halperin, J. A., Structure-activity requirements for the antiproliferative effect of troglitazone derivatives mediated by depletion of intracellular calcium. Bioorganic & Medicinal Chemistry Letters 2004,14, (10), 2547-2550.
    49. Liu, H. L.; Li, Z. C.; Anthonsen, T., Synthesis and fungicidal activity of 2-imino-3-(4-arylthiazol-2-yl)-thiazolidin-4-ones and their 5-arylidene derivatives. Molecules 2000, 5, (9), 1055-1061.
    50. Allen, S.; Newhouse, B.; Anderson, A. S.; Fauber, B.; Allen, A.; Chantry, D.; Eberhardt, C.; Odingo, J.; Burgess, L. E., Discovery and SAR of trisubstituted thiazolidinones as CCR4 antagonists.Bioorganic & Medicinal Chemistry Letters 2004,14,(7),1619-1624.
    51.Ottan,R.;Maccari,R.;Barreca,M.L.;Bruno,G.;Rotondo,A.;Rossi,A.;Chiricosta,G.;Di Paola,R.;Sautebin,L.;Cuzzocrea,S.;Vigorita,M.G.,5-Arylidene-2-imino-4-thiazolidinones:Design and synthesis of novel anti-inflammatory agents.Bioorganic & Medicinal Chemistry 2005,13,(13),4243-4252.
    52.Dayam,R.;Aiello,F.;Deng,J.X.;Wu,Y.;Garofalo,A.;Chen,X.Y.;Neamati,N.,Discovery of small molecule integrin alpha(v)beta(3) antagonists as novel anticancer agents.Journal of Medicinal Chemistry 2006,49,(15),4526-4534.
    53.Brown,F.C.,4-Thiazolidinones.Chemical Reviews 1961,61,(5),463-521.
    54.Singh,S.P.;Parmar,S.S.;Raman,K.;Stenberg,V.I.,Chemistry and biological activity of thiazolidinones.Chemical Reviews 1981,81,(2),175-203.
    55.Verma,A.;Saraf,S.K.,4-thiazolidinone - A biologically active scaffold.European Journal of Medicinal Chemistry 2008,43,(5),897-905.
    56.Lesyk,R.B.;Zimenkovsky,B.S.,4-thiazolidones:Centenarian history,current status and perspectives for modern organic and medicinal chemistry.Current Organic Chemistry 2004,8,(16),1547-1577.
    57.Shiradkar,M.R.;Ghodake,M.;Bothara,K.G.;Bhandari,S.V.;Nikalje,A.;Akula,K.C.;Desai,N.C.;Burange,P.J.,Synthesis and anticonvulsant activity of clubbed thiazolidinone-barbituric acid and thiazolidinone-triazole derivatives.Arkivoc 2007,58-74.
    58.Herr,R.J.;Kuhler,J.L.;Meckler,H.;Opalka,C.J.,A convenient method for the preparation of primary and symmetrical N,N '-disubstituted thioureas.Synthesis-Stuttgart 2000,(11),1569-1574.
    59.Katritzky,A.R.;Kirichenko,N.;Rogovoy,B.V.;Kister,J.;Tao,H.,Synthesis of mono- and N,N-disubstituted thioureas and N-acylthioureas.Synthesis-Stuttgart 2004,(11),1799-1805.
    60.Rasmussen,C.R.;Villani,F.J.;Weaner,L.E.;Reynolds,B.E.;Hood,A.R.;Hecker,L.R.;Nortey,S.O.;Hanslin,A.;Costanzo,M.J.;Powell,E.T.;Molinari,A. J.,Improved procedures for the preparation of cycloalkylthioureas,arylalkylthioureas,and arylthioureas.Synthesis-Stuttgart 1988,(6),456-459.
    61.Fotsch,C.;Bartberger,M.D.;Bercot,E.A.;Chen,M.;Cupples,R.;Emery,M.;Fretland,J.;Guram,A.;Hale,C.;Han,N.H.;Hickman,D.;Hungate,R.W.;Hayashi,M.;Konlorowski,R.;Liu,Q.Y.;Matsumoto,G.;Jean,D.J.S.;Ursu,S.;Veniant,M.;Xu,G F.;Ye,Q.P.;Yuan,C.;Zhang,J.D.;Zhang,X.P.;Tu,H.;Wang,M.H.,Further Studies with the 2-Amino-1,3-thiazol-4(5H)-one Class of 11beta-Hydroxysteroid Dehydrogenase Type 1 Inhibitors:Reducing Pregnane X Receptor Activity and Exploring Activity in a Monkey Pharmacodynamic Model.Journal of Medicinal Chemistry 2008,51,(24),7953-7967.
    62.Kodomari,M.;Suzuki,M.;Tanigawa,K.;Aoyama,T.,A convenient and efficient method for the synthesis of mono- and N,N-disubstituted thioureas.Tetrahedron Letters 2005,46,(35),5841-5843.
    63.Mahboobi,S.;Sellmer,A.;Hocher,H.;Eichhom,E.;Bar,T.;Schmidt,M.;Maier,T.;Stadlwieser,J.F.;Beckers,T.L.,[4-(imidazol-l-yl)thiazol-2-yl]phenylamines.A novel class of highly potent colchicine site binding tubulin inhibitors:Synthesis and cytotoxic activity on selected human cancer cell lines.Journal of Medicinal Chemistry 2006,49,(19),5769-5776.
    64.Kasmi-Mir,S.;Djafri,A.;Paquin,L.;Hamelin,J.;Rahmouni,M.,One-pot synthesis of 5-arylidene-2-imino-4-thiazolidinones under microwave irradiation.Molecules 2006,11,(8),597-602.
    65.Ottana,R.;Maccari,R.;Barreca,M.L.;Bruno,G.;Rotondo,A.;Rossi,A.;Chiricosta,G.;Di Paola,R.;Sautebin,L.;Cuzzocrea,S.;Vigorita,M.G.,5-arylidene-2-imino-4-thiazolidinones:Design and synthesis of novel anti-inflammatory agents.Bioorganic & Medicinal Chemistry 2005,13,(13),4243-4252.
    66.Parmar,S.S.;Chaudhar.A;Gupta,T.K.;Dwivedi,C.,Substituted thiazolidones and their selective-inhibition of nicotinamide-adenine dinucleotide dependent oxidations.Journal of Medicinal Chemistry 1972,15,(1),99-100.
    67.Geronikaki,A.;Eleftheriou,P.;Vicini,P.;Alam,I.;Dixit,A.;Saxena,A.K., 2-thiazolylimino/heteroarylimino-5-arylidene-4-thiazolidinones as new agents with SHP-2 inhibitory action.Journal of Medicinal Chemistry 2008,51,(17),5221-5228.
    68.Vicini,P.;Geronikaki,A.;Incerti,M.;Zani,F.;Dearden,J.;Hewitt,M.,2-Heteroarylimino-5-benzylidene-4-thiazolidinones analogues of 2-thiazolylimino-5-benzylidene-4-thiazolidinones with antimicrobial activity:Synthesis and structure-activity relationship.Bioorganic & Medicinal Chemistry 2008,16,(7),3714-3724.
    69.Le Marechal,A.M.;Robert,A.;Leban,I.,Gem-dicyano epoxide synthetic equivalents of dicationic ketenes:synthesis of 4-thiazolidinones by reaction with substituted thioureas and preparation of 2-[aryl(cyanocarbonyl)methylene]benzoxazoles by reaction with 2-thioxobenzoxazoles Tetrahedron 1990,46,(2),453-464.
    70.Volmajer,J.;Toplak,R.;Bittner,S.;Le Marechal,A.M.,2-oxiranecarbonitriles in the synthesis of linked quinono heterocyclic derivatives.Arkivoc 2003,49-61.
    71.Toplak,R.;Lah,N.;Volmajer,J.;Leban,I.;Le Marechal,A.M.,2-aminothiazole and 2-aminothiazolinone derivatives.Acta Crystallographica Section C-Crystal Structure Communications 2003,59,0502-0505.
    72.Rajanarendar,E.;Karunakar,D.;Ramu,K.,Synthesis of 5-methyl-2-[2-methyl-phenylimino -3-(3-methyl-5-styryl-isoxazol-4-yl)-2,3 -dihydro-thiazole-4-carbonyl]-2,4-dihydro-pyrazol-3-ones,1,3,4-oxadiazoles and 4-oxo-thiazolin-5-ylidene-acetic acid methyl esters.Heterocyclic Communications 2006,12,(2),123-128.
    73.Hendrickson,J.B.;Templeton,J.F.;Rees,R.,New general heterocycle synthesis-use of acetylenedicarboxylic esters.Journal of the American Chemical Society 1964,86,(1),107-108.
    74.Hurst,D.T.;Atcha,S.;Marshall,K.L.,The synthesis of some thiazolo[5,4-D]pyrimidines and oxazolo[5,4-D]pyrimidines and pyrimidinylureas.2.Australian Journal of Chemistry 1991,44,(1),129-134.
    75.Sarodnick,G.;Heydenreich,M.;Linker,T.;Kleinpeter,E.,Quinoxalines.Part 12:Synthesis and structural study of 1-(thiazol-2-yl)-1H-pyrazolo[3,4-b]quinoxalinesthe dehydrogenative cyclization with hydroxylamine hydrochloride.Tetrahedron 2003, 59,(33),6311-6321.
    76.Metwally,N.H.,Efficient Synthesis of Highly Substituted Furan,Thiophene,Pyrrole and 2-Aminothiazole Derivatives.Synthetic Communications 2007,37,(23),4227-4237.
    77.Bourahla,K.;Derdour,A.;Rahmouni,M.;Carreaux,F.;Bazureau,J.P.,A practical access to novel 2-amino-5-arylidene-1,3-thiazol-4(5H)-ones via sulfur/nitrogen displacement under solvent-free microwave irradiation.Tetrahedron Letters 2007,48,(33),5785-5789.
    78.Taylor,E.C.;Wolinsky,J.;Lee,H.H.,The reaction of alpha-cyanobenzyl benzenesul fonate with dithiocarbamates.Journal of the American Chemical Society 1954,76,(7),1870-1872.
    79.Hu,B.H.;Malamas,M.;Ellingboe,J.,Synthesis of heterocycle substituted 1-aryl-4-piperidones.Heterocycles 2002,57,(5),857-870.
    80.Hu,B.H.;Malamas,M.;EUingboe,J.;Largis,E.;Han,S.;Mulvey,R.;Tillett,J.,New oxadiazolidinedione derivatives as potent and selective human beta(3) agonists.Bioorganic & Medicinal Chemistry Letters 2001,11,(8),981-984.
    81.Chen,S.Q.;Chen,L.;Le,N.T.;Zhao,C.L.;Sidduri,A.;Lou,J.P.;Michoud,C.;Portland,L.;Jackson,N.;Liu,J.J.;Konzelmann,F.;Chi,F.;Tovar,C.;Xiang,Q.;Chen,Y.S.;Wen,Y.;Vassilev,L.T.,Synthesis and activity of quinolinyl-methylene-thiazolinones as potent and selective cyclin-dependent kinase 1inhibitors.Bioorganic & Medicinal Chemistry Letters 2007,17,(8),2134-2138.
    82.Yan,S.Q.;Appleby,T.;Larson,G.;Wu,J.Z.;Hamatake,R.;Hong,Z.;Yao,N.H.,Structure-based design of a novel thiazolone scaffold as HCVNS5B polymerase allosterie inhibitors.Bioorganic & Medicinal Chemistry Letters 2006,16,(22),5888-5891.
    83.Song,Y.T.;Connor,D.T.;Doubleday,R.;Sorenson,R.J.;Sercel,A.D.;Unangst,P.C.;Roth,B.D.;Gilbertsen,R.B.;Chan,K.;Schrier,D.J.;Guglietta,A.;Bornemeier,D.A.;Dyer,R.D.,Synthesis,structure-Activity relationships,and in vivo evaluations of substituted di-tert-butylphenols as a novel class of potent,selective,and orally active cyclooxygenase-2 inhibitors.1.Thiazolone and oxazolone series.Journal of Medicinal Chemistry 1999,42,(7),1151-1160.
    84.Janusz,J.M.;Young,P.A.;Ridgeway,J.M.;Scherz,M.W.;Enzweiler,K.;Wu,L.I.;Gan,L.X.;Chen,J.;Kellstein,D.E.;Green,S.A.;Tulich,J.L.;Rosario-Jansen,T.;Magrisso,I.J.;Wehmeyer,K.R.;Kuhlenbeck,D.L.;Eichhold,T.H.;Dobson,R.L.M.,New cyclooxygenase-2/5-lipoxygenase inhibitors.3.7-tert-butyl-2,3-dihydro-3,3-dimethylbenzofuran derivatives as gastrointestinal safe antiinflammatory and analgesic agents:Variations at the 5 position.Journal of Medicinal Chemistry 1998,41,(18),3515-3529.
    85.Unangst,P.C.;Connor,D.T.;Cetenko,W.A.;Sorenson,R.J.;Kostlan,C.R.;Sircar,J.C.;Wright,C.D.;Schrier,D.J.;Dyer,R.D.,Synthesis and biological evaluation of 5-[[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]methylene]oxazoles,-thiazoles and -imidazoles -novel dual 5-1ipoxygenase and cyclooxygenase inhibitors with antiinflammatory activity.Journal of Medicinal Chemistry 1994,37,(2),322-328.
    86.Wu,S.;Guo,W.;Teraishi,F.;Pang,J.;Kaluarachchi,K.;Zhang,L.;Davis,J.;Dong,F.;Yan,B.;Fang,B.,Anticancer activity of 5-benzylidene-2-phenylimino-1,3-thiazolidin-4-one(BPT) analogs.Med Chem 2006,2,(6),597-605.
    87.Pulici,M.;Quartieri,F.,Traceless solid-phase synthesis of 2-amino-5-alkylidene-thiazol-4-ones.Tetrahedron Letters 2005,46,(14),2387-2391.
    88.Anderluh,M.;Jukic,M.;Petrie,R.,Three-component one-pot synthetic route to 2-amino-5-alkylidene-thiazol-4-ones.Tetrahedron 2009,65,(1),344-350.
    89.Srivastava,T.;Gaikwad,A.K.;Haq,W.;Sinha,S.;Katti,S.B.,Synthesis and biological evaluation of 4-thiazolidinone derivatives as potential antimycobacterial agents.Arkivoc 2005,120-130.
    90.Fraga-Dubreuil,J.;Bazureau,J.P.,Efficient combination of task-specific ionic liquid and microwave dielectric heating applied to one-pot three component synthesis of a small library of 4-thiazolidinones.Tetrahedron 2003,59,(32),6121-6130.
    91.Gududuru,V.;Hurh,E.;Dalton,J.T.;Miller,D.D.,Synthesis and antiprofilerative activity of 2-arly-4-oxo-thiazolidin-3-yl-amides for prostate cancer.Bioorganic & Medicinal Chemistry Letters 2004,14,(21),5289-5293.
    92. Holmes, C. P.; Chinn, J. P.; Look, G. C.; Gordon, E. M.; Gallop, M. A., Strategies for combinatorial organic-synthesis-solution and polymer-supported synthesis of 4-thiazolidinones and 4-metathiazanones derived from amino-acids. Journal of Organic Chemistry 1995,60, (22), 7328-7333.
    93. Srivastava, T.; Haq, W.; Katti, S. B., Carbodiimide mediated synthesis of 4-thiazolidinones by one-pot three-component condensation. Tetrahedron 2002, 58, (38), 7619-7624.
    94. Mizzoni, R. H.; Eisman, P. C., Some thiazolines and thiazolidinones with antituberculous activity. Journal of the American Chemical Society 1958, 80, (13), 3471-3475.
    95. Kachhadia, V. V.; Patel, M. R.; Joshi, H. S., Heterocyclic systems containing S/N regioselective nucleophilic competition: facile synthesis, antitubercular and antimicrobial activity of thiohydantoins and iminothiazolidinones containing the benzo[b]thiophene moiety. Journal of the Serbian Chemical Society 2005, 70, (2), 153-161.
    96. Durust, Y.; Nohut, F., A new and convenient synthesis of some substituted thiohydantoins. Synthetic Communications 1999,29, (11), 1997-2005.
    97. Kidwai, M.; Venkataramanan, R.; Dave, B., Solventless synthesis of thiohydantoins over K2CO3. Green Chemistry 2001,3, (6), 278-279.
    98. Yella, R.; Ghosh, H.; Patel, B. K., It is "2-imino-4-thiazolidinones" and not thiohydantoins as the reaction product of 1,3-disubstituted thioureas and chloroacetylchloride. Green Chemistry 2008,10, (12), 1307-1312.
    99. Cherouvrier, J. R.; Carreaux, F.; Bazureau, J. P., Microwave-mediated solventless synthesis of new derivatives of marine alkaloid Leucettamine B. Tetrahedron Letters 2002,43, (19), 3581-3584.
    100. Nefzi, A.; Giulianotti, M.; Truong, L.; Rattan, S.; Ostresh, J. M.; Houghten, R. A., Solid-phase synthesis of linear ureas tethered to hydantoins and thiohydantoins. Journal of Combinatorial Chemistry 2002,4, (2), 175-178.
    101. Sim, M. M.; Ganesan, A., Solution-phase synthesis of a combinatorial thiohydantoin library. Journal of Organic Chemistry 1997,62, (10), 3230-3235.
    102.Giles,R.G.;Lewis,N.J.;Quick,J.K.;Sasse,M.J.;Urquhart,M.W.J.;Youssef,L.,Regiospecific reduction of 5-benzylidene-2,4-thiazolidinediones and 4-oxo-2-thiazolidinethiones using lithium borohydride in pyridine and tetrahydrofuran.Tetrahedron 2000,56,(26),4531-4537.
    103.Singh,B.S.;Mehta,D.;Baregama,L.K.;Talesara,G.L.,Synthesis and biological evaluation of 7-N-(n-alkoxyphthalimido)-2-hydroxy-4-aryl-6-arylimino-thiazolidino [2,3-b]pyrimidines and related compounds.Indian Journal of Chemistry Section B-Organic Chemistry Including Medicinal Chemistry 2004,43,(6),1306-1313.
    104.Salama,M.A.;El-Essa,S.A.,Synthesis and reactions of some new 2,3-dihydro-5H-5,7-diarylthiazolo[3,2-a]pyrimidine-3-one derivatives and their antibacterial and fungicidal activity.Indian Journal of Chemistry Section B-Organic Chemistry Including Medicinal Chemistry 2003,42,(1),173-179.
    105.Lipinski,C.A.;Lombardo,F.;Dominy,B.W.;Feeney,P.J.,Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings.Advanced Drug Delivery Reviews 1997,23,(1-3),3-25.
    106.Lipinski,C.A.;Lombardo,F.;Dominy,B.W.;Feeney,P.J.,Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings.Advanced Drug Delivery Reviews 2001,46,(1-3),3-26.
    107.Zhou,H.Y.;Wu,S.H.;Zhai,S.M.;Liu,A.F.;Sun,Y.;Li,R.S.;Zhang,Y.;Ekins,S.;Swaan,P.W.;Fang,B.L.;Zhang,B.;Yan,B.,Design,synthesis,cytoselective toxicity,structure-activity relationships,and pharmacophore of thiazolidinone derivatives targeting drug-resistant lung cancer cells.Journal of Medicinal Chemistry 2008,51,(5),1242-1251.
    108.Curran,D.P.,Organic synthesis with light-fluorous reagents,reactants,catalysts,and scavengers.Aldrichimica Acta 2006,39,(1),3-9.
    109.Curran,D.P.,Strategy-level separations in organic synthesis:From planning to practice.Angewandte Chemie-International Edition 1998,37,(9),1175-1196.
    110.Zhang,W.;Curran,D.P.,Synthetic applications of fluorous solid-phase extraction(F-SPE).Tetrahedron 2006,62,(51),11837-11865.
    111.Curran,D.P.,Fluorous reverse phase silica gel.A new tool for preparative separations in synthetic organic and organofluorine chemistry.Synlett 2001,(9),1488-1496.
    112.Zhang,W.,Fluorous-enhanced multicomponent reactions for making drug-like library scaffolds.Combinatorial Chemistry & High Throughput Screening 2007,10,(3),219-229.
    113.Zhang,W.,Fluorous tagging strategy for solution-phase synthesis of small molecules,peptides and oligosaccharides.Current Opinion in Drug Discovery &Development 2004,7,(6),784-797.
    114.Zhang,W.;Chen,C.H.T.,Fluorous synthesis of biaryl-substituted proline analogs by 1,3-dipolar cycloaddition and Suzuki coupling reactions.Tetrahedron Letters 2005,46,(11),1807-1810.
    115.Lu,Y.M.;Zhang,W.,Subsequent cross-coupling reactions microwave-assisted synthesis of a 3-aminoimidazo[1,2-a]-pyridine/pyrazine library by fluorous multicomponent reactions and.Qsar & Combinatorial Science 2004,23,(10),827-835.
    116.Zhang,W.;Chen,C.H.T.;Lu,Y.M.;Nagashima,T.,A highly efficient microwave-assisted Suzuki coupling reaction of aryl perfluorooctylsulfonates with boronic acids.Organic Letters 2004,6,(9),1473-1476.
    117.Zhang,W.;Lu,Y.;Chen,C.H.-T.,Combination of microwave reactions with fluorous separations in the palladium-catalyzed synthesis of aryl sulfides.Mol Divers 2003,7,(2-4),199-202.
    118.Mtmson,M.C.;Cook,A.W.;Josey,J.A.;Rao,C.,An efficient high-speed synthetic route to amino-substituted thiazolidinone libraries.Tetrahedron Letters 1998,39,(40),7223-7226.
    119.Ottana,R.;Carotti,S.;Maccari,R.;Landini,I.;Chiricosta,G.;Caciagli,B.;Vigorita,M.G.;Mini,E.,In vitro antiproliferative activity against human colon cancer cell lines of representative 4-thiazolidinones.Part Ⅰ.Bioorganic & Medicinal Chemistry Letters 2005,15,(17),3930-3933.
    120.Zhang,W.;Lu,Y.M.,Fluorous synthesis of hydantoins and thiohydantoins.Organic Letters 2003,5,(14),2555-2558.
    121.Zhang,W.;Nagashima,T.;Lu,Y.M.;Chen,C.H.T.,A traceless perfluorooctylsulfonyl tag for deoxygenation of phenols under microwave irradiation.Tetrahedron Letters 2004,45,(24),4611-4613.
    122.Kotha,S.;Lahiri,K.;Kashinath,D.,Recent applications of the Suzuki-Miyaura cross-coupling reaction in organic synthesis.Tetrahedron 2002,58,(48),9633-9695.
    123.Pridgen,L.N.;Huang,G K.,An optimized palladium catalyzed cross-coupling of nonracemic trifluoromethylsulfonyl and fluorosulfonyl enol ethers to arylboronic acids.Tetrahedron Letters 1998,39,(46),8421-8424.
    124.Zhou,H.Y.;Liu,A.F.;Li,X.F.;Ma,X.F.;Feng,W.;Zhang,W.;Yan,B.,Microwave-assisted fluorous synthesis of 2-aryl-substituted 4-thiazolidinone and 4-thiazinanone libraries.Journal of Combinatorial Chemistry 2008,10,(2),303-312.
    125.Chang,C.;Bahadduri,P.M.;Polli,J.E.;Swaan,P.W.;Ekins,S.,Rapid identification of P-glycoprotein substrates and inhibitors.Drug Metabolism and Disposition 2006,34,(12),1976-1984.
    126.Ekins,S.;Kim,R.B.;Leake,B.F.;Dantzig,A.H.;Schuetz,E.G;Lan,L.B.;Yasuda,K.;Shepard,R.L.;Winter,M.A.;Schuetz,J.D.;Wikel,J.H.;Wrighton,S.A.,Application of three-dimensional quantitative structure-activity relationships of P-glycoprotein inhibitors and substrates.Molecular Pharmacology 2002,61,(5),974-981.
    127.Ekins,S.;Kim,R.B.;Leake,B.F.;Dantzig,A.H.;Schuetz,E.G.;Lan,L.B.;Yasuda,K.;Shepard,R.L.;Winter,M.A.;Schuetz,J.D.;Wikel,J.H.;Wrighton,S.A.,Three-dimensional quantitative structure-activity relationships of inhibitors of P-glycoprotein.Molecular Pharmacology 2002,61,(5),964-973.
    128.Monks,A.;Scudiero,D.;Skehan,P.;Shoemaker,R.;Paull,K.;Vistica,D.;Hose,C.;Langley,J.;Cronise,P.;Vaigrowolff,A.;Graygoodrich,M.;Campbell,H.;Mayo,J.;Boyd,M.,Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured duman tumor-cell lines. Journal of the National Cancer Institute 1991, 83, (11), 757-766.
    
    129. Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J. T.; Bokesch, H.; Kenney, S.; Boyd, M. R., new colorimetric cytotoxicity assay for anticancer-drug screening. Journal of the National Cancer Institute 1990, 82, (13), 1107-1112.
    130. Mullally, J. E.; Fitzpatrick, F. A., Pharmacophore model for novel inhibitors of ubiquitin isopeptidases that induce p53-independent cell death. Molecular Pharmacology 2002,62, (2), 351-358.
    131. Mullally, J. E.; Moos, P. J.; Edes, K.; Fitzpatrick, F. A., Cyclopentenone prostaglandins of the J series inhibit the ubiquitin isopeptidase activity of the proteasome pathway. Journal of Biological Chemistry 2001,276, (32), 30366-30373.
    132. Verbitski, S. M.; Mullally, J. E.; Fitzpatrick, F. A.; Ireland, C. M., Punaglandins, chlorinated prostaglandins, function as potent Michael receptors to inhibit ubiquitin isopeptidase activity. Journal of Medicinal Chemistry 2004, 47, (8), 2062-2070.
    1. Farokhzad, O. C.; Cheng, J. J.; Teply, B. A.; Sherifi, I.; Jon, S.; Kantoff, P. W.; Richie, J. P.; Langer, R., Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proceedings of the National Academy of Sciences of the United States of America 2006,103, (16), 6315-6320.
    
    2. Huang, H. Y.; Remsen, E. E.; Kowalewski, T.; Wooley, K. L., Nanocages derived from shell cross-linked micelle templates. Journal of the American Chemical Society 1999,121, (15), 3805-3806.
    3. Gref, R.; Minamitake, Y.; Peracchia, M. T.; Trubetskoy, V.; Torchilin, V.; Langer, R., Biodegradable long-circulating polymeric nanospheres. Science 1994,263, (5153), 1600-1603.
    4. Lee, C. C.; Yoshida, M.; Frechet, J. M. J.; Dy, E. E.; Szoka, F. C., In vitro and in vivo evaluation of hydrophilic dendronized linear polymers. Bioconjugate Chemistry 2005,16, (3), 535-541.
    5. Hecht, S.; Frechet, J. M. J., Dendritic encapsulation of function: Applying nature's site isolation principle from biomimetics to materials science. Angewandte Chemie-international Edition 2001,40, (1), 74-91.
    6. Drexler, K. E., Molecular engineering -an approch to the development of general capabilities for molecular manipulation. Proceedings of the National Academy of Sciences of the United States of America-Physical Sciences 1981,78, (9), 5275-5278.
    7. Drexler, K. E., Engines of creation New York: Anchor Press/Doubleday 1986.
    8. Freynman, R. P., There's plenty of room at the bottom: an invitation to enter a new field of physics. Speech at Annual Meeting of Society of Physics 1959.
    9. Bianco, A.; Kostarelos, K.; Prato, M., Applications of carbon nanotubes in drug delivery. Current Opinion in Chemical Biology 2005, 9, (6), 674-679.
    10. Heller, D. A.; Baik, S.; Eurell, T. E.; Strano, M. S., Single-walled carbon nanotube spectroscopy in live cells: Towards long-term labels and optical sensors. Advanced Materials 2005,17, (23), 2793-2799.
    11. Pankhurst, Q. A.; Connolly, J.; Jones, S. K.; Dobson, J., Applications of magnetic nanoparticles in biomedicine. Journal of Physics D-Applied Physics 2003, 36, (13), R167-R181.
    12. Rosi, N. L.; Giljohann, D. A.; Thaxton, C. S.; Lytton-Jean, A. K. R.; Han, M. S.; Mirkin, C. A., Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 2006,312, (5776), 1027-1030.
    13. Yoo, B. K.; Joo, S. W., In situ Raman monitoring triazole formation from self-assembled monolayers of 1,4-diethynylbenzene on Ag and Au surfaces via "click" cyclization. Journal of Colloid and Interface Science 2007,311, (2), 491-496.
    14. Levy, R.; Thanh, N. T. K.; Doty, R. C.; Hussain, I.; Nichols, R. J.; Schiffrin, D. J.; Brust, M.; Fernig, D. G., Rational and combinatorial design of peptide capping Ligands for gold nanoparticles. Journal of the American Chemical Society 2004, 126, (32), 10076-10084.
    15. Ikeda, M.; Ueno, S.; Matsumoto, S.; Shimizu, Y.; Komatsu, H.; Kusumoto, K. I.; Hamachi, I., Three-Dimensional Encapsulation of Live Cells by Using a Hybrid Matrix of Nanoparticles in a Supramolecular Hydrogel. Chemistry-a European Journal 2008,14,(34), 10808-10815.
    16. Hoshino, Y.; Kodama, T.; Okahata, Y.; Shea, K. J., Peptide Imprinted Polymer Nanoparticles: A Plastic Antibody. Journal of the American Chemical Society 2008, 130,(46), 15242-15243.
    17. Green, J. J.; Zugates, G. T.; Tedford, N. C.; Huang, Y. H.; Griffith, L. G.; Lauffenburger, D. A.; Sawicki, J. A.; Langer, R.; Anderson, D. G., Combinatorial modification of degradable polymers enables transfection of human cells comparable to adenovirus. Advanced Materials 2007,19,2836-2842.
    18. Schellenberger, E. A.; Reynolds, F.; Weissleder, R.; Josephson, L., Surface-functionalized nanoparticle library yields probes for apoptotic cells. Chembiochem 2004, 5, (3), 275-279.
    19. von Maltzahn, G.; Ren, Y.; Park, J. H.; Min, D. H.; Kotamraju, V. R.; Jayakumar, J.; Fogal, V.; Sailor, M. J.; Ruoslahti, E.; Bhatia, S. N., In vivo tumor cell targeting with "Click" nanoparticles. Bioconjugate Chemistry 2008,19, (8), 1570-1578.
    20. Sommer, W. J.; Weck, M., Facile functionalization of gold nanoparticles via microwave-assisted 1,3 dipolar cycloaddition. Langmuir 2007,23, (24), 11991-11995.
    21. Hogemann, D.; Ntziachristos, V.; Josephson, L.; Weissleder, R., High throughput magnetic resonance imaging for evaluating targeted nanoparticle probes. Bioconjugate Chemistry 2002,13, (1), 116-121.
    22. Weissleder, R.; Kelly, K.; Sun, E. Y.; Shtatland, T.; Josephson, L., Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nature Biotechnology 2005,23, (11), 1418-1423.
    23. Anderson, D. G.; Levenberg, S.; Langer, R., Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells. Nature Biotechnology 2004,22, (7), 863-866.
    24. Akinc, A.; Lynn, D. M.; Anderson, D. G.; Langer, R., Parallel synthesis and biophysical characterization of a degradable polymer library for gene delivery. Journal of the American Chemical Society 2003,125, (18), 5316-5323.
    25. Green, J. J.; Langer, R.; Anderson, D. G., A combinatorial polymer library approach yields insight into nonviral gene delivery. Accounts of Chemical Research 2008,41, (6), 749-759.
    26. Sun, E. Y.; Josephson, L.; Kelly, K. A.; Weissleder, R., Development of nanoparticle libraries for biosensing. Bioconjug Chem 2006,17, (1), 109-13.
    27. Kelly, K.; Shaw, S.; Nahrendorf, M.; Kristoff, K.; Aikawa, E.; Schreiber, S.; Celemons, P.; Weissleder, R., Unbiased discovery of in vivo imaging probes through in vitro profiling of nanoparticle libraries. Inetgrative Biology 2009,1,311-317.
    28. Kolb, H. C.; Finn, M. G.; Sharpless, K. B., Click chemistry: Diverse chemical function from a few good reactions. Angewandte Chemie-International Edition 2001, 40, (11), 2004-+.
    29. Iijima, S., HELICAL MICROTUBULES OF GRAPHITIC CARBON. Nature 1991,354, (6348), 56-58.
    30. Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M., Chemistry of carbon nanotubes. Chemical Reviews 2006,106, (3), 1105-1136.
    31. Liu, Z.; Cai, W. B.; He, L. N.; Nakayama, N.; Chen, K.; Sun, X. M.; Chen, X. Y.; Dai, H. J., In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nature Nanotechnology 2007,2, (1), 47-52.
    32. Mattson, M. P.; Haddon, R. C.; Rao, A. M., Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth. Journal of Molecular Neuroscience 2000,14, (3), 175-182.
    33. Singh, R.; Pantarotto, D.; Lacerda, L.; Pastorin, G.; Klumpp, C.; Prato, M.; Bianco, A.; Kostarelos, K., Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proceedings of the National Academy of Sciences of the United States of America 2006,103, (9), 3357-3362.
    34. Wang, H. F.; Wang, J.; Deng, X. Y.; Sun, H. F.; Shi, Z. J.; Gu, Z. N.; Liu, Y. F.; Zhao, Y. L., Biodistribution of carbon single-wall carbon nanotubes in mice. Journal of Nanoscience and Nanotechnology 2004,4, (8), 1019-1024.
    35. Cherukuri, P.; Bachilo, S. M.; Litovsky, S. H.; Weisman, R. B., Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. Journal of the American Chemical Society 2004,126, (48), 15638-15639.
    36. Kam, N. W. S.; Dai, H. J., Carbon nanotubes as intracellular protein transporters: Generality and biological functionality. Journal of the American Chemical Society 2005,127, (16), 6021-6026.
    37. Kam, N. W. S.; Jessop, T. C.; Wender, P. A.; Dai, H. J., Nanotube molecular transporters: Internalization of carbon nanotube-protein conjugates into mammalian cells. Journal of the American Chemical Society 2004, 126, (22), 6850-6851.
    38. Pantarotto, D.; Briand, J. P.; Prato, M.; Bianco, A., Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chemical Communications 2004,(1), 16-17.
    39. Nel, A.; Xia, T.; Madler, L.; Li, N., Toxic potential of materials at the nanolevel. Science 2006,311, (5761), 622-627.
    40. Goodman, C. M.; McCusker, C. D.; Yilmaz, T.; Rotello, V. M., Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjugate Chemistry 2004,15, (4), 897-900.
    41. Wilhelm, C.; Billotey, C.; Roger, J.; Pons, J. N.; Bacri, J. C.; Gazeau, F., Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. Biomaterials 2003,24, (6), 1001-1011.
    42. Zhou, H. Y.; Mu, Q. X.; Gao, N. N.; Liu, A. F.; Xing, Y. H.; Gao, S. L.; Zhang, Q.; Qu, G. B.; Chen, Y. Y.; Liu, G.; Zhang, B.; Yan, B., A nano-combinatorial library strategy for the discovery of nanotubes with reduced protein-binding, cytotoxicity, and immune response. Nano Letters 2008, 8, (3), 859-865.
    43. Alvaro, M.; Aprile, C.; Ferrer, B.; Garcia, H., Functional molecules from single wall carbon nanotubes. Photoinduced solubility of short single wall carbon nanotube residues by covalent anchoring of 2,4,6-triarylpyrylium units. Journal of the American Chemical Society 2007,129, (17), 5647-5655.
    44. Berrettini, M. G.; Braun, G; Hu, J. G.; Strouse, G. F., NMR analysis of surfaces and interfaces in 2-nm CdSe. Journal of the American Chemical Society 2004, 126, (22), 7063-7070.
    45. Hong, C. Y.; You, Y. Z.; Pan, C. Y., A new approach to functionalize multi-walled carbon nanotubes by the use of functional polymers. Polymer 2006, 47, (12), 4300-4309.
    46. Lin, Y.; Rao, A. M.; Sadanadan, B.; Kenik, E. A.; Sun, Y. P., Functionalizing multiple-walled carbon nanotubes with aminopolymers. Journal of Physical Chemistry B 2002,106,(6), 1294-1298.
    47. Sun, Y. P.; Fu, K. F.; Lin, Y.; Huang, W. J., Functionalized carbon nanotubes: Properties and applications. Accounts of Chemical Research 2002, 35, (12), 1096-1104.
    48. Wang, Z. M.; Liu, Q. C.; Zhu, H.; Liu, H. F.; Chen, Y. M.; Yang, M. S., Dispersing multi-walled carbon nanotubes with water-soluble block copolymers and their use as supports for metal nanoparticles. Carbon 2007,45, (2), 285-292.
    49. Pastorin, G.; Wu, W.; Wieckowski, S.; Briand, J. P.; Kostarelos, K.; Prato, M.; Bianco, A., Double functionalisation of carbon nanotubes for multimodal drug delivery. Chemical Communications 2006, (11), 1182-1184.
    50. Weare, W. W.; Reed, S. M.; Warner, M. G.; Hutchison, J. E., Improved synthesis of small (d(CORE) approximate to 1.5 nra) phosphine-stabilized gold nanoparticles. Journal of the American Chemical Society 2000,122, (51), 12890-12891.
    51. Hostetler, M. J.; Wingate, J. E.; Zhong, C. J.; Harris, J. E.; Vachet, R. W.; Clark, M. R.; Londono, J. D.; Green, S. J.; Stokes, J. J.; Wignall, G. D.; Glish, G. L.; Porter, M. D.; Evans, N. D.; Murray, R. W., Alkanethiolate Gold Cluster Molecules with Core Diameters from 1.5 to 5.2 nm: Core and Monolayer Properties as a Function of Core Size. Langmuir 1998,14, (1), 17-30.
    52. Murakami, Y.; Konishi, K., Remarkable co-catalyst effect of gold nanoclusters on olefin oxidation catalyzed by a manganese-porphyrin complex. Journal of the American Chemical Society 2007, 129, (46), 14401-14407.
    53. Templeton, A. C.; Hostetler, M. J.; Kraft, C. T.; Murray, R. W., Reactivity of monolayer-protected gold cluster molecules: Steric effects. Journal of the American Chemical Society 1998,120, (8), 1906-1911.
    54. Fleming, D. A.; Thode, C. J.; Williams, M. E., Triazole cycloaddition as a general route for functionalization of Au nanoparticles. Chemistry of Materials 2006, 18, (9), 2327-2334.
    55. Rowe, M. P.; Plass, K. E.; Kim, K.; Kurdak, C.; Zellers, E. T.; Matzger, A. J., Single-phase synthesis of functionalized gold nanoparticles. Chemistry of Materials 2004,16, (18), 3513-3517.
    56. Tan, H.; Zhan, T.; Fan, W. Y., Direct functionalization of the hydroxyl group of the 6-mercapto-1-hexanol (MCH) ligand attached to gold nanoclusters. Journal of Physical Chemistry B 2006,110, (43), 21690-21693.
    57. Liu, J.; Alvarez, J.; Ong, W.; Roman, E.; Kaifer, A. E., Phase transfer of hydrophilic, cyclodextrin-modified gold nanoparticles to chloroform solutions. Journal of the American Chemical Society 2001,123, (45), 11148-11154.
    58. Zhao, Y. L.; Chen, Y.; Wang, M.; Liu, Y., Multi[2]rotaxanes with gold nanoparticles as centers. Organic Letters 2006, 8, (7), 1267-1270.
    59. Barrientos, A. G.; de la Fuente, J. M.; Rojas, T. C.; Fernandez, A.; Penades, S., Gold glyconanoparticles: Synthetic polyvalent ligands mimicking glycocalyx-like surfaces as tools for glycobiological studies. Chemistry A European Journal 2003, 9, (9), 1909-1921.
    60. de la Fuente, J. M.; Barrientos, A. G.; Rojas, T. C.; Rojo, J.; Canada, J.; Fernandez, A.; Penades, S., Gold glyconanoparticles as water-soluble polyvalent models to study carbohydrate interactions. Angewandte Chemie-International Edition 2001, 40, (12), 2258-+.
    61. Kohlmann, O.; Steinmetz, W. E.; Mao, X. A.; Wuelfing, W. P.; Templeton, A. C.; Murray, R. W.; Johnson, C. S., NMR diffusion, relaxation, and spectroscopic studies of water soluble, monolayer-protected gold nanoclusters. Journal of Physical Chemistry B 2001,105, (37), 8801-8809.
    62. Pantarotto, D.; Partidos, C. D.; Graff, R.; Hoebeke, J.; Briand, J. P.; Prato, M.; Bianco, A., Synthesis, structural characterization, and immunological properties of carbon nanotubes functionalized with peptides. Journal of the American Chemical Society 2003,125, (20), 6160-6164.
    63. Foos, E. E.; Snow, A. W.; Twigg, M. E.; Ancona, M. G., Thiol-terminated Di-, Tri-, and tetraethylene oxide functionalized gold nanoparticles: A water-soluble, charge-neutral cluster. Chemistry of Materials 2002,14, (5), 2401-2408.
    64. Latham, A. H.; Williams, M. E., Versatile routes toward functional, water-soluble nanoparticles via trifluoroethylester-PEG-thiol ligands. Langmuir 2006, 22, (9), 4319-4326.
    65. Wang, X. H.; Liu, H. W; Jin, Y.; Chen, C. H., Polymer-functionalized multiwalled carbon nanotubes as lithium intercalation hosts. Journal of Physical Chemistry B 2006,110, (21), 10236-10240.
    66. Gibson, J. D.; Khanal, B. P.; Zubarev, E. R., Paclitaxel-functionalized gold nanoparticles. Journal of the American Chemical Society 2007, 129,11653-11661.
    67. Drain, L. E., Boadening of magnetic resonance lines due to field inhomogeneities in powdered samples. Proceedings of the Physical Society of London 1962, 80, (518), 1380-1382.
    68. Anderson, R. C.; Stokes, J. P.; Shapiro, M. J., Structure determination in combinatorial chemistry-utilization of magic-Angle-Spinning HMQC and TOCSY NMR-spectra in the structure determination of Wang-bound lysine. Tetrahedron Letters 1995, 36, (30), 5311-5314.
    69. Keifer, P. A.; Baltusis, L.; Rice, D. M.; Tymiak, A. A.; Shoolery, J. N., A comparison of NMR spectra obtained for solid-phase-synthesis resins using conventional high-resolution, magic-angle-spinning, and high-resolution magic-angle-spinning probes. Journal of Magnetic Resonance Series A 1996,119, (1), 65-75.
    70. Wehler, T.; Westman, J., Magic angle spinning NMR: A valuable tool for monitoring the progress of reactions in solid phase synthesis. Tetrahedron Letters 1996,37, (27), 4771-4774.
    71. Bauer, F.; Glasel, H. J.; Hartmann, E.; Bilz, E.; Mehnert, R., Surface modification of nanoparticles for radiation curable acrylate clear coatings. Nuclear Instruments & Methods in Physics Research Section B 2003,208, 267-270.
    72. Sadasivan, S.; Khushalani, D.; Mann, S., Synthesis and shape modification of organo-functionalised silica nanoparticles with ordered mesostructured interiors. Journal of Materials Chemistry 2003,13, (5), 1023-1029.
    73. Badia, A.; Demers, L.; Dickinson, L.; Morin, F. G.; Lennox, R. B.; Reven, L., Gold-sulfur interactions in alkylthiol self-assembled monolayers formed on gold nanoparticles studied by solid-state NMR. Journal of the American Chemical Society 1997,119,(45), 11104-11105.
    74. Badia, A.; Lennox, R. B.; Reven, L., A dynamic view of self-assembled monolayers. Accounts of Chemical Research 2000,33, (7), 475-481.
    75. Fiurasek, P.; Reven, L., Phosphonic and sulfonic acid-functionalized gold nanoparticles: A solid-state NMR study. Langmuir 2007,23, (5), 2857-2866.
    76. Pawsey, S.; Yach, K.; Reven, L., Self-assembly of carboxyalkylphosphonic acids on metal oxide powders. Langmuir 2002,18, (13), 5205-5212.
    77. Polito, L.; Monti, D.; Caneva, E.; Delnevo, E.; Russo, G.; Prosperi, D., One-step bioengineering of magnetic nanoparticles via a surface diazo transfer/azide-alkyne click reaction sequence. Chemical Communications 2008, 621-623.
    78. Du, F. F.; Zhou, H. Y.; Chen, L. X.; Zhang, B.; Yan, B., Structure elucidation of nanoparticle-bound organic molecules by H-1 NMR. Trac-Trends in Analytical Chemistry 2009,28,(1),88-95.
    79.Zhou,H.;Du,F.;Li,X.;Zhang,B.;Li,W.;Yan,B.,Characterization of Organic Molecules Attached to Gold Nanoparticle Surface Using High Resolution Magic Angle Spinning 1H NMR.The Journal of Physical Chemistry C 2008,112,(49),19360-19366.
    80.McCarthy,J.R.;Kelly,K.A.;Sun,E.Y.;Weissleder,R.,Targeted delivery of multifunctional magnetic nanoparticles.Nanomedicine 2007,2,(2),153-167.
    81.Pellegrino,T.;Kudera,S.;Liedl,T.;Javier,A.M.;Manna,L.;Parak,W.J.,On the development of colloidal nanoparticles towards multifunctional structures and their possible use for biological applications.Small 2005,1,(1),48-63.
    82.McCarthy,J.R.;Weissleder,R.,Multifunctional magnetic nanoparticles for targeted imaging and therapy.Advanced Drug Delivery Reviews 2008,60,(11),1241-1251.
    83.Ferrari,M.,Cancer nanotechnology:Opportunities and challenges.Nature Reviews Cancer 2005,5,(3),161-171.
    84.Torchilin,V.P.,Multifunctional nanocarriers.Advanced Drug Delivery Reviews 2006,58,(14),1532-1555.
    85.del Campo,A.;Sen,T.;Lellouche,J.P.;Bruce,I.J.,Multifunctional magnetite and silica-magnetite nanoparticles:Synthesis,surface activation and applications in life sciences.Journal of Magnetism and Magnetic Materials 2005,293,(1),33-40.
    86.Kopelman,R.;Koo,Y.E.L.;Philbert,M.;Moffat,B.A.;Reddy,G.R.;McConville,P.;Hall,D.E.;Chenevert,T.L.;Bhojani,M.S.;Buck,S.M.;Rehemtulla,A.;Ross,B.D.,Multifunctional nanoparticle platforms for in vivo MRI enhancement and photodynamic therapy of a rat brain cancer.Journal of Magnetism and Magnetic Materials 2005,293,(1),404-410.
    87.Wu,W.;Wieckowski,S.;Pastorin,G.;Benincasa,M.;Klumpp,C.;Briand,J.P.;Gennaro,R.;Prato,M.;Bianco,A.,Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes.Angewandte Chemie-International Edition 2005,44,(39),6358-6362.
    88.Schroedter,A.;Weller,H.,Ligand design and bioconjugation of colloidal gold nanoparticles. Angewandte Chemie-International Edition 2002,41, (17), 3218-3221.
    89. Zhang, Y.; Zhang, J., Surface modification of monodisperse magnetite nanoparticles for improved intracellular uptake to breast cancer cells. Journal of Colloid and Interface Science 2005,283, (2), 352-357.
    90. Gao, Y.; Gu, W. W.; Chen, L. L.; Xu, Z. H.; Li, Y. P., A multifunctional nano device as non-viral vector for gene delivery: In vitro characteristics and transfection. Journal of Controlled Release 2007,118, (3), 381-388.
    91. Garanger, E.; Aikawa, E.; Reynolds, F.; Weissleder, R.; Josephson, L., Simplified syntheses of complex multifunctional nanomaterials. Chemical Communications 2008, (39), 4792-4794.
    92. Uyeda, H. T.; Medintz, I. L.; Jaiswal, J. K.; Simon, S. M.; Mattoussi, H., Synthesis of compact multidentate ligands to prepare stable hydrophilic quantum dot fluorophores. Journal of the American Chemical Society 2005,127, (11), 3870-3878.
    93. Lee, J.; Yang, J.; Ko, H.; Oh, S. J.; Kang, J.; Son, J. H.; Lee, K.; Lee, S. W.; Yoon, H. G.; Suh, J. S.; Huh, Y. M.; Haam, S., Multifunctional magnetic gold nanocomposites: Human epithelial cancer detection via magnetic resonance imaging and localized synchronous therapy. Advanced Functional Materials 2008, 18, 258-264.
    94. Ravindran, S.; Chaudhary, S.; Colburn, B.; Ozkan, M.; Ozkan, C. S., Covalent coupling of quantum dots to multiwalled carbon nanotubes for electronic device applications. Nano Letters 2003,3, (4), 447-453.
    95. Banerjee, S.; Wong, S. S., Synthesis and characterization of carbon nanotube-nanocrystal heterostructures. Nano Letters 2002,2, (3), 195-200.
    96. Haremza, J. M.; Hahn, M. A.; Krauss, T. D., Attachment of single CdSe nanocrystals to individual single-walled carbon nanotubes. Nano Letters 2002,2, (11), 1253-1258.
    97. Xie, H. Y.; Zuo, C.; Liu, Y.; Zhang, Z. L.; Pang, D. W.; Li, X. L.; Gong, J. P.; Dickinson, C.; Zhou, W. Z., Cell-targeting multifunctional nanospheres with both fluorescence and magnetism. Small 2005,1, (5), 506-509.
    98. Gopalakrishnan, G.; Danelon, C.; Izewska, P.; Prummer, M.; Bolinger, P. Y.; Geissbuhler, I.; Demurtas, D.; Dubochet, J.; Vogel, H., Multifunctional lipid/quantum dot hybrid nanocontainers for controlled targeting of live cells. Angewandte Chemie-International Edition 2006,45, (33), 5478-5483.
    99. Yoon, T. J.; Kim, J. S.; Kim, B. G.; Yu, K. N.; Cho, M. H.; Lee, J. K., Multifunctional nanoparticles possessing a "magnetic motor effect" for drug or gene delivery. Angewandte Chemie-International Edition 2005,44, (7), 1068-1071.
    100. Kim, J.; Lee, J. E.; Lee, J.; Jang, Y.; Kim, S. W.; An, K.; Yu, H. H.; Hyeon, T., Generalized fabrication of multifunctional nanoparticle assemblies on silica spheres. Angewandte Chemie-International Edition 2006,45, (29), 4789-4793.
    101. Kim, J.; Park, S.; Lee, J. E.; Jin, S. M.; Lee, J. H.; Lee, I. S.; Yang, I.; Kim, J. S.; Kim, S. K.; Cho, M. H.; Hyeon, T., Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy. Angewandte Chemie-International Edition 2006, 45, (46), 7754-7758.
    102. Chen, X.; Tarn, U. C.; Czlapinski, J. L.; Lee, G. S.; Rabuka, D.; Zettl, A.; Bertozzi, C. R., Interfacing carbon nanotubes with living cells. Journal of the American Chemical Society 2006, 128, (19), 6292-6293.
    103. Colvin, V. L.; Kulinowski, K. M., Nanoparticles as catalysts for protein fibrillation. Proceedings of the National Academy of Sciences 2007, 104, (21), 8679-8680.
    104. Derfus, A. M.; Chan, W. C. W.; Bhatia, S. N., Probing the cytotoxicity of semiconductor quantum dots. Nano Letters 2004,4, (1), 11-18.
    105. Gessner, A.; Lieske, A.; Paulke, B. R.; Muller, R. H., Influence of surface charge density on protein adsorption on polymeric nanoparticles: analysis by two-dimensional electrophoresis. European Journal of Pharmaceutics and Biopharmaceutics 2002,54, (2), 165-170.
    106. Dumortier, H.; Lacotte, S.; Pastorin, G.; Marega, R.; Wu, W.; Bonifazi, D.; Briand, J. P.; Prato, M.; Muller, S.; Bianco, A., Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. Nano Letters 2006,6,(7), 1522-1528.
    107. Isobe, H.; Tanaka, T.; Maeda, R.; Noiri, E.; Solin, N.; Yudasaka, M.; Iijima, S.; Nakamura, E., Preparation, purification, characterization, and cytotoxicity assessment of water-soluble, transition-metal-free carbon nanotube aggregates. Angewandte Chemie-International Edition 2006,45, (40), 6676-6680.
    
    108. Kostarelos, K.; Lacerda, L.; Pastorin, G.; Wu, W.; Wieckowski, S.; Luangsivilay, J.; Godefroy, S.; Pantarotto, D.; Briand, J. P.; Muller, S.; Prato, M.; Bianco, A., Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nature Nanotechnology 2007,2, (2), 108-113.
    
    109. Nakayama-Ratchford, N.; Bangsaruntip, S.; Sun, X. M.; Welsher, K.; Dai, H. J., Noncovalent functionalization of carbon nanotubes by fluorescein-polyethylene glycol: Supramolecular conjugates with pH-dependent absorbance and fluorescence. Journal of the American Chemical Society 2007,129, (9), 2448-+.
    
    110.Mu, Q. X.; Liu, W.; Xing, Y. H.; Zhou, H. Y.; Li, Z. W.; Zhang, Y.; Ji, L. H.; Wang, F.; Si, Z. K.; Zhang, B.; Yan, B., Protein binding by functionalized multiwalled carbon nanotubes is governed by the surface chemistry of both parties and the nanotube diameter. Journal of Physical Chemistry C 2008,112, (9), 3300-3307.
    
    111.Azamian, B. R.; Coleman, K. S.; Davis, J. J.; Hanson, N.; Green, M. L. H., Directly observed covalent coupling of quantum dots to single-wall carbon nanotubes. Chemical Communications 2002, (4), 366-367.
    
    112.Doskocilovfi, B. a. S., B, Narrowing of proton NMR lines by magic angle rotation. chem. Phys. Left 1970,6, 381-384.
    
    113.Karajanagi, S. S.; Vertegel, A. A.; Kane, R. S.; Dordick, J. S., Structure and function of enzymes adsorbed onto single-walled carbon nanotubes. Langmuir 2004, 20,(26), 11594-11599.
    
    114. Lynch, I.; Dawson, K. A.; Linse, S., Detecting Cryptic Epitopes Created by Nanoparticles. Sci. STKE 2006,2006, (327), pe14-.
    
    115.Vertegel, A. A.; Siegel, R. W.; Dordick, J. S., Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir 2004, 20, (16), 6800-6807.
    
    116.Cedervall, T.; Lynch, I.; Lindman, S.; Berggard, T.; Thulin, E.; Nilsson, H.; Dawson, K. A.; Linse, S., Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proceedings of the National Academy of Sciences of the United States of America 2007,104, (7), 2050-2055.
    
    117.Ameller, T.; Marsaud, R.; Legrand, P.; Gref, R.; Barrett, G.; Renoir, J. M., Polyester-poly(ethylene glycol) nanoparticles loaded with the pure antiestrogen RU 58668: Physicochemical and opsonization properties. Pharmaceutical Research 2003, 20,(7), 1063-1070.
    
    118.0wens, D. E.; Peppas, N. A., Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. International Journal of Pharmaceutics 2006, 307, (1), 93-102.
    
    119.Li, J.; Vergne, M. J.; Mowles, E. D.; Zhong, W. H.; Hercules, D. M.; Lukehart, C. M., Surface functionalization and characterization of graphitic carbon nanofibers (GCNFs). Carbon 2005,43, (14), 2883-2893.
    
    120. Nidumolu, B. G.; Urbina, M. C.; Hormes, J.; Kumar, C.; Monroe, W. T., Functionalization of gold and glass surfaces with magnetic nanoparticles using biomolecular interactions. Biotechnology Progress 2006,22, (1), 91-95.
    
    121. Yinghuai, Z.; Peng, A. T.; Carpenter, K.; Maguire, J. A.; Hosmane, N. S.; Takagaki, M., Substituted carborane-appended water-soluble single-wall carbon nanotubes: New approach to boron neutron capture therapy drug delivery. Journal of the American Chemical Society 2005,127, (27), 9875-9880.
    
    122. Anderson, R. C.; Jarema, M. A.; Shapiro, M. J.; Stokes, J. P.; Ziliox, M., Analytical techniques in combinatorial chemistry-MAS CH correlation in solvent-swollen resin. Journal of Organic Chemistry 1995,60, (9), 2650-2651.
    
    123. Keifer, P. A., High-resolution NMR techniques for solid-phase synthesis and combinatorial chemistry. Drug Discovery Today 1997,2, (11), 468-478.
    
    124. Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R., Synthesis of thiol-derivatized gold nanoparticles in a 2-phase liquid-liquid system. Chemical Communications 1994, (7), 801-802.
    
    125. Paulini, R.; Frankamp, B. L.; Rotello, V. M., Effects of branched ligands on the structure and stability of monolayers on gold nanoparticles. Langmuir 2002, 18, (6), 2368-2373.
    126. Roth, P. J.; Theato, P., Versatile synthesis of functional gold nanoparticles: Grafting polymers from and onto. Chemistry of Materials 2008,20,1614-1621.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700