用户名: 密码: 验证码:
基于超顺磁性四氧化三铁磁性纳米颗粒的恶性胶质瘤靶向联合基因治疗
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章超顺磁性Fe_3O_4纳米颗粒基因转运体系建立及体外基因转运效率评价
     目的:制备能够应用于胶质瘤靶向联合基因治疗的四氧化三铁磁性纳米颗粒,建立以超顺磁性Fe_3O_4磁性纳米颗粒为基因载体的胶质瘤基因治疗基因转运体系,并评价该体系的体外基因转运效率。
     方法:以2-吡咯烷酮和乙酰丙酮铁为原料,采用高温分解铁有机物法是将铁前驱体高温分解得到铁原子,再由铁原子生成铁纳米颗粒,将铁纳米颗粒控制氧化得到四氧化三铁纳米颗粒;再以偶联剂γ-氨丙基三乙氧基硅烷(NH_2C_3H_6Si(OC_2H_5)_3)对Fe_3O_4磁性纳米颗粒(Fe_3O_4magnetic nanoparticle,Fe_3O_4MNP)表面修饰;将CD基因转染U251胶质瘤细胞,得到U251-CD细胞,免疫荧光染色检测本体系的转染效率。通过Fe_3O_4MNP与质粒pCMVCD结合试验,Fe_3O_4MNP-pCMVCD复合物的DNase-Ⅰ消化,血清消化保护实验结果检测Fe_3O_4MNP结合DNA的能力及对DNA的保护效果。采用RT-PCR、Western blotting,和高效液相色谱法等检测CD基因的mRNA水平和CD蛋白水平,U251-CD细胞。MTT法测定检测U251-CD细胞的5-FC化疗效果及旁观者效应。
     结果:成功地制备出稳定性好、单分散、粒径小、粒径分布范围窄(10±2nm)的磁性Fe_3O_4/氨基硅烷复合纳米颗粒,以γ-氨丙基三乙氧基硅烷作分散稳定剂,改善了磁性Fe_3O_4纳米颗粒表面的疏水环境,有效地阻止了四氧化三铁纳米颗粒团聚的发生。当Fe_3O_4MNP与质粒pCMVCD质量比为0.05:1时,结合的质粒量<20%;当二者质量比为1:1时,几乎可以结合体系中的全部质粒。Fe_3O_4MNP-pCMVCD复合物能够保护质粒pCMVCD免受Dnase-Ⅰ及血清的消化作用,保持其结构稳定。使用Fe_3O_4MNP作为载体成功将CD基因成功转染U251细胞,转染细胞有CD基因稳定表达,呈时间相关性增强表达模式(转染后5天内呈现表达持续增加模式),转染效果明显优于脂质体转染对照组。Fe_3O_4MNP的转染效果与Fe_3O_4MNP的用量呈正相关,且无明显的细胞毒性,经MTT检测Fe_3O_4MNP在50mg/L以下时不影响U251细胞的生长曲线。U251-CD细胞加入5-氟胞嘧啶(5-FC)后,细胞培养液上清中,经高效液相色谱检测出U251-CD细胞生成的高浓度5-氟尿嘧啶。能显著的抑制U251细胞生长。U251与U251-CD混合细胞中,在加入5-FC(终浓度1000uml/L)后,10%的U251-CD细胞可以杀灭20~30%的U251与U251-CD混合细胞与对照组(0%组)相比P<0.01,15%的U251-CD细胞可以杀灭约50%U251与U251-CD的混合细胞;30%的U251-CD细胞可以杀灭约80%U251与U251-CD的混合细胞;50%以上的U251-CD细胞可以完全的杀灭U251与U251-CD的混合细胞。
     结论:本章制备的经γ-氨丙基三乙氧基硅烷修饰的Fe_3O_4磁性纳米颗粒粒径小,生物相容性提高,达到作为基因载体应用于胶质瘤靶向联合基因治疗要求。超顺磁性Fe_3O_4纳米颗粒基因转运体系在体外U251胶质瘤细胞系应用中转染效果显著。Fe_3O_4MNP/CD/5-FC胶质瘤基因治疗系统应用于胶瘤基因治疗体外试验抑瘤效果突出,可应用于下一步动物体内实验检测。
     第二章Fe_3O_4MNP介导CD/5-FC系统联合wt-p53及wt-p16治疗恶性胶质瘤的体外实验研究
     目的在第一章的Fe_3O_4MNP/CD/5-FC胶质瘤基因治疗系统成功研发的基础上,为优化该基因治疗系统,研发wt-p53、wt-p16基因联合胞嘧啶脱氨酶(Cytosine Deaminase,CD)/5-FC系统治疗神经胶质瘤的可行性,以期能提高胶质瘤化疗效果及逆转胶质瘤干细胞对化疗药物产生多药耐药性
     方法分离培养并鉴定U251细胞系及30例临床胶质瘤病理标本(WHOⅢ级、Ⅳ级)的胶质胶干细胞。利用Fe_3O_4MNP为基因载体分别将质粒pCDNA3.1-p16、pYD5-p53,及pCMVCD转染至U251细胞、各组病理组织分离的胶质瘤细胞及其胶质瘤干细胞(Glioma stemcells,GSC)。采用RT-PCR、Western blotting检测目标基因转染后在相应的细胞中的表达情况。MTT法检测不同基因治疗方案的U251细胞及U251GSC细胞的对CD/5-FC的治疗敏感性;并检测四种临床常用化疗药物VM-26,VP-16,TMZ,5-FU对不同基因治疗方案的U251及U251GSC的生长抑制率。使用AnnexinV-PI双染法对10例病理标本分离出来的并经转染后的各组Ⅲ~Ⅳ级胶质瘤细胞实施不同的基因治疗方案后的细胞凋亡情况进行检测。
     结果成功以Fe_3O_4MNP为载体将wt-p53、wt-p16,及CD基因转染U251细胞、30例病理标本分离出来胶质瘤细胞,及其胶质瘤干细胞,并稳定表达。RT-PCR、Western blotting检测结果显示胶质瘤细胞和胶质瘤干细胞的目标基因表达情况无差别(p<0.01)。体外转染wt-p53、wt-p16基因都能明显提高CD/5-FC人对U251细胞系的化疗效果。以VM-26、VP16、TMZ,5-FU的1倍血浆峰浓度值的细胞增殖抑制率,各化疗药物组对U251胶质瘤细胞的体外增殖均有不同程度的抑制,以TMZ效果最好;但U251GCS对各种化疗敏感度均较U251细胞明显下降(p<0.01),其中TMZ效果最好;P53/P16转染组U251GCS对VM-26、VP16、TMZ,5-FU的敏感性较U251GCS均明显提高(p<0.01),TMZ效果仍是最好。对10例病理标本分离出来的并经转染后的各组Ⅲ~Ⅳ级胶质干瘤细胞实施不同的基因治疗方案后的细胞凋亡情况进行检测结果显示CD/P53/P16联合组胶质干瘤细胞凋亡率(46.32±12.78%)高于对照组(1.53±1.22%)及P53(30.1±10.45%)、P16(33.10±9.89%)单独转染组(p<0.01)。CD/P53/P16/5-FC组(89.87±9.02%)明显高于CD/P53/P16/5-FU组(60.18±6.23%)(p<0.01)。
     结论基于Fe_3O_4磁性纳米基因载体的p53、p16联合CD/5-FC系统基因治疗体系可作为临床上胶质瘤治疗方案的一种可能选择,可在体外有效的杀灭胶质瘤细胞及胶质瘤干细胞,该基因治疗系统对肿瘤细胞杀伤作用的机理与凋亡相关。另外,该体系能逆转胶质瘤干细胞对多种临床常用的化疗药物的耐药性,明显提高化疗效果。
     第三章Fe_3O_4 MNP介导CD/5-FC系统联合wt-p53及wt-p16治疗恶性胶质瘤的动物实验研究
     目的Fe_3O_4磁性纳米基因载体在体内的转染效果及静脉注射时体内分布情况。在胶质瘤干细胞裸鼠皮下成瘤动物模型中验证本课题研发的“基于Fe_3O_4磁性纳米基因载体的p53、p16联合CD/5-FC系统基因治疗体系”的治疗效果。实施体内磁靶向定位基因治疗,并观察该基因治疗体系的全身副作用。
     方法建立胶质瘤干细胞皮下荷瘤裸鼠模型。原子吸收分光光度计检测Fe_3O_4MNP在裸鼠体内的磁靶向定位效果及体内分布情况。免疫组化检测各目标基因的蛋白在动物模型胶质瘤组织中的表达,并采用TUNEL原位凋亡试剂盒检测各组肿瘤组织细胞凋亡情况。效液相色谱法检测5-FC体内转化为5-FU情况。体内抑瘤实验检测不同基因治疗方案下各组胶质瘤干细胞在裸鼠皮下成瘤体积,计算抑瘤率,评定治疗效果,并观察裸鼠体重的变化。对比CD/P53/P16转染组5-FC与5-FU的治疗效果及全向副作用。
     结果成功建立胶质瘤干细胞皮下荷瘤裸鼠模型,一般在接种后14d可见较明显皮下结节的形成。在体外肿瘤表面施加4000高斯磁场时,鼠尾静脉注射磁性纳米颗粒溶液后45min,实验组的肿瘤组织铁元素含量(μg/g)为91.46±19.94,远高于对照组30.23±6.34,(p<0.01)。说明在磁场作用下Fe_3O_4MNP定向向肿瘤组织移动,大量聚集在肿瘤组织内造成铁元素含量明显升高,另外脑组织铁含量也较正常对照组明显升高(p<0.01),说明Fe_3O_4MNP透过血脑屏障能力显著。wt-p53、wt-p16能够显著的裸鼠荷瘤的体积,并减少荷瘤裸鼠体重的下降。荷瘤裸鼠BALB/c-CD/p53/p16腹腔注射5-FC后5d起皮下肿瘤体积明显缩小,经高效液相色谱对肿瘤组织均浆检测出5-FU。而荷瘤裸鼠BALB/c-CD/p53/p16腹腔注射5-FU后1M内肿瘤体积末见缩小,反而进行性恶化。5-FC治疗组对裸鼠骨髓抑制、血常规、肝功能影响明显小于5-FU治疗组(p<0.01)。各组荷瘤裸鼠TUNEL检测凋亡情况结果与第二章体外检测结果一致。对12例不同的胶质瘤病理组织分离培养的胶质瘤干细胞裸鼠皮下形成的胶质瘤行体内Fe_3O_4MNP介导的CD/p53/p16基因治疗。12例中原病理组织P53,P16免疫组化阳性率均为25%,基因治疗总有效率为33%(4/12),微效率为25%(3/12),无效率为25%(3/12),恶化率为17%(1/12)。
     结论基于Fe_3O_4磁性纳米基因载体的p53、p16联合CD/5-FC系统基因治疗体系可作为临床上胶质瘤治疗方案的一种可能选择,可在胶质瘤干细胞皮下荷瘤裸鼠模型体内有效抑制胶质瘤生长,在5-FC治疗时能有效的缩小已生成胶质瘤体积,该基因治疗系统对肿瘤细胞杀伤作用的机理与凋亡相关,体内外实验结果相符。
Objective:To synthesize Fe_O_4 magnetite nanoparticles(Fe_3O_4MNP) wich could be used in targeted glioma multi-gene therapy of malignant glioma.In this study,the newly nanotechnology and molecular biology were combined to develope a new glioma suicide gene therapy system base on superparamagnetic Fe_3O_4 magnetic nanoparticle gene vehicle and CD/5-FC system.
     Methods:Fe_3O_4MNP were prepared by thermal decomposition of Fe(acac)3 in 2-pyrrolidone,and 3-aminopropyltriethoxy-silane(APTTS) was used to modify the surface of the nanoparticles.Base on XRD,TEM, analysis,the nanoparticle size were tested.The Fe_3O_4MNP was evaluated as a kind of plasmid pCMVCD carrier and transfected into human glioma cell line U251 in vitro.The mRNA and protein expression of intracellular CD gene were tested by RT-PCR,Western blotting,and Immunofluorescent staining,respectively.Methods Methyl thiazolyl tetrazolium(MTT) method was used to detect the toxicity of Fe_O_4MNP the proliferation of U251 cells in the presence of CD/5-FC system,and "bystand effect"of U251-CD.
     Results:APTTS-modified Fe3O4 magnetite nanoparticles prepared in this part,had a narrow particle size distribution(10±2nm),good crystallinity.DNA binding assay and co-sedimentation assay showed Fe3O4MNP could absorb most plasmid pCMVCD,when the m/m ratio of pCMVCD to Fe3O4 MNP was 4:1 at pH=7.4,the binding interaction also protected DNA against the digestion of DNase-Ⅰand blood serum.The result of RT-PCR,Western blotting,and immunofluorescent staining revealed that intracellular CD gene levels continuously increased in a time-dependent manner after transfection of U251 cells with Fe3O4MNP-pCMVCD complex.MTT result showed Fe3O4MNP was safe to use in U251 gene tansfection in vitro,Fe3O4MNP/ CD/5-FC system could killed U251 cells effectively,the "bystand effect"show 10% U251-CD cells could killed 20-30%U251 and U251-CD mixed cells(p<0.01 vs negtive control group),15%killed 50%mixed cells,35% killed 80%mixed cells,50%killed almost all cells in vitro.
     Conclusion:Fe_3O_4MNP could be used as one of the ideal gene carriers for CD gene delivery.U251-CD cells could transform 5-FC into 5-FU.Fe_3O_4MNP/CD/5-FC system can become a new method of brain glioma adjunctive therapy. malignant glioma.Try to increase chemotherapy effect of glioma by reversing the multi-drug resistance of glioma stem cells.
     Methods:pCDNA3.1-P16,pYD5-P53 and pCMVCD were transfected into U251 glioma cells by Fe3O4 magnetic nanoparticles. Methyl thiazolyl tetrazolium(MTT) method was used to detect the cell growth inhibition rate of U251 cells in the presence of 5-fluorocytosine, and growth inhibition rate of VM-26,VP-16,TMZ,5-FU to U251,U251-GCS cells.RT-PCR,Western blotting were used to detect target gene expression.G lioma stem cells was isolated from 30 different glioma tissue(WHO GradeⅢorⅣ),and their apoptosis after different gene therapy was test by AnnexinⅤ-FITC/PI Apoptosis Detection Kits.
     Results:Glioma stem cells was isolated from 30 different glioma tissue sucessfully.wt-p53,wt-pl6 and CD gene were transfcted into U251 cells induced by Fe_3O_4 magnetic nanoparticles,and wt-p53,wt-p16 could increase the antitumor effect of CD/5-FC gene therapy system(p<0.01), and the growth inhibition rate of VM-26,VP-16,TMZ,5-FU to U251 (p<0.01),U251-GCS cells.Chemotherapy effect of TMZ was best. Apoptosis detection showed apoptotic rates increase in different gene therapy group,p<0.01:CD/P53/P16 vs P53 and P16 group,CD /P53/P16/5-FC group(89.87±9.02%) better than other groups(p<0.01).
     Conclusion:The combination of wt-p53,wt-p16 gene with CD/5-FC system had extremely good antitumor effect in vivo,reversed the multi-drug resistance of glioma stem cells and increased growth inhibition rate of VM-26,VP-16,TMZ,5-FU to U251 cells.Its antitumor
     Objective:To investigate the establishment of nude mice-subcutaneous glioma model induced by glioma stem cells,and its application feasibility in detecting the transfected effect of wt-p53,p16 and CD/5-FC gene therapy system base on Fe_3O_4MNP gene carrier in vivo,distribution of Fe_3O_4MNP in nude mice,and magnetic targeted localization in tumor.
     Methods:Human glioma stem cell- suspension isolated from different human glioma tissues,was inolulated to the 30 male nude mice subcutaneously.Distribution of Fe_3O_4MNP in nude mice was tested by atomic absorption Spectrometry.Pathological and immunohistochemical features of tumor were studied.TUNEL(TdT-mediated dUTP nick end labeling) was used to test cells apoptosis in tumor tissue after gene therapy.
     Results:Success rates of this methods were 100%,tumor grew in good condition,and the histological and immunohistochemical examination results of tumor were consistent with human glioma cell morphology.Glioma nodus could be found 14d after glioma stem cells were inolulated to nude mice subcutaneously.Under 4000 gauss magnetic field near the tumor,tumor Fer content(91.46±19.94μg/g) higher than control gruop(30.23±6.34μg/g)(p<0.01),showed that Fe_3O_4MNP could lateralizaed to tumor under magnetic field guiding.Otherwise,Fer content of brain increased higher than control group(p<0.01),showed that Fe_3O_4MNP could pass blood brain barrier without magnetic field guiding.Wt-p53、wt-p16 could decrease tumor volum and nude mice body weight lose.After intraperitoneal injection of 5-FC in glioma Bearing Nude Mice- BALB/c-CD/p53/p16,the tumor volume deflated grudually with 7d.TUNEL result showed glioma cells apoptosis increased in vivo after gene therapy.
     Conclusion:The combination of wt-p53,wt-p16 gene with CD/5-FC system may be more suitable for clinical therapeutic trials of suicide gene therapy for malignant gliomas.Its antitumor effect was correlation with increasing cell apoptosis just as the in vitro result.
引文
[1]Martin C R,Mitchell D T.Analytical Chemistry News&Features[J],1998,70:322-327.
    [2]何哓哓,王柯敏,谭蔚泓,等.基于生物荧光纳米颗粒的新型荧光标记方法及其在细胞以别中的应用[J].科学通报,2001,46(23):1962-1965.
    [3]何晓晓,王柯敏,谭蔚泓,等.超顺磁性DNA纳米富集器应用于痕量寡聚核普酸的富集[J].高等学校化学学报,2003,1:40-42
    [4]郭淦华,段晓明,刘晓宇,等.羟基磷灰石纳米颗粒载体介导hGM-CSF基因转染HepG2细胞及对其生长的影响[J].肿瘤,2008,28(3):224-227.
    [5]Yoza,Brandon,Matsumoto,Mitsufumi,et al.DNA extraction using modified bacterial magnetic particles in the presence of amino silane compound[J].Journal of Biotechnology,2002,3:217-224.
    [6]Fang Xiuzhong,Liang Hong,Shen Xingchan.Synthesis and Characterization of 3-Aminopropyl-trimethoxysilane Modified Superparamagnetic Magnetite Nanoparticles[J].Chemitry Letters,,2004,33(11) 1468-1469.
    [7]Hu,F.Q.,Wei,L.,Zhou,Z.,et al.Preparation of Biocompatible Magnetite Nanocrystals for In Vivo Magnetic Resonance Detection of Cancer[J].Advanced Materials,2006,18(19):2553-2556.
    [8]I-Ming Hsing,Ying Xu,Wenting Zhao.Micro- and Nano- Magnetic Particles for Applications in Biosensing[J].Electroanalysis.2007,19(8):755-768..
    [9]Abudiab T,Beitle R R.Preparation of magnetic immobilized meta affinity separation media and its use in the isolation of proteins[J].J Chromatogr A,1998,795:211-217.
    [10]C.W.Jung,P.Jacobs.Physical and chemical properties of superparamagnetic iron-oxide MR contrast agents—ferumoxides,ferumoxtran,ferumoxsil[J].Magn Reson Imaging,1995,13:661-674.
    [11]Fang Xiuzhong,Liang Hong,Shen Xingchan.Synthesis and Characterization of 3-Aminopropyl-trimethoxysilane Modified Superparamagnetic Magnetite Nanoparticles[J].Chemitry Letters,33(11),2004:1468-1469.
    [12]Harris L A,GoffJ D,Carmichael A Y,et al.Magnetite nanoparticle dispersions stabilized with triblock copolylners.Chem Mater,2003,15:1367.
    [13]Kumar R V,Koltypin Y,Xu X.N,et al.Preparation of amorphous magnetite nanoparticles embedded in polyvinyl[J].J Appl Phys,2001,89:6324.
    [14]Li Wenzhang,Li Jie,Qiu keqiang,et al.Synthesis and modification of superparamagnetic magnetic nanoparticles[J].Journal of Functional Materials,2007,8(38):1279-1281.
    [15]Yoshimura I,Suzuki S,Tadakuma T,et al.Suicide gene therapy on LNCaP human prostate cancer cells[J].Int J Urol,2001,8(7):5-8.
    [16]吕胜青,杨辉,张克斌,等.胞嘧啶脱氨酶自杀基因转染U251恶性脑胶质瘤细胞及其表达研究[J].中国微侵袭神经外科科杂志,2006,11(8):354-356.
    [17]Austin E A,Huber B E.A first step in development of gene therapy for colorectal carcinoma:cloning,sequencing,and expression of Escherichia coli cytosine deaminase[J].Mol Pharmacol,1993,43(3):380 - 387.
    [18]Shono T,Tofilon PJ,Brunet JM,et al.Cyclooxygenase-2 expression in human gliomas:prognostic significance and molecular correlations[J].Cancer Res.2001,61(11):4375-4381.
    [19]Ohgaki H,Dessen P,Jourde B,et al Genetic pathways to glioblastoma:apopulation- based study[J].Cancer Res.2004,64(19):6892 -68929.
    [20]Yamasaki F,Hama S,Yoshioka H,Kajiwara Y,Yahara K,Sugiyama K,Heike Y,Arita K,Kurisu K.Staurosporine-induced apoptosis is independent of p16 and p21 and achieved via arrest at G2/M and at G1 in U251MG human glioma cell line[J].Cancer Chemother Pharmacol.2003,51(4):271-283.
    [21]Natsume A,Yoshida J.Gene therapy for high-grade glioma:current approaches and future directions[J].Cell Adh Migr.2008,2(3):186-191.
    [22]方加胜,邓允文,李茗初,等.神经上皮来源脑肿瘤干细胞的分离培养与鉴定[J].中华医学杂志,2007,5(87):298-303.
    [23]Kaliberova LN,Della Manna DL,Krendelchtchikova V,et al.Molecular chemotherapy of pancreatic cancer using novel mutant bacterial cytosine deaminase gene[J].Mol Cancer Ther,2008,7(9):2845-2854.
    [24] Vanhandel M, Alizadeh D, Zhang L, et al.Selective uptake of multi-walled carbon nanotubes by tumor macrophages in amurine glioma model[J]. J Neuroimmunol.2009,208(1-2):3-9.
    
    [25] Cardoso AL, Simoes S, de Almeida LP,et al. siRNA delivery by a transferrin-associated lipid-based vector: a non-viral strategy to mediate gene silencing[J]. J Gene Med. 2007 ,(3): 170-183.
    [26] Lamprecht A, Benoit JP. Etoposide nanocarriers suppress glioma cell growth by intracellular drug delivery and simultaneous P-glycoprotein inhibition[J]. J Control Release. 2006 ,112(2):208-213.
    [27] Shouheng Sun,Hao Zeng.Size-Controlled Synthesis of Magnetite Nanoparticles[J].J. Am. Chem. Soc, 2002, 124 (28):8204-8205.
    [28]Hyon Min Song, Yong Joo Kim, and Jeong Ho Park.Three-Dimensional Hierarchically Organized Magnetic Nanoparticle Polymer Composites:Achievement of Monodispersity and Enhanced Tensile Strength[J].J. Phys. Chem.C, 2008, 112 (14):5397-5404.
    [29] Michelle C. Urbina, Svetlana Zinoveva, Toby Miller,et al. Investigation of Magnetic Nanoparticle-Polymer Composites for Multiple-controlled Drug Delivery[J].J. Phys. Chem. C, 2008, 112 (30): 11102-11108.
    [30]Sheng Peng, Chao Wang, Jin Xie,et al.Synthesis and Stabilization of Monodisperse Fe Nanoparticles[J].J. Am. Chem. Soc, 2006, 128 (33) :10676-10677.
    [31]Rochenberger J,Scher EC, Alivisatos P A. A new nonhydrolylic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides[J].J Am Chem Soc,1999,121: 11595-11596.
    [32]Sun S H,Zeng H,Sized-controlled synthesis of magnetite naoparticles[J].J Am Chem Soc,2002,124:8204-8205.
    [33] Roman Sheparovych,Yudhisthira Sahoo, Mikhail Motornov,et al.Polyelectrolyte Stabilized Nanowires from Fe3O4 Nanoparticles via Magnetic Field Induced Self-Assembly[J].Chem. Mater., 2006, 18 (3): 591-593.
    [34] Franz X. Redl, Charles T. Black, Georgia C. Papaefthymiou,et al.Magnetic, Electronic,and Structural Characterization of Nonstoichiometric Iron Oxides at the Nanoscale[J].J.Am.Chem.Soc.,2004,126(44):14583-14599.
    [35]Anuj Shukla,Patrick Degen,Heinz Rehage.Synthesis and zharacterization of Monodisperse Poly(organosiloxane) Nanocapsules with or without Magnetic Cores[J].J.Am.Chem.Soc.,2007,129(26):8056-8057.
    [36]Kishori Deshpande,Mikael Nersesyan,Alexander Mukasyan,et al.Novel Ferrimagnetic Iron Oxide Nanopowders[J].Ind.Eng.Chem.Res.,2005,44(16):6196-6199.
    [37]Roman Sheparovych,Yudhisthira Sahoo,Mikhail Motornov,et al.Polyelectrolyte Stabilized Nanowires from Fe3O4 Nanoparticles via Magnetic Field Induced Self-Assembly[J].Chem.Mater.,2006,18(3):591-593.
    [38]Yiwen Chu,Jianhua Hu,Wuli Yang,et al.Growth and Characterization of Highly Branched Nanostructures of Magnetic Nanoparticles[J].J.Phys.Chem.B,2006,110(7):3135-3139.
    [39]Jriuan Lai,Kurikka V.P.M.Shafi,Abraham Ulman,et al.One-Step Synthesis of Core(Cr)/Shell(у-Fe2O3) Nanoparticles[J]J.Am.Chem.Soc.,2005,127(16):5730-5731.
    [40]施卫贤,杨俊,王亭杰,等.磁性Fe3O4微粒表面有机改性[J].物理化学学报,2001,17(6):507-510.
    [41]Wu G,Barth RF,Yang W,Lee RJ,Tjarks W,Backer MV,Backer JM.Boron containing macromolecules and nanovehicles as delivery agents for neutron capture therapy[J].Anticancer Agents Med Chem.2006,6(2):167-184.
    [42]Jordan A,Scholz R,Maier-Hauff K,et al.The effect of thermotherapy using magnetic nanoparticles on ratmalignant glioma[J].J Neurooncol.2006,78(1):7-14.
    [43]Bin Fang,Guangfeng Wang,Wenzhi Zhang,et al.Fabrication of Fe3O4Nanoparticles Modified Electrode and Its Application for Voltammetric Sensing of Dopamine[J].Electroanalysis,2005,17(9):744-748.
    [44]Cui ZR,Mumper RJ.Chitosan-based nanoparticles for topical genetic immunization[J].J Control Release.2001,75(3):409-419.
    [45]Yong Zhang, Nathan Kohler, Miqin Zhang.Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake[J].Biomaterials, 2002 ,23(7):1553-1561.
    [46]Dachs GU, Patterson AV, Firth JD, et al. Targeting gene expression to hypoxic tumor cells[J]. Nat Med. 1997,(5):515-520.
    [47]Song Y, Kong B, Ma D, et al. Procaspase-3 enhances the in vitro effect of cytosine deaminase-thymidine kinase disuicide gene therapy on human ovarian cancer[J]. Int J Gynecol Cancer. 2006,16(1):156-164.
    [48] Ou-Yang F, Lan KL, Chen CT,et al. Endostatin-cytosine deaminase fusion protein suppresses tumor growth by targeting neovascular endothelial cells[J]. Cancer Res. 2006,66(1):378-384.
    [49]Topf N, Worgall S, Hackett NR,et al. Regional 'pro-drug' gene therapy:intravenous administration of an adenoviral vector expressing the E. coli cytosine deaminase gene and systemic administration of 5-fluorocytosine suppresses growth of hepatic metastasis of colon carcinoma[J]. Gene Ther. 1998,5(4):507-513.
    [50] Yao L, Sklenak S, Yan H, Cukier RI. A molecular dynamics exploration of the catalytic mechanism of yeast cytosine deaminase[J]. J Phys Chem B.2005,109(15):7500-7510.
    [51] linger MM, Wahl J, Ushmorov A, et al.Enriching suicide gene bearing tumor cells for an increased bystander effect[J].Cancer Gene Ther. 2007 , 14(1):30-38.
    [52]Ramnaraine ML, Mathews WE, Donohue JM, et al.Osteoclasts direct bystander killing of bone cancer[J]. Cancer Res. 2006 , 66(22):10929-10935.
    [53]Luo D , Saltzman WM. Synthetic DNA delivery systems[J]. Nat. Biotech , 2000,18(1):33-37.
    [54] Pierre Lehn ,Sylvie Fabrega ,Noufissa Oudrhiri , et al .Gene delivery systems:bridging the gap between recombinant viruses and artificial vectors [J] . Adv Drug Delve Rev ,1998 ,30:5-11.
    [55]KiKuchi H ,Suzuki N , Ebihara K, et al . Gene delivery using liposome technology [J]. J Controlled Release, 1999 ,62 (1-2) :269-277.
    [56]Zhao P,Zhang Y,Sun M,He Y.Reversion of multidrug resistance in human glioma by RNA interference[J].Neurol Res.2008,30(6):562-566.
    [57]毕长龙,方加胜,陈风华,等.神经上皮肿瘤中脑肿瘤干细胞的分离培养和原发性多药耐药机制分析[J].中国现代医学杂志,2009,19(2):172-176.
    [58]Murat A,Migliavacca E,Gorlia T,et al.Stemcell-related "self-renewal" signature and high epidermal growth factor receptorexpression associated with resistance to concomitant chemoradiotherapy in glioblastoma[J].J Clin Oncol.2008,26(18):3015-3024.
    [59]Salmaggi A,Boiardi A,Gelati M,et al.Glioblastoma-derived tumorospheres identify a population of tumor stem-like cells with angiogenic potential and enhanced multidrug resistance phenotype[J].Glia.2006,54(8):850-860.
    [60]Johannessen TC,Bjerkvig R,Tysnes BB.DNA repair and cancer stem-like cells—potential partners in glioma drug resistance?[J].Cancer Treat Rev.2008,34(6):558-67.
    [61]Nakano I,Saigusa K,Kornblum HI.BMPing off glioma stem cells[J].Cancer Ce11.2008,13(1):3-4.
    [62]Knizetova P,Darling JL,Bartek J.Vascular endothelial growth factor in astroglioma stem cell biology and response to therapy[J].J Cell Mol Med.2008,12(1):111-25.
    [63]Rich JN.Cancer stem cells in radiation resistance[J].Cancer Res.2007,67(19):8980-4.
    [64]毕长龙,方加胜,陈风华,等.CD133+胶质瘤干细胞化疗耐受机制分析[J].中南大学学报(医学版),2007,32(4):568-573.
    [65]Rich JN.Cancer stem cells linked to radiation resistance[J].Cancer Biol Ther.2006,5(11):1428.
    [66]Liu G Yuan X,Zeng Z,et al.Analysis of gene expression and chemoresistance of CD133+cancer stem cells in glioblastoma[J].Mol Cancer.2006,5:67.
    [67]Nakamizo A,Amano T,Zhang W,et al.Phosphorylation of Thr18 and Ser20 of p53 in Ad-p53-induced apoptosis[J].Neuro Oncol.2008,10(3):275-291.
    [68]Fruehauf JP,Brem H,Brem S,et al.In vitro drug response and molecular markers associated with drug resistance in malignant gliomas[J]. Clin Cancer Res. 2006 ,12(15):4523-32.
    [69] Alavi JB, Eck SL. Gene therapy for high grade gliomas[J]. Expert Opin Biol Ther.2001 , 1(2):239-52.
    [70]Kim IA, Yang YJ, Yoon SC,et al. Potential of adenoviral p53 gene therapy and irradiation for the treatment of malignant gliomas[J]. Int J Oncol. 2001 ,19(5):1041-1047.
    [71] Wang TJ, Huang MS, Hong CY, et al. Comparisons of tumor suppressor p53, p21,and p16 gene therapy effects on glioblastoma tumorigenicity in situ[J]. Biochem Biophys Res Commun. 2001 , 287(l):173-180.
    [72]Shinoura N, Sakurai S, Asai A, et al. Caspase-9 transduction overrides the resistance mechanism against p53-mediated apoptosis in U-87MG glioma cells[J].Neurosurgery. 2001 ,49(l):177-86; discussion 186-187.
    [73]Shinoura N, Yamamoto N, Asai A, et al. Adenovirus-mediated transfer of Fas ligand gene augments radiation-induced apoptosis in U-373MG glioma cells[J].Jpn J Cancer Res. 2000,91(10): 1044-1050.
    [74] Arizono Y, Yoshikawa H, Naganuma H, et al. A mechanism of resistance to TRAIL/Apo2L-induced apoptosis of newly established glioma cell line and sensitisation to TRAIL by genotoxic agents[J]. Br J Cancer.2003 ,27;88(2):298-306.
    [75] Serrano M , Harmon Gj ,Beach D ,et al. A new regulatory motif in cell cycle control causing specific inhibition of cyclinD/ CDK4 [J] . Nature , 1993, 366(6456): 704-707.
    [76]Kamb A ,Gruis NA ,Weaver,Feldhaus J ,et al. A cell cycle regulator potentially involvedin genesis of many tumor types [J]. Science ,1994 ,264 (5157):436-440.
    [77]Nobori T , Miura K, Wu DJ , et al. Deletion of the cyclin-dependent kinase 4 inhibitor gene in multiple human cancers[J] Nature ,1994 ,368 (6473) :753-756.
    
    [78]Medema RH , Herrera RE , Lam H , et al. Growth suppression by p16 requires functional retinoblatoma protein [J] . Proc Natl Acad Sci USA , 1995 ,92(14):6289-6293.
    [79]Hamasaki H,Sato J,Masuda H,et al.Effect of nicotine on the intimal hyperplasia after endothelial removal of the rabbit carotid artery[J].Gen Pharmacol,1997,28:653-659
    [80]Boger RH.The emerging role of asymmetric dimethylarginine as a novel cardiovascular risk factor[J].Cardiovasc Res,2003,59:824-833.
    [81]Shap iro GI,Edwards CD,Kobzik L et al.Recip focal Rb inact ivat ion and p 16IN K4 expression in primary lung cancers and cell lines[J].Cancer Res,1995;55:505.
    [82]杨转移,邓永文,方加胜,等.脑胶质瘤和正常脑组织中MGMT、LRP和Topo Ⅱ α的表达及其意义[J].医学临床研究,2008,25(03):393-396.
    [83]Trog D,Moenkemann H,Haertel N,Sch(u|¨)ller H,Golubnitschaja O.Expression of ABC-1 transporter is elevated in human glioma cells under irradiation and temozolomide treatment[J].Amino Acids.2005,28(2):213-219.
    [84]Srivenugopal KS,Shou J,Mullapudi SR,et al.Enforced expression of wild-type p53 curtails the transcription of the O(6)- methylguanine - DNA methyltransferase gene in human tumor cells and enhances their sensitivity to alkylating agents[J].Clin Cancer Res,2001,7(5):1398-1409.
    [85]Petitjean A,Achatz MIW,Borresen- DaleAL,et al.TP53 mutations in human cancers:functional selection and impact on cancer prognosis and outcomes[J].Oncogene,2007,26:2157 - 2165.
    [86]Ma J,Murphy M,O'Dwyer PJ,Berman E,Reed K,Gallo JM.Biochemical changes associated with a multidrug-resistant phenotype of a human glioma cell line with temozolomide-acquired resistance[J].Biochem Pharmacol.2002,63(7):1219-1228.
    [87]Pieter J.Gaillard3,Albertus G.Technology:Targeted Drug Delivery Across the Blood-Brain Barrier[J].Methods in Molecular Biology,2008,437:161-175.
    [88]Varallyay CG,Muldoon LL,Gahramanov S,et al.Dynamic MRI using iron oxide nanoparticles to assess early vasculareffects of antiangiogenic versus corticosteroid treatment in a glioma model[J].J Cereb Blood Flow Metab.2009,29(4):853-860.
    [89]Martin AL,Bernas LM,Rutt BK,Foster PJ,Gillies ER.Enhanced cell uptake of superparamagnetic iron oxide nanoparticles functionalized with dendritic guanidines[J]. Bioconjug Chem. 2008 ,19(12):2375-2384.
    [90]Chertok B, Moffat BA, David AE,et al. Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors[J].Biomaterials. 2008,29(4):487-496.
    [91]Royds JA, Iacopetta B. p53 and disease: when the guardian angel fails[J]. Cell Death Differ. 2006 , 13(6): 1017-1026.
    [92]Xu GW, Mymryk JS, Cairncross JG. Inactivation of p53 sensitizes astrocytic glioma cells to BCNU and temozolomide, but not cisplatin[J]. J Neurooncol.2005, 74(2):141-149.
    [93] Huang Q, Pu P, Xia Z, You Y. Exogenous wt-p53 enhances the antitumor effect of HSV-TK/GCV on C6 glioma cells[J]. J Neurooncol. 2007 ,82(3):239-248.
    [1]陶铭.基因治疗及其研究[J].生物学通报,2008,43(4):16-18.
    [2]Ohgaki H.Epidemiology of brain tumors[J].Methods Mol Biol.2009,472:323-342.
    [3]Van Dillen IJ,Mulder NH,Meijer C,Van Dillen IJ,Mulder NH,Meijer C,et al.Antagonism of HSV-tk transfection and ganciclovir treatment on chemotherapeutic drug sensitivity[J].J Chemother.2005,17(3):289-96.
    [4]Robe PA,Nguyen-Khac M,Jolois O,et al.Dexamethasone inhibits the HSV-tk/ganciclovir bystander effect in malignant glioma cells[J].BMC Cancer.2005,5:32.
    [5]Natsume A,Yoshida J.Gene therapy for high-grade glioma:current approaches and future directions[J].Cell Adh Migr.2008,2(3):186-91.
    [6]Yamanaka R.Molecular-targeted therapy for malignant glioma[J].Brain Nerve.2009,61(2):177-88.
    [7]Fischer Jde S,Carvalho PC,Neves-Ferreira AG,et al.Anti-thrombin as a prognostic biomarker candidate for patients with recurrent glioblastoma multiform under treatment with perillyl alcohol[J].J Exp Ther Oncol.2008,7(4):285-90.
    [8]Huh WK,Barnes MN,Kelley FJ,et al.Gene therapy[J].Cancer Treat Res.2002,107:133-57.
    [9]Barenholz Y.Liposome application:problems and prospects[J].Curr Opin Colloid Interface Sci,2001,6(1):66-77.
    [10]Kobayashi H,Takemura Y,Miyachi H.Novel approaches to reversing anti-cancer drug resistance using gene-specific therapeutics[J].Hum Cell. 2001 , 14(3):172-184.
    [1 l]Liu F, Huang L.Development of non-viral vectors for systemic gene delivery[J].J Control Release. 2002, 17;78(1-3):259-266.
    [12]Zhu H, Acquaviva J, Ramachandran P, et al.Oncogenic EGFR signaling cooperates with loss of tumor suppressor gene functions in gliomagenesis[J].Proc Natl Acad Sci U S A. 2009, 106(8):2712-2716.
    [13]Abounader R.Interactions between PTEN and receptor tyrosine kinase pathways and their implications for glioma therapy[J]. Expert Rev Anticancer Ther. 2009 ,9(2):235-245
    [14]Kotliarov Y, Kotliarova S, Charong N,et al.Correlation analysis between single-nucleotide polymorphism and expression arrays in gliomas identifies potentially relevant target genes[J]. Cancer Res. 2009, 69(4):1596-1603.
    [15]Low S, Vougioukas VI, Hielscher T,et al.Pathogenetic pathways leading to glioblastoma multiforme: association between gene expressions and resistance to erlotinib[J].Anticancer Res. 2008 , 28(6A):3729-3732.
    [16]Senzer N, Nemunaitis J.A review of contusugene ladenovec (Advexin) p53 therapy[J].Curr Opin Mol Ther. 2009 , 11(1):54-61.
    [17]Li S, Gao Y, Tokuyama T,et al.Genetically engineered neural stem cells migrate and suppress glioma cell growth at distant intracranial sites.Cancer Lett. 2007 Jun 28;251(2):220-227.
    [18]Dent P, Yacoub A, Park M, et al.Searching for a cure: gene therapy for glioblastoma[J].Cancer Biol Ther. 2008 , 7(9):1335-1340.
    [19]Entz-Werle N, Carli ED, Ducassou S,et al.Medulloblastoma: what is the role of molecular genetics?[J].Expert Rev Anticancer Ther. 2008, 8(7): 1169-1181.
    [20]Fire A,Xu S,Montgomery MK,et al.Potent and specific genetic interference bydouble-stranded RNA in Caenorhabditis elegans[J].Nature, 1998, 391(6669):744-748.
    [21]Phuong LK,Allen C,Peng KW,et al.Use of a vaccine strain of measles virus genetically engineered to produce carcinoembryonic antigen as a novel therapeutic agent against glioblastoma multiform[J].Cancer Res,2003,63(10):2462-2469.
    [22]祝源,邹安琪.胶质瘤的基因治疗[J].中国肿瘤,2006,15(11):761-767.
    [23]Rainov NG,Kramm CM,Banning U,et al.Immune response induced by retrovirus-mediated HSV-tk/GCV pharmacogene therapy in patients with glioblastoma multiforme[J].Gene Ther.2000,7(21):1853-1858.
    [24]Moriuchi S,Krisky DM,Marconi PC,et al.HSV vector cytotoxicity is inversely correlated with effective TK/GCV suicide gene therapy of rat gliosarcoma[J].Gene Ther.2000,7(17):1483-1490.
    [25]Yao L,Sklenak S,Yan H,Cukier RI.A molecular dynamics exploration of the catalytic mechanism of yeast cytosine deaminase[J].J Phys Chem B.2005,109(15):7500-7510.
    [26]Sandmair AM,Turunen M,Tyynela K,et al.Herpes simplex virus thymidine kinase gene therapy in experimental rat BT4C gliomas model:Effect of the percentage of thymidine kinase-positive gliomas cells on treatment effect,survival time,and tissue reactions[J].Cancer GeneTher,2000,7(3):413-421.
    [27]Wu Qi Wei,Wu Jia jin.Couputer Aid Design of Oligonucleotide inGene Therapy -Review.J Exp Hematol,2004,12(3):387-391.
    [28]Trojan LA,Kopinski P,Mazurek A,et al.IGF-I triple helix gene therapy of rat and human gliomas[J].Rocz Akad Med Bialymst.2003;48:18-27.
    [29]Misaki K,Marukawa K,Hayashi Y,et al.Correlation of gamma-catenin expression with good prognosis in medulloblastomas[J].J Neurosurg.2005,102(2Suppl):197-206.
    [30]Dachas GU,Dougherty GJ,Stratford IJ,et al.Targetinggenetic therapy to cancer a review[J].Oncol Res,1997,9(6-7):313-325.
    [31]Li GC,He F,Shao X,et al.Adenovirus mediated heat activated antisense Ku70expression radiosenstizes tumor cells in vitro and vivo[J].Cancer Res,2003,63(12):3268-3274.
    [32]Tanaka T,Manome Y,Wen P,et al.Viral vector-mediated transduction of a modified platelet factor 4 cDNA inhibits angiogenesis and tumor growth[J].Nat Med,1997,3(4): 437-442.
    [33]De Bouard S,Guillamo JS,Christov C,et al.Antiangiogenic therapy against experimental glioblastoma using genetically engineered cells producing interferon-alpha,angiostatin,or endostatin[J].Hum Gene Ther,2003, 14(9): 883-895.
    [34]Herrlinger U,Jacobs A,Quinones A,et al.Helper virus-free herpes simplex virus type 1 amp icon vectors for granulocyte-macrophage colony-stimulating factor-enhanced vaccination therapy for experimental glioma[J].Hum Gene Ther,2000,11(10):1429-1438.
    
    [35]Fakhrai H,Dorigo O,Shawler DL,et al.Eradication of established intracranial rat gliomas by transforming growth factor beta antisense gene therapy[J].Proc Natl Acad Sci USA,1996,93(7):2909-2914.
    [36]Graf MR,Merchant RE.Interleukin-6 transduction of a rat T9 glioma clone results in attenuated tumor igenicity and induces glioma immunity in Fischer F344 rats[J].Neuro oncol, 1999,45(3):209-218.
    [37] Wang ZH,Zagzag D,Zeng B,et al.In vivo and in vitro glioma cell killing induced by an adenovirus expressing both cytosine deaminase and thymidine kinase and its association with interferon-alpha[J].J Neuropath Exp Neurol,1999, 58(8):847-858.
    [38]Ruan S, Okcu MF, Ren JP,et al.Overexpressed WAFl/Cipl renders glioblastoma cells resistant to chemotherapy agents 1,3-bis(2-chloroethyl)-l-nitrosourea and cisplatin[J].Cancer Res, 1998 ,58(7):1538-1543.
    [39]Strakova N, Ehrmann J, Dzubak P,et al.The synthetic ligand of peroxisome proliferator-activated receptor-gamma ciglitazone affects human glioblastoma cell lines[J].J Pharmacol Exp Ther. 2004 Jun;309(3):1239-1247.
    [40] Liang QC, Xiong H, Zhao ZW, et al.Inhibition of transcription factor STAT5b suppresses proliferation, induces G1 cell cycle arrest and reduces tumor cell invasion in human glioblastoma multiforme cells[J].Cancer Lett. 2009 ,273(1):164-171.
    [41] Martin LA, Pandha HS, Sikora K. Genetic prodrug activation therapy :anovel treatment for cancer.Drugs Fut,1998,23:279-290.
    [42]Ozawa T,Hu JL,Hu LJ,et al.Functionality of hypoxia-induced BAX expression in a human glioblastoma xenograft model[J].Cancer Gene Ther.2005,12(5):449-455.
    [43]Yamanaka R,Zullo SA,Ramsey J,et al.Marked enhancement of antitumour immune responses in mouse brain tumor models by genetically modified dendritic cells producing Semliki Forest virus-mediated interleukin-12[J].J Neurosurg,2002,97(3):611-618.
    [44]Greco O,Powell TM,Marples B,et al.Gene therapy vectors containing CArG elements from the Egrl gene are activated by neutron irradiation,cisplatin and doxorubicin[J].Cancer Gene Ther.2005,12(7):655-662.
    [45]张锐,孙美榕,张正等.基因治疗与人类健康[J].中国生物工程杂志.2004,24(1):84.
    [46]王延光.基因治疗的伦理问题与争议[J].哲学动态,2005(1):18-22.
    [47]沈历宗,吴文溪,张慰丰.人类肿瘤基因治疗的伦理问题[J].南京医科大学学报(社会科学版),2001,2(6):139-142.
    [1]Simon M,Schramm J.Surgical management of intracranial gliomas[J].Recent Results Cancer Res.2009;171:105-124.
    [2]Combs SE.Radiation therapy[J].Recent Results Cancer Res.2009;171:125-140.
    [3]Ornstein DL,Meehan KR,Zacharski LR.The coagulation system as a target for the treatment of human gliomas[J].Semin Thromb Hemost,2002,28(1):19-28.
    [4]Kohn DB,Sadelain M,Glorioso JC.Occurrence of leukaemia following gene therapy of X2linked SCID[J].Nat Rev Cancer,2003,3(7):477-488.
    [5]Kim SM,Lim JY,Park SI,et al.Gene therapy using TRAIL-secreting human umbilical cord blood-derived mesenchymal stem cells against intracranial glioma[J].Cancer Res,2008,68(23):9614-9623.
    [6]Boyce FM,Bucher NL.Baculovirus-mediated gene transfer into mammalian cells[J].Proc Natl Acad Sci USA.,1996,93(6):2348-2352.
    [7]Marumoto T,Tashiro A,Friedmann-Morvinski D,et al.Development of a novel mouse glioma model using lentiviral vectors[J].Nat Med,2009,15(1):110-116.
    [8]Hayashi C.Ultrafine particles[J].Physics Today,1987,12:44.
    [9]Hans ML,Lowman AM.Biodegradable NPs for drug delivery and targeting[J].Curr Opin Solid State Materials Sci,2002,6(4):319-327.
    [10]Ling Yun Feng,Shi Pu Li,Yu Hua Yan,Cui Shou Liu.The Effect of CaCO3 and TiO2 Nanometer Particles on A549 and L929 Cells[J].Bioceramics,2000,13:325-328.
    [11]陈彦祥,乔卫红,刘栋良,等.靶向性基因治疗载体[J].大连医科大学学报,2007,29(4):400-403.
    [12]Kock N,Kasmieh R,Weissleder R,et al.Tumor therapy mediated by lentiviral expression of shBcl-2 and S-TRAIL[J].Neoplasia,2007,9(5):435-442.
    [13]Fischer YH,Miletic H,Giroglou T,et al.A retroviral packaging cell line for pseudotype vectors based on glioma-infiltrating progenitor cells[J].J Gene Med,2007,9(5):335-344.
    [14]Zhao P,Wang C,Fu Z,et al.Lentiviral vector mediated siRNA knock-down of hTERT results in diminished capacity in invasiveness and in vivo growth of human glioma cells in a telomere length-independent manner[J].Int J Oncol,2007,31(2):361-368.
    [15]Marumoto T,Tashiro A,Friedmann-Morvinski D,et al.Development of a novel mouse glioma model using lentiviral vectors[J].Nat Med,2009,15(1):110-116.
    [16]Piao Y,Jiang H,Alemany R,et al.Oncolytic adenovirus retargeted to Delta-EGFR induces selective antiglioma activity[J].Cancer Gene Ther,2009,16(3):256-265.
    [17]Kuriyama N,Kuriyama H,Julin CM,et al.Pretreatmentwith protease is a useful experimental strategy for enhancing adenovirus-mediated cancer gene therapy[J].Hum Gene Ther,2000,11(16):2219-2230.
    [18]Markert JM,Parker JN,Buchsbaum DJ,et al.Oncolytic HSV-1 for the treatment of brain tumours[J].Herpes,2006,13(3):66-71.
    [19]Moralli D,Simpson KM,Wade-Martins R,et al.A novel human artificial chromosome gene expression system using herpes simplex virus type 1vectors[J].EMBO Rep,2006,7(9):911-918.
    [20]Kuriyama N,Kuriyama H,Julin CM,et al.Protease pretreatment increases the efficacy of adenovirus-mediatedgene therapy for the treatment of an experimental glioblastoma model[J].Cancer Res,2001,61(5):1805-1809.
    [21]Alavi JB,Eck SL.Gene therapy for high grade gliomas[J].Expert Opin Biol Ther,2001,1(2):239-252.
    [22]Lang FF,Bruner JM,Fuller GN,et al.Phase I trial of adenovirus- mediated p53gene therapy for recurrent glioma:Biological and clinical results[J].J Clin Oncol,2003,21(13):2508-2518.
    [23]Shah AC,Benos D,Gillespie GY,et al.Oncolytic viruses:clinical applications as vectors for the treatment of malignant gliomas[J].J Neurooncol,2003,65(3):203-226.
    [24]Rainov NG,Ikeda K,Qureshi N,et al.Intra-Arterial Virus and Nonvirus Vector-Mediated Gene Transfer to Experimental Rat Brain Tumors[J].Front Radiat Ther Oncol.1999,33,pp 227-240.
    [25]Yakao Kanzawa,Hideaki Ito,Yasuko Kondo,et al.Current and Future Gene Therapy for Malignant Gliomas[J].J Biomed Biotechnol.2003 March 19;2003(1):25-34.
    [26]Yagi K,Ohishi N,Hamada A,et al.Basic study on gene therapy of human malignant glioma by use of the cationic multilamellar liposome-entrapped human interferon beta gene[J].Hum Gene Ther.1999;10(12):1975-1982.
    [27]Svetlana Gelperina,Kevin Kisich,Michael D,et al.The Potential Advantages of Nanoparticle Drug Delivery Systems in Chemotherapy of Tuberculosis[J].American Journal of Respiratory and Critical Care Medicine,2005,172,1487-1490.
    [28]Kirsten Mason.Targeted drug delivery achieved with nanoparticle-aptamer bioconjugates[J].Urological Clinics of North America,2003 30(2):209-217.
    [29]周泉波,陈汝福.纳米靶向载体在肿瘤治疗中的应用[J].国外医学肿瘤学分册,2005,32(7):483-485.
    [30]Andrew D,Miller.Cationic Liposomes for Gene Therapy[J].Angew Chem IntEd,1998,37:1768-1785.
    [31]张宏达,胡宝成.纳米颗粒作为基因载体的应用[J].生物技术通讯,2007,18 (2):295-297.
    [32]曹文疆,程江,王昶光.纳米靶向给药系统载体材料的研究进展[J].中国组织工程研究与临床康复,2007,11(22):4380-4383.
    [33]李瑞,尤永平.纳米载体在胶质瘤基因治疗中的应用[J].国际神经病学神经外科学杂志,2007,34(3):246-249.
    [34]Benedetti S,Piola B,Pollo B,et al.Gene therapy of wxperimental brain tumors using neural progenitor cells[J].Nat Med,2000,6:447-450.
    [35]Aboody KS,Brown A,Rainov NG,et al.Neural stem cells display extensive tropism for pathology in adult brain,evidence from intracranial gliomas[J].Proc Natl Acad Sci USA.2000,97:12846-12851.
    [36]Ehtesham M,Kabos P,Kabosova A,et al.The use of interleukin 12-secreting neural stem cells for the treatment of intracranial glioma[J].Cancer Res,2002,62:5657-5663.
    [37]Brown A B,Yang W,Schmidt NO,et al.Intravascular delivery of neural stem cell lines to target intracranial and extracranial tumors of neural and non-neural origin[J].Hum Gene Ther,2003,14(18):1777-1785.
    [38]Nakamura K,Ito Y,Kawano Y et al.Anti-tumor effect of genetically engineered mesenchymal stem cells in a rat glioma model[J].Gene Ther,2004,11:1155-1164.
    [39]Schichor C,Birnbaum T,Etminan N,et al.Vascular endothelial growthfactor A contributes to glioma-induced migration of human marrow stromal cells (hMSC)[J].Exp Neurol,2006,199:301-310.
    [40]Ozaki Y,Nishimura M,Sekiya K,et al.Comprehensive analysis of chemotactic factors for bone marrow mesenchymal stem cells[J].Stem Cells Dev,2007,16:119-129.
    [41]Honczarenko M,Le Y,Swierkowski M,et al.Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors[J].Stem Cells Dev,2006,24:1030-1041,
    [42]Liu CH,Hwang SM.Cytokine interactions in mesenchymal stem cells from cord blood[J].Cytokine,2005,32:270-279.
    [43]Hamada H,Kobune M,Nakamura K,et al.Mesenchymal stem cells(MSC)as therapeutic cytoreagents for gene therapy[J]. Cancer Sci,2005,96:149-156.
    [44]Rasmusson I. Immune modulation by mesenchymal stem cells[J].Exp Cell Res,2006,312:2169-2179.
    [45]Corcione A, Benvenuto F, Ferretti E, et al. Human mesenchymal stem cells modulate B-cell functions[J]. Blood, 2006,107: 367-372.
    [46]Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses[J]. Blood, 2005: 105:1815-1822.
    [47]Beyth S, Borovsky Z, Mevorach D, et al. Human mesenchymal stem cells alter antigen-presenting cell maturation and induce Tcell unresponsiveness[J]. Blood,2005,105:2214-2219.
    [48] Sato K,Ozaki K,Oh I, et al. Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells[J].Blood, 2007, 109: 228-234.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700