用户名: 密码: 验证码:
枯草芽胞杆菌固态发酵产聚-γ-谷氨酸的工艺优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚-γ-谷氨酸[poly-(γ-glutamic acid),γ-PGA]是一种天然的水溶性的聚合氨基酸,具有生物可降解性,对人体和环境无毒害等优点。γ-PGA及其衍生物可应用于农业、食品、饲料、化工、材料、药物等领域,是一种极具开发前景的多功能新型生物材料。
     本课题首先优化了本实验室分离的一株高产γ-PGA的枯草芽胞杆菌ME714的固态发酵培养基。运用单因素实验、正交实验以及神经网络和遗传算法进行培养工艺优化。结果表明,黄豆饼粉和麸皮是适合枯草芽胞杆菌ME714产γ-PGA的固态发酵基质,其质量比为1∶1,250mL摇瓶固体基质装量为10g;无机盐的种类和浓度为硫酸锌0.36g/kg,硫酸锰0.1g/kg,硫酸镁0.5g/kg,氯化钙0.2g/kg;谷氨酸钠31.8g/kg、尿素28.3g/kg、柠檬酸钠24g/kg、淀粉46g/kg;料水比为1∶1,初始pH值8.0,接种量8%,发酵时间36h,过程中不翻曲;优化条件下γ-PGA产量为75.3g/kg。
     进一步进行了扩大培养的初步研究。珍珠岩和谷壳作为载体均可在扩大培养条件下获得较好的γ-PGA产量。谷壳作载体可以将产量提高8.6%;珍珠岩作载体时,产量提高了11.1%。
     本课题以昆明小鼠为材料初步研究了添加γ-PGA的混合饲料对不同周龄的小鼠生长的影响。结果表明,添加5g/kgγ-PGA的混合饲料对5~6周龄小鼠的生长有明显的促进作用,增重作用显著;对3~4周龄小鼠,饲料中添加5g/kgγ-PGA对其生长有极显著的抑制作用,添加2.5g/kgγ-PGA对这个时期小鼠生长的影响也是显著的。
Poly (γ-glutamic acid)(γ-PGA) is a water soluble poly amino acids which have excellent characters such as completely biodegradable, non-toxic to human and environment.γ-PGA and its derivates have potential applications in a wide range of industry and agriculture such as food, cosmetics, medicine and manure. Thus this natural and multifunctional biopolymer is worth researching and developing to a commercial material.
     The solid state fermentation medium ofγ-PGA biosynthesis by Bacillus subtilis ME714, which was a newly isolated strain by our lab, was optimized. Methods such as simple factor experiment, orthogonal design, RBF neural network and Genetic algorithm were involved in this work. The higherγ-PGA yield was achieved in the conditions that described as following (g/kg): soybean cake powder and wheat bran (5∶5 w/w) as the mixed substrates supplemented with sodium glutamate (31.8 g/kg), urea(28.3 g/kg), trisodium citrate (24 g/kg), starch 46 (g/kg) and mineral salts (ZnSO_4 0.36 g/kg, MnSO_4 0.1 g/kg, MgSO_4 0.5 g/kg, CaCl_2 0.2 g/kg), with initial ratio of substrate weight (g) and solution volume (mL) 1∶1, initial pH 8.0, inoculum level 8%, at 37℃incubated 36h. No substrate disturbance was made during the cultivation. The yield is 75.3 g/kg, which is increased by 43.16 % compared to the original medium.
     Scale-up ofγ-PGA biosynthesis was devolped. Both perlite and chaff as carriers have well performance during scale-up cultivation ofγ-PGA. The yield is increased by 8.6%, when chaff was applied, 11.1% for perlite, compared to original culture.
     In this research, effect ofγ-PGA concentration in the animal feed on Kunming mice growth was investigated. The results showed animal feed containing 5 g/kgγ-PGA had markedly increased the weight of 5~6 weeks old mice, while inhibited the growth of 3~4 weeks old mice. Feeding with 2.5 g/kgγ-PGA also has statistical reverse effect on the growth of 3~4 weeks old mice
引文
1.卫功元,李寅,堵国成,陈坚.Candida utilis生物合成谷胱甘肽的营养及环境条件.应用与环境生物学报,2003,9(6):642~646
    2.马雷,张蓓,武改红,张克旭,陈宁.基于BP神经网络与遗传算法的鸟苷发酵培养基优化.天津科技大学学报,2005,20(3):17-19
    3.戈进杰.生物降解高分子材料及其应用.北京:化学工业出版社,2002,26-35
    4.方柏山,陈宏文,谢晓兰.基于神经网络和遗传算法的木糖醇发酵培养基优化研究.生物工程学报,2000,16(3):648-650
    5.王传海,何都良,郑有飞,姚克敏,徐红.保水剂新材料γ-聚谷氨酸的吸水性能和生物学效应的初步研究.中国农业气象,2004,25(2):19-22
    6.朱玉华.MATLAB在过程参数优化中的应用.机床与液压,2004,11:165-166
    7.何小兵.生物合成聚γ-谷氨酸(钠盐型)的溶液性质研究.[硕士学位论文].南京:南京工业大学图书馆,2003
    8.张礼星.固态发酵纤维素酶的研究.[博士学位论文].无锡:无锡轻工大学图书馆,1999.
    9.张俐娜,薛奇,莫志深,金熹高.高分子物理近代研究方法.武汉:武汉大学出版社,2006
    10.张慧,王建,陈宁.L-缬氨酸发酵培养基的神经网络建模与遗传算法优化.生物技术通讯,2005,16(2):156-158
    11.李绍新,邢达,秦华明,杨湘波,谭石慈.油脂降解培养基优化的遗传算法实验研究.分析化学,2004,32(4):481-484
    12.杨革,陈坚,曲音波,伦世仪.金属离子对地衣芽胞杆菌合成多聚γ—谷氨酸的影响.生物工程学报,2001,17(6):706-709
    13.杨革,陈坚,曲音波,伦世仪.碳源和Mn~(-2+)对地衣芽胞杆菌Bacillus licheniformisWBL—3生产聚γ—谷氨酸的影响.化工学报,2002,53(3):317-320
    14.沙长青,李伟群,赵晓宁,王佳龙,陈静宇,杨志兴.纳豆芽胞杆菌(Bacillus subtilis natto)固体发酵生产γ-PGA.中国生物工程杂志,2004,24(10):70-73
    15.陈宏文,方柏山,胡宗定.遗传算法应用于分批发酵动力学模型参数估算.华侨大学学报,2000.21(1):71-75
    16.陈雄.枯草芽胞杆菌高产聚-γ-谷氨酸及其应用研究.[博十学位论文].武汉:华中农业大学图书馆,2005
    17.罗建平,罗凯,陈晓燕.用神经网络和遗传算法优化怀槐悬浮细胞合成异黄酮.生物工程学报,2004,20(5):759-763
    18.姚汝华.微生物工程工艺原理.广州:华南理工大学出版社,2003
    19.施庆珊,许虹,林小平,邱玉棠.γ-多聚谷氨酸的微生物合成.生物技术,2004,14:65-67
    20.赵斌,何绍江.微生物学实验.北京:科学出版社,2002
    21.章克昌.酒精与蒸馏酒工艺学.北京:中国轻工业出版社,1995
    22.诸葛健.工业微生物育种学.北京:化学工业出版社,1998
    23.彭银仙,徐虹,陈国广,韦萍,欧阳平凯,张钧寿.新型药物载体聚谷氨酸的合成及其应用.中国新药杂志,2002,11:515-519
    24.游庆红,张新民,陈国广,徐虹,欧阳平凯.γ-聚谷氨酸的生物合成及应用.现代化工,2002,12:56-59
    25.蔡宇杰,诸葛斌,张锡红,须文波.遗传算法与神经网络耦联法优化生淀粉酶发酵培养基.无锡轻工大学学报,2001,20(4):421-423
    26. Ashiuchi M, Nakamura H, Yamamoto T, Kamei T, Soda K, Park C, Sung M H, Yagi T, Misono H. Poly-γ-glutamate depolymerade of Bacillus subtilis: production, simple purification and substrate selectivity. J Mol Cat B: Enzym, 2003b, 23: 249-255
    27. Broomhead D S, Lowe D. Multivariable functional imterpolation and adaptive networks. Complex syst , 1988, 2: 321-355
    28. Chen X, Chen S W, Sun M, Yu Z N. High yield of poly-gamma-glutamic acid from Bacillus subtilis by solid-state fermentation using swine manure as the basis of a solid substrate. Bioreso ur Technol, 2005, 96(17): 1872-1879.
    29. Chen X, Chen S W, Sun M, Yu Z N. Medium optimization by response surface methodology for poly-gamma-glutamic acid production using dairy manure as the basis of a solid substrate. Appl Microbiol Biotechnol, 2005, 69(4): 390-396
    30. Cromwick A M, Gross R A. Effects of manganese (Ⅱ) on Bacillus licheniformis ATCC 9945A physiology and γ-poly (glutamic acid) formation. Int J Biol Macromol, 1995a, 17: 259-267
    31. Cromwick A M, Gross R A. Investigation by NMR of metabolic routes to bacterial γ-poly (glutamic acid) using ~(13)C-labeled citrate and glutamate as media carbon sources. Can J Microbiol, 1995b, 41: 902-909
    32. Do J H, Chang H N, Lee S Y. Efficient recovery of γ-poly (glutamic Acid) from highly viscous culture broth. Biotech Bioeng, 2001, 76: 219-223
    33. Doelle H W, Mitchell D A, Rolz C E. Solid Substrate Cultivation. Elsiever Sci. P.ubl. Itd; London & New York; 1992.
    34. Durand A. Bioreactor designs for solid state fermentation. Biochem Eng J, 2003, 13: 113-125
    35. Freyer St, Weuster-Botz D, Wandrey C. Medium optimization using genetic algorithms. Bio Eng, 1992,8(5): 16-25
    36. Gonzales D, Fan K, Sevoian M. Synthesis and swelling characterizations of a poly-(gamma-glutamic acid) hydrogen. J polym Sci Part A: polym chem, 1996,34:2019-2027
    37. Gross R A, McCarthy S P, Shah D T. Gamma-poly (glutamic acid) esters. US Patent, 5378807. 1995
    38. Hasebe K, Inagaki S. Preparation composition for external use containing gamma- polyglutamic acid and vegetable extract in combination. JP patent 11240827, 1999-09-20
    39. Ho N C, Sang Y L, Jin H D. Process for preparing gamma-polyglutamic acid from high-viscouse culture broth. US patent0016341A1. 2001-08-23
    40. Karasawa M, Tanimoto S, Kouji K. The use of poly-gamma-glutamic acid for preparing an agent for increasing the gamma-glutamic acid for preparing an agent for increasing the phosphorus assimilation. EP0838160, 1998-05-06.
    41. Katsifas E A, Giannoutsou E, Lambraki M, Barla M, Karagouni A D. Chromium recycling of tannery waste through microbial fermentation. J Ind Microbiol Biotechnol, 2004, 31: 57-62
    42. King E C. Watkins W J. The use of poly- γ -D-glutamic acid from Bacillus lichemiformis. J Polym. Sci. Part A: Polym. Chem, 1998, 36: 1995-1999.
    43. Ko Young H, Gross Richard A. Effects of glucose and glycerol on gamma-poly (glutamic acid) formation by Bacillus licheniforms ATCC9945a. Biotechnol Bioeng, 1998, 57:430-437
    44. Konno A, Taguchi T, Yamaguchi T. Bakery products and noodles containing poly (γ-glutamic acid). US patent, 4888193, 1989-12-19
    45. Kunioka M, Biosynthesis of poly (γ-glutamic acid) from L-glutamic acid, citric acid, and ammonium sulfate in Bacillus subtilis IFO3335. Appl Microbiol Biotechnol, 1995, 44: 501-506
    46. Kunioka M, Goto A. Productioin of poly-glutamic acid by fed-batch culture of Bacillus licheniformis. Appl Microbiol Biotechnol, 1994, 40: 867-874
    47. Kunioka M. Biosynthesis and chemical reactions of poly (amino acid) from microorganisms. Appl Microbiol Biotechnol, 1997, 47: 469-475
    48. Lonosane B K. Optimal tuning of PI speed controller coefficients for electric drives using neural network and genetic algorithms. Enzyme microb.Technol.1985, 7: 258-265
    49. Makoto T, Kouji K, Ayako S, Xu P, Ken-Ichi F, Toshio T, Yutaka T, Eiji H. Physicochemical properties of cross-linked poly-γ-glutamic acid and its flocculating activity against kaolin suspension. J biosci bioeng 2005a, 99: 130-135
    50. Makoto T, Kouji K, Osamu M, Xu P, Hirokazu N, Yoshinosuke U, Akio I, Ken-ichi F, Toshio T, Yutaka T, Eiji H. Flocculating activity of cross-linked poly-glutamic acid against bentonite and Escherichia coil suspension pretreated with FeCl~3 and its interaction with Fe~(3+). J biosci bioeng 2005b, 100:207-211
    51. McLean R J C, Beauchemin D, Beveridge T J. Influence of oxidation state on iron binding by Bacillus licheniformis capsule. Appl Environ Microbiol, 1992, 58: 405-408
    52. Mclean R J C, Beauchemin D, Clapham L, Beueridge T J. Metal-binding characteristics of the gamma-glutamyl capsular polymer of Bacillus licheniformis ATCC 9945. Appl Environ Microbiol, 1990,59:3671-3677
    53. Min X L, Liu G H. The combination of artificial neural network and genetic algorithm applied to modeling and optimization. Appl Res Comput, 2002, 1: 79-81
    54. Mitchell D A., Krieger N, Stuart D M., Pandey A. New developments in solid-state fermentationII. Rational approaches to the design, operation and scale-up of bioreactors. Proc Biochem, 2000,35: 1211-1225
    55. Mitsuikzi M, Mizuno A, Tanimoto H, Motoki M. Relationship between the Antifreeze Antivites and the Chemical Structures of Oligo-ang Poly(glutamic acid)s. J Agric Food Chem, 1998, 46: 891-895
    56. Otani Y, Tabata Y, Ikada Y. Effects of additives on gelation and tissue adhesion of gelatin-poly (L-glutamic acid) mixture. Biomaterials, 1998, 19: 2167-2173
    57. Pandey A, Carlos R, Mitchell D. New developments in solid state fermentation: I-bioprocesses and products. Proc Biochem , 2000 ,35: 1153-1169
    58. Powell M J D.Radial basis functions for multivariable interpolation. In: 1MG Conference on Algorithms for the Approximation of Function and Data. UK:shrivenham, 1985, 143-167
    
    59. Prado F C, Vandenberghe LPS, Lisboa C, Paca J, Pandey A, Soccol C R. Relation between Citric Acid Production and Respiration Rate of Aspergillus niger in Solid-State Fermentation, Eng Life Sci, 2004, 4(2): 179-186
    60. Raghavarao, K S M S, Ranganathan, T V, Karanth, N G. Some engineeringaspects of solid-state fermentation. Biochem Eng J, 2003, 13 : 127-135
    61. Robinson T D, Nigam S P. Solid-state fermentation: a promising microbial technology for secondary metabolite production. Appl Microbiol Biotechnol, 2001, 55: 284-289
    62. Robinson T D, Nigam S P. Bioreactor design for protein enrichment of agricultural residues by solid state fermentation. Biochem EngJ, 2003, 13: 197-203
    63. Saucedo-Castaneda G, Lonsane B K, Krishnaiah M M, Navarro J M, Roussos S, Raimbault M. Maintenance of heat and water balances as a scale-up criterion for the production of ethanol by Schwanniomyces castellii in a solid state fermentation system. Proc Biochem, 1992b, 27: 97-107
    64. Saucedo-Castaneda G, Lonsane B K, Navarro J M, Roussos S , Raimbault M. Potential of using a simple fermenter for biomass built up, starch hydrolysis and ethanol production: Solid state fermentation system involving Schwanniomyces castellii, Appl Biochem Biotech, 1992, 36: 47-61.
    65. Selvakumar P, Ashakumary L, Pandey A. Biosynthesis of glucoamylase from Aspergillus niger by solid-state fermentation using tea waste as the basis of a solid substrate. Biores Technol, 1998, 65: 83-85
    66. Seydi V U, Metin D. Optimal tuning of PI speed controller coefficients for electric drives using neural network and genetic algorithms. Elect Eng, 2005, 87-77
    67. Shih I L, Van Y T, Yeh L C, Lin H G, Chang Y N. Production of a biopolymer flocculant from Bacillus licheniformis and its flocculation properties. Bioresource Technology. 2001 , 78: 267-272
    68. Tanimoto H, Mori M, Motoli M, Torii K, Kadowaki M, Noguchi T. Natto mucilage containing poly-γ-glutamic acid increases soluble calcium in the rat small intestine. Biosci Biotechnol Biochem, 2001,65:516-521
    69. Tanimoto H, Sato H, Karasawa M, Iwasaki K, Oshima A, Adachi S. Feed composition containing poly-γ-glutamic acid. JP Patent WO9635339, 2000
    70. Tanimoto H, Sato H, Kuraishi C, Kido K, Seguto K. High absorption mineral-containing composition and foods . US patent, US5447732, 1995.
    71. Tanimto H, Sato H, Karasawa M, Iwasaki K, Oshima A, Adachi S. Feed composition containing poly-γ-glutamic acid. European patent, EP0826310A1, 1998-04-03.
    72. Thorne C B, Gomez C G, Noyes H E, Housewright R D. Production of glutamyl polypeptide by Bacillus subtilis. J Bacteriol, 1954, 68: 307-15
    73. Troy F A. Chemistry and biosynthesis of the poly (γ-D-glutamyl) capsule in Bacillus licheniformis properties of the membrane-mediated biosynthetic reaction. J Biol Chem, 1973, 248:305-315
    74. Udo Ho¨ Iker and Ju¨ rgen Lenz, Solid-state fermentation — are there any biotechnological advantages? Curr Opin Microbiol, 2005, 8: 301-306
    75. Xu J, Chen S W, Yu Z N. Optimization of process parameters for poly g-glutamate production under solid state fermentation from Bacillus subtilis CCTCC202048.Proc Biochem, 2005, 40: 3075-3081
    76. Yokoi H, Arima T, Hirose J, Hayashi S, Takasaki Y. Flocculation properties of polyglutamic acid produced by Bacillus subtilis. J Ferment Bioeng, 1996, 82: 84-87
    77. Yokoi H, Yoshida T, Mori S, Hirose J, Hayashi S, Takasaki Y. Biopolymer flocculant produced by an Enterobacter sp. Biotechnol Lett, 1996, 19: 569-573
    78. Yoon S H, Do J H, Lee S Y, Chung H N. Production of Poly-γ-Glutamic Acid by fed-batch Culture of Bacillus licheniformis. Biotechnol Lett, 2000, 22: 585-588
    79. Zuo K, Wu W T. Semi-realtime optimization and control of a fed-batch fermentation system. Computers Chem Eng, 2000, 24: 1105-1109

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700