用户名: 密码: 验证码:
非锚固圆柱形储液罐地震模拟及提离响应实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型立式非锚固圆柱形储液罐凭借其投资少、占地面积小、呼吸损耗小、能耗低和便于操作管理等优点,在石油储备基地中被各国广泛采用。其在使用中的安全可靠性极为重要,地震中储液罐一旦遭到破坏,将带来重大的经济损失和环境污染,甚至危及生命安全。
     本文在国家“863”高技术研究发展计划重点项目(项目编号:2009AA044803)、国家科技支撑计划项目(项目编号:2011BAK06B02)的资助和支持下,基于非锚固钢制圆柱形储液罐模型进行地震模拟实验,综合考虑了多种因素的影响,系统地研究了地震动作用下模型罐系统的提离响应,开展的主要工作如下:
     (1)完成了圆柱形钢制非锚固储液罐模型的大型地震模拟实验。详细介绍了实验过程和数据处理方法。系统地阐述了实验中所选用的实验设备、实验方法、模型罐设计和制作、传感器、数据采集系统、测点布置方法、实验用地震激励及其输入方法等实验基本情况。实验模型系统包括空罐模型、半罐模型、满罐模型和浮顶罐模型。地震激励种类包括实测天然波、人工拟合波、白噪声波和简谐波。
     (2)测试分析了模型罐的加速度动态响应情况;阐述了加速度时程实验数据的分析方法;解决了多台采样设备的不同步及测量结果存在差异这一实验研究中普遍存在的问题;以加速度实验结果为基础研究了各模型罐频谱特性,详细阐述各模型罐频谱分析的方法和实验结果;应用ANSYS有限元软件进行数值模拟,得到了各模型罐系统的低阶频率和基本频率;参照国家标准设计规范中的方法计算得到半罐和满灌模型的基本频率;将实验、数值模拟和设计规范计算结果进行比较研究,并分析了三者存在一致性和差异的原因。
     (3)研究了地震动的多维性对模型罐竖向绝对位移和提离响应的影响。提出应同时关注罐体竖向绝对位移和罐体提离情况;比较一维不同方向激励对模型罐响应的影响,提出开展多维地震激励下模型罐动态响应研究必要性;比较一维激励和多维组合激励对模型罐响应的影响,研究表明多维组合激励下模型罐提离值甚至高于不同方向的一维激励作用下提离值之和;并进一步研究了多维组合激励中Z向分量的变化对模型罐动态响应规律的影响,提出Z分量的变化对提离响应的影响明显。
     (4)研究了多种因素对模型罐动态响应规律的影响。将储液高度、有无浮顶情况、地震波加速度幅值、地震波频率、场地类别等因素作为可变参数,实验得到各因素以及它们联合作用下的位移和提离响应行为规律和数学表达式。
     (5)实验得到不同工况下的动液压力时程数据,提出在地震动作用下,应用雨流计数法,同时以实验测得的压力均值、压力幅值和有效幅值的累计循环次数共同描述动液压力的强度,研究其与储液罐提离响应的关系。
Large vertical cylindrical unanchored tanks are widely used in oil reserve bases for the advantages of less investment, smaller footprint, smaller respiratory loss, lower energy consumption and easer operation and management. The security and reliability of the liquid storage tanks in using has become extremely important. Once the liquid storage tanks are destructed under a seismic disaster, significant economic losses and environmental pollution would be brought out, even more, the human life safety may be threated.
     An earthquake simulation experimental research of the cylindrical unanchored liquid storage steel model tanks has been taken on a seismic test table. The effects of a variety of factors were considered. Uplift responses of the model tanks under earthquake have been systematically studied. The main tasks of this work are listed as follows:
     (1) A large-scale earthquake simulation experiment about the cylindrical steel liquid storage model tanks has been completed. Experimental procedures and data processing methods were introduced in detail. The selection of test equipment, the experimental methods, the design and production of the model tank, the sensors, the data acquisition systems, the test point arrangement method, the experimental seismic excitation and its input methods were described systematically. The experimental model systems included a tank without water, a tank with half water, a tank with full water and a tank with floating roof. The seismic excitation included the measured natural waves, artificial waves, white noise waves and harmonic waves.
     (2) Acceleration dynamic response of the model tanks were tested and analyzed. The analysis method of the acceleration time history experimental data were described. A common problem in the experimental studies that the multiple sampling devices are not synchronized and measurement results were different is solved. The spectrum characteristics of the model tanks were studied basing on the results of acceleration experiment results, the analysis methods and experimental results of the model tanks were introduced. ANSYS finite element software was used to simulate the low order natural frequency and fundamental frequency of the model tank systems, which were also calculated according to the national design standard. The reasons for the existence of consistency and differences between the results obtained from experiments, numerical simulation and national design standard were discussed.
     (3) The impact of earthquake multidimensional characteristics to the vertical absolute displacements and uplift response were studied. A point was proposed that the vertical absolute displacement and uplift response should be concerned simultaneously. The effects of different excitation's direction were compared, which verified the necessity to carry out an analysis on dynamic response of tanks under multidimensional earthquake. Model tank responses under one-dimensional and multidimensional seismic excitation were compared; it showed that the uplift values under the latter were much higher than that under the former. And a further study were carried out about the effect of the changes of Z component in earthquake excitations, experiment results showed that the effect was significant to the uplift response.
     (4) Varieties of important factors were studied to investigate the impact of the dynamic laws of the model tank. The height of liquid in the tanks, with or without a floating roof, seismic wave acceleration amplitude, seismic wave frequency, site classification, etc. factors were considered as parameters. Under above factors and combined effects, laws and mathematical expressions of displacement and up lift response behaviors were got under experimental ways.
     (5) Dynamic fluid pressure was got by the tests, and rain flow counting method was used under seismic loading in this study. The mean pressure throughout the vibration process, the pressure amplitude and the effective amplitude of the cumulative number of cycles factors were considered to describe the strength of the dynamic fluid pressure, and the tank uplift responses to above factors were discussed.
     We would like to acknowledge the financial support from the Key Projects of "863" High-tech Research Development Plan (Project No.2009AA044803), National Key Technology R&D Program (Project No.2011BAK06B02).
引文
[1]段媛媛,刘义君,王飞,等.15×104m3超大型石油储罐结构优化分析[J].压力容器,2006,23(12):23-27.
    [2]方舟,陈志平,晏顺娟,等.Φ2800mm非锚固金属储液罐大型地震模拟实验[J].压力容器,2012,29(6):1-8.
    [3]FANG Z, CHEN Z P, Yu C L. Effect of weld on axial buckling of cylindrical shells [J]. Advanced Material Research,2010,139-141:171-175.
    [4]陈志平,曾明,余雏麟,等.大型油罐应力分析与屈曲稳定性研究综述[J].油气储运,2008,27(12):7-12.
    [5]孙永生.高油价下亚洲石化业的困扰与出路[J].环球石化,2005,(10):26-28.
    [6]王丽娟.我国石油战略储备体系的构建[J].中国金融,2004,(23):10-13.
    [7]ADINA R&D [R], Inc. ADINA theory and modeling guide, volumes Ⅰ, Ⅱ, Ⅲ, watertown, MA,2002:2-8.
    [8]ABBASI E, BATHE K J. Stability and patch test Performance of contact discretizations and a new solution algorithm [J]. Computers and Structures,79: 1473-1486.
    [9]ETEROVIC A L, BATHE K J. On the treatment of inequality constraints arising from contact conditions in finite element analysis [J]. Computers and Structures. 40:203-209.
    [10]API Standard. Welded Steel Tanks For Oil Storage [S].650-2009.
    [11]日本工业标准《钢制焊接油罐的结构》[S].JIS B 8501-1995.
    [12]陈志平.大型非锚固储油罐应力分析与抗震研究[D].浙江大学,博士,2006.
    [13]朱劲平.大型立式圆柱形油罐“象足”屈曲研究[D].浙江大学,硕士,2007.
    [14]土木学会新泻震害调查委员会.新泻地震震害调查报告[R].1966:1-20.
    [15]郭增建.城市地震对策[J].北京:地震出版社,1991:1-5.
    [16]美国地震工程研究会.洛马普里埃塔地震考察[M].中国石油化工总公司抗震办公室译.北京:地震出版社,1991:12-14.
    [17]孙建刚.立式储罐地震响应控制研究[D].中国地震局工程力学研究所,博士,2002.
    [18]林秀岗,王辉.基于实验研究的大型油罐冷却用水量估算[J].武警学院学报. 2011,27(2):5-7.
    [19]ELISABETH K, ANA M C, BASTIEN A. The impact of the 12 May 2008 wenchuan earthquake on industrial facilities [J]. Journal of Loss Prevention in the Process Industries,2010,23:242-248.
    [20]王振.立式非锚固储罐三维地震反应分析及实验研究[D].博士,哈尔滨工程大学,2006.
    [21]ANESTIS S. Dynamic response of flexibly supported liquid-storage tanks [J]. Struc. Eng.1992,118(1):90-107.
    [22]田石,乌瑞峰.内浮顶油罐的地震反应分析.地震工程与工程振动[J].1986,6(3):13-15.
    [23]唐友刚.储液罐翘离试验研究及液-固-土耦合非线性振动分析[D].博士,天津大学,1996.
    [24]BARTON D C, PARKER J V. Finite element analysis of the seismic response of anchored and unanchored liquid storage tanks [J]. Earthquake engineering and structural dynamics,1987,15 (8):1251-1254.
    [25]HAMDAN F H. Seismic behavior of cylindrical steel liquid storage tanks [J]. Journal of constructional steel research,2000,553(12):307-333.
    [26]SCHNEIDER P, BUCHER F, ZAPECA F. Structural response to thin steel shell structures due to aircraft impact [J]. Journal of loss prevention in the process industries,1999,12(7):325-329.
    [27]BULER T A, BENETT G J, BABCOCK C D. Response of seismic category tank to earthquake excitation [J]. NUREG/Cr-4776, La-20871-Ms, los Alamos national lab., nm nuclear regulatory commission, Washington, D. C.1987: 162-163.
    [28]郭骅.圆柱形储液罐提离分析的半理论半经验解[M].工程抗震编辑部,1987:12-15.
    [29]HOSKINS L M, JACOBSEN L S. Water pressure in a tank caused by a simulated earthquake [J]. Bulletion of the Seismological Society of American,1934,24: 1-32.
    [30]HOUSNER G W. Dynamic pressure on accelerated fluid containers [J]. Bulletin of seismological society of America,1957,47(1):15-35.
    [31]VELETSOS A S. Seismic effects in flexible liquid storage tanks [J]. Proceedings of 5th world conference on earthquake Engir, Rome, Italy,1974:630-639.
    [32]VELERSOS A S, YANG J Y. Dynamics of fixed-base liquid storage tanks [J]. U.S japan seminar for earthq. Eng. Res, with emphasis on life line systems, Tokyo, japan,1976:317-341.
    [33]VELERSOS A S, YANG J Y. Earthquake response of liquid storage tanks [J]. Advances civil Engir. through Engir. mechanics, proceedings of Annual EMD Specialty conference, ASCE, Raleigh, N. C.,1977:1-24.
    [34]VIRELLAA J C, GODOYA L A, SUAREZA L E. Dynamic buckling of anchored steel tanks subjected to horizontal earthquake excitation [J]. Journal of Constructional Steel Research,2006,62:521-531.
    [35]WATERTOWN M A. ADINA theory and modeling guide [M]. ADINA R&D, Inc. Volumes Ⅰ, Ⅱ, Ⅲ,2002:12-16.
    [36]ABBASI E N, BATHE K J. Stability and patch test Performance of contact discretizations and a new solution algorithm [J]. Computers and Structures,2001, 79:1473-1486.
    [37]ETEROVIC A L, BATHE K J. On the treatment of inequality constraints arising from contact conditions in finite element analysis [J]. Computers and Structures, 2003,40:203-209.
    [38]LIN M L, WANG K L. Seismic slope behavior in a large-scale shaking table model test [J]. Engineering Geology,2006,86:118-133.
    [39]王建军,李其汉.自由液面大幅晃动的流固耦合的数值分析方法研究发展[J].力学季刊,2001,22(4):447-454.
    [40]邓民宪,张勇凯,师俊平.常压立式储油罐地震应力有限元计算[J].地震学报,2000,23(3):312-320.
    [41]温德超.储液罐提离的试验研究和多重非线性耦合的三维静、动力分析[D].博士,大连理工大学,1992.
    [42]JACOBSEN L S. Impulsive hydrodynamics of fluid inside a cylindrical tank and of a fluid surrounding a cylindrical pier [J]. Bulletin of the Seismological Society of America,1949,39:189-214.
    [43]JACOBSEN S, AYRE R S. Hydrodynamic experiments a with rigid cylindrical tanks subjected to transient motions [J]. Bulletin of the Seismological Society of America,1951,41:313-347.
    [44]RINNC J E. Oil storage tanks. The prince William sound [R]. Alaska earthquake of 1964 and afershocks, U.S. dept. of commerce, E. S. S. A., Coast and Geodetic Survey, Washington, D. C.,1967, II(A):245-252.
    [45]HANSON R D. Behavior of liquid-storage tanks [J]. The Great Alaska Earthquake of 1964 (Engin. section). National. Acamyof. Sciences, Washington, D. C.1964:345-354.
    [46]JENNINGS P C. Engineering features of the san fernando earthquake EERL [J]. 71-02, California. Institute, of. Technology, Pasadena, California,1971:434-470.
    [47]RAMMERS F G, SCHARF K, FISHER F D. Storage tank under earthquake loading[J]. Applied Mechanics Review,1999,43(11):261-282.
    [48]API Standard 650 welded steel tanks for oil storage [S],1979.
    [49]MANOS G C, CLOUGH R W. Tank damage during the coalinga earthquake [J]. International Journal of Earthquake Engineering and Structural Dynamics,1985, 13:449-466.
    [50]CLOUGH D P. Experimental evaluation of seismic design methods for broad cylindrical tanks [R]. Earthquake engineering research center, university of California, Berkelcy, report No.UCB/EERC-77/10,1977:473-483.
    [51]MANOS G C. Earthquake tank-wall stability of unanchored tanks [J]. J. of Str. Eng.,1986,112(8):1863-1880.
    [52]MANOS G C, CLOUGH R W. The Measured and predicted shaking table response of a broad tank model [C]. Proceedings of the Pressure Vessels and Piping Conference, ASME, PVP, New York,1983,77:14-20.
    [53]MANOS G C, CLOUGH R W. Further study of the earthquake response of a broad cylindrical liquid storage tank [R]. Earthquake Engineering Research Center, Report UCB/EERC 82-07,1982:672-675.
    [54]CLOUGH R W, NIWA A. Static tilt tests of a tall cylindrical liquid storage tank [R]. University of California, Berkeley, Report No. UCB/EERC-76/06,1979: 33-36.
    [55]NIWA A. Seismic behavior of tall liquid storage tanks [R]. Earthquake engineering research center. University of California, Berkeley, No. UCB/EERc-78/04,1978:172-176.
    [56]NIWA A, CLOUGH R W. Buckling of cylindrical liquid storage tanks under earthquake loading [J]. Earthquake Engineering and Structural Dynamics,1982, 10:107-122.
    [57]CAMBRA F J. Earthquake response considerations of broad liquid storage tanks [R]. University of California, Berkeley. Roport No, UCB/EERC-82/25.1982,2: 52-59.
    [58]徐振贤,王立宇,杨庭振,等.立式储油罐的自振特性[C].圆柱形储油罐抗震论文集,北京:地震出版社,1986.
    [59]徐振贤,刘凤岐,杨庭振,等.人工地震作用下油罐模型的动力反应[C].圆柱形储油罐抗震论文集,北京:地震出版社,1986.
    [60]杨庭振,刘凤岐,徐振贤,等.储油罐模型失稳实验研究[C].圆柱形储油罐抗震论文集,北京:地震出版社,1986.
    [61]OHASHI M, YAMADA H, ISHIDA K. A study of coming generation NK-MO ships [J]. Technical bulletin of Nippon Kaiji Kyokai,1984,2:48-57.
    [62]SAKAI F, ISOE A, Hirakawa H. Experimental study on uplift behavior of large-sized cylindrical liquid storage tanks [C]. Pressure Vessels and Piping Conference, ASME, PVP, San Diego, June 1987,127:349-355.
    [63]SAKAI F, ISOE A. Big-Scaled tilt test on uplifting behavior of oil storage tank [C]. Seismic Engineering:Research and Practice, ASCE, New York,1989: 438-447.
    [64]陈厚群.五千方立米浮顶储液罐模型抗震试验研究报告[R].北京水利水电科学研究院,天津石油部施工技术研究所,1989(8):10-20.
    [65]陈厚群,王森元.浮顶罐抗震实验研究[M].立式模型罐抗震,北京:地震出版社,1990,22-66.
    [66]陈厚群.三万立方米浮顶油罐模型抗震实验研究报告[R].常压立式储罐抗震鉴定标准,1991:16-32.
    [67]项忠权,李清林.立式储罐抗震[M].北京:地震出版社,1990.
    [68]温德超等.在激励下油罐提离的非线性耦联振动的实验研究[J].实验力学,1990,5(4):407-412.
    [69]TAZUKE H, YAMAGUCHI S, ISHIDA K. Seismic proving test of equipment and structures in thermal conventional power plant [J]. Journal of Pressure Vessel Technology-Transactions of the ASME,2002,124(2):133-143.
    [70]王振,初大勇,周利剑,等.立式浮放储罐地震反应试验研究[J].油气田地 面工程.2005,24(11):13-14.
    [71]王振,孙建刚.立式浮放储罐三维地震台模型实验分析[J].东北林业大小学报,2006,34(4):78-80.
    [72]MITCHELL L R, GILES W, Wozniak M. Probable migraine with visual aura and risk of ischemic stroke [J]. American Stroke Association,2007,38:2407-2408.
    [73]LIJIMA. The ultimate strength of cylindrical liquid storage tanks under earthquakes-evaluation of dynamic buckling behavior of tanks used in PWR Plants [C]. Proceedings of the ASME 2009 Pressure Vessels and Piping Division Conference, PVP2009, July 26-30, Prague, Czech Republic,2009:337-339.
    [74]孙建刚.大型立式模型罐隔震-理论、方法及实验[M].北京:科学出版社,2009:32-35.
    [75]ANGELIS M D, GIANNINI R, PAOLACCI F. Experimental investigation on the seismic response of a steel liquid storage tank equipped with floating roof by shaking table tests [J]. Earthquake Engineering and Structural Dynamics,2010, 399(4):377-396.
    [76]HIRAKAWA H, MENTANI Y. Experimental study on uplift behavior of large sized cylindrical liquid storage tanks [J]. American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP,1987, 127(53):349-355.
    [77]周利剑.立式钢制模型罐基于损伤性能的抗提离研究[D].大庆石油学院,硕士,2003.
    [78]周利剑.水平地震激励下水平地震激励下立式储罐与地基相互作用动力响应分析[D].大庆石油学院,博士,2003.
    [79]初大勇.立式浮放储罐地震反应实验研究[D].大庆石油学院,硕士,2005.
    [80]孙焕纯,温德超.铝制模型罐模型的提离和基础特性的影响[J].石油化工设备技术,1991,12(4):39-41.
    [81]WOZNIAK R S. Basis of seismic design provisions for welded steel oil storage tanks [J]. American Stroke Association,1978:110-112.
    [82]CAMBRA F J. Earthquake response considerations of board liquid storage tanks [J]. Univ. of Calif, Berkeley, Calif, UCB/EERC-82/07,1982:115-128.
    [83]郭骅.储液罐抗震研究现状和提离对地震反应的影响.圆柱形储液罐抗震论文集[M].北京:地震出版社,1986.
    [84]LI X, BREDDE H. Large amplitude water level oscillations in rectangular tanks [J]. Journal of Hydraulic Research,1989,27(4):537-551.
    [85]HAROUN M A, ELLAITHY H M. Model for flexible tanks undergoing rocking [J]. Energy Mech., ASCE,1985,111(2):143-157.
    [86]IBRAHIM R A. Experimental investigation of liquid sloshing under parametric random excitation [C]. American society of mechanical engineering New York, NY, USA. WA/APM23,1993:77-79.
    [87]WOZNIAK R S, MITCHELL W W. Basis of seismic response provisions for welded oil storage tanks [J]. API convention, Toronto, Canada,1978:1989-1992.
    [88]NATSIAVAS S. An analytical model for unanchored fluid-filled tanks under base excitation[J]. J. of applied Mech,1988,648(55):3430-3436.
    [89]MALHOTRA V. Uplifting analysis of base plates in cylindrical tanks [J]. Journal of Structural Engineering,1994,120(12):3489-3505.
    [90]MALHOTRA V. Uplifting response of unanchored liquid-storage tanks [J]. Journal of Structural Engineering,1994,120(12):3525-3547.
    [91]SUN S. Seismic damages of liquid tanks and its analysis of a seismic design [C]. ASME, Proc. of the 1985 PVP conference. New Orleans, Louisiana,1985:98-7, 61-71.
    [92]NATSIAVAS S, BABCOCK C D. Bhhavior of unanchored fluid-filled tanks subjected to ground excitation [J]. ASME. New York, NY, USA WA/APM50. 1988,6:254-256.
    [93]RAMMERS F G, SCHARF K, FISHER F D. Storage tank under earthquake loading [J]. Applied Mechanics Review,1999,43(11):261-282.
    [94]MALHOTRA P K, VELETSOS. Uplifting response of unanchored liquid-storage tanks (California strong motion instrumentation program) [J]. A. S. Journal of Structural Engineering,1994,120(12):3525-3546.
    [95]PEEK J. Simplified analysis of unanchored tanks [J]. Earthquake Engineering and structural dynamics,1988,16:1073-1085.
    [96]MEDHAT A, BADAWI S. Seismic behavior of unanchored ground-based cylindrical tanks [J]. Proceedings 9th of the World Conference on Earthquake Engineering,1988, VI:943-648.
    [97]HAROUN M A, BAINS G P. Large deformation of plates with load-dependent boundaries [J]. Journal of Engineering Mechanics, ASCE, New York,1981, 107(1):191-207.
    [98]NATSIAVAS S. Stability and bifurcation analysis for oscillators with motion limiting constraints [J]. Journal of Sound and Vibration,1990,141(1):97-102.
    [99]PRAVEEN K, MALHOTRA. Seismic response of soil-supported unanchored liquid-storage tanks [J]. Journal of Structural Engineering,1997,123(4): 440-450.
    [100]CLOUGH R W. Experimental seismic study of cylindrical tanks [J]. Journal of the Structure Division, ASCE,1979,105(12):1356-1361.
    [101]NIWA A, CLOUGH R W. Bucking of cylindrical liquid-storage tanks under earthquake loading [J]. Earthquake Engineering and Structural Dynamics,1979, 10(7):107-122.
    [102]温德超,郑兆昌,孙焕纯.储液罐抗震研究的发展[J].力学进展,1995,25(1):15-17.
    [103]项忠权,李清林.立式储罐抗震[M].北京:地震出版社,1990.
    [104]项忠权,孔家孔,周建明.立式储油罐的地震作用及抗震分析[M].北京:地震出版社,1990.
    [105]谢礼立.论工程抗震设防标准[J].地震工程与工程振动,1996,16(1):29-33.
    [106]MOORE T A, WONG E K. The Response of cylindrical liquid storage tanks to. Earthquakes [J]. Proc. World. Conf. Earthquake. Eng. San. Francisco, California, 1984,5:239-246.
    [107]张瑞丰.一种新的储液罐动力提离计算模型[J].地震工程与工程振动,1992,12(10):41-46.
    [108]张义同.储液罐固液耦合水弹性分析[M].北京:地震出版社,1990.
    [109]中国石化总公司抗震办公室.圆柱形储液罐抗震文集[M].北京:地震出版社,1986.
    [110]ALI E Z. Nonlinear time-dependent seismic response of unanchored liquid storage tanks [D]. University of California, Ph.D,2000:55-58.
    [111]ALI E Z. Study of factors affecting the seismic response of unanchored tanks [C]. 15th ASCE Engineering Mechanics Conference, Columbia University, New York, 2002:1-9.
    [112]刘焕忠.附加质量法在模型罐动力分析中的应用研究[D].清华大学,硕士,2004.
    [113]沈建民.大型油罐的静强度及动力响应分析[D].浙江大学,硕士,2006.
    [114]孙建刚.模型储罐三维地震反应振动台试验研究[J].地震工程与工程振动,28(5),2008:1-8.
    [115]王翠翠.考虑流固耦合模型罐非线性地震反应分析[D].中国地震局工程力学研究所,硕士,2008.
    [116]MAEKAWA. Dynamic buckling analysis of cylindrical water storage tanks:a new simulation method considering coupled vibration between fluid and structure [C]. Proceedings of the ASME 2009 Pressure Vessels and Piping Division Conference, PVP2009, July 26-30, Prague, Czech Republic,2009:77-86.
    [117]胡振兴.基于ALE方法的油罐地震力响应分析[D].华中科技大学,硕士,2009.
    [118]OZDEMIR Z M, FAHJAN Y M. Application of nonlinear fluid-structure interaction methods to seismic analysis of anchored and unanchored tanks [J]. Engineering Sreuctures,2010, (32):409-423.
    [119]CAMBRA F J. Earthquake response considerations of borad liquid storage tanks [J], Univ. of Calif, Berkeley, Calif, UCB/EERC-82/07,1982:330-337.
    [120]NATSIAVAS S, BABCOCK C D. Behavior of unanchored fluid-filled tanks subjected to ground excitation [J]. Journal of Applied Mechanics,1988,55(3): 654-659.
    [121]赵晓磊.15万立方米浮放模型罐静动力数值分析[D].大庆石油学院,硕士2009.
    [122]葛颂.大型立式油罐抗震分析数值模拟研究[D].浙江大学,硕士,2006.
    [123]王雷.十五万方非锚固油罐地震时程响应及动力屈曲分析[D].浙江大学,硕士,2011.
    [124]陈冬芳.超大型浮顶储罐多体力学分析与结构强度研究[D].东北石油大学,博士,2010.
    [125]戴鸿哲,王伟,穆海燕,等.浮顶对大型立式油罐地震反应影响分析[J].哈尔滨工业大学学报,2009,(2):23-26
    [126]穆海艳.立式油罐地震反应分析及被动控制方法研究[D].哈尔滨工业大学,博士,2006.
    [127]FANG Z, CHEN Z P, Wang L. Study on high-temperature naphthenic acid corrosion of type 304 and type 316L stainless steel and their welded Joints [C]. 2009 ASME Pressure Vessels and Piping Division Conference,2010,5:351-357.
    [128]陈志平,张剑,方舟,等.管线的高温环烷酸腐蚀与控制技术综述[J].管道技术与设备,2009,95:1-3.
    [129]陈志平,王雷,方舟,等.16MnR及其焊接接头高温环烷酸腐蚀性能研究[J].浙江大学学报(工学版),2010,44(5):1009-1013.
    [130]方舟,陈志平,王雷,等.压力容器典型材料高温环烷酸静态腐蚀数据库的建立[C].压力容器先进技术,北京:化学工业出版社,2010:158-162.
    [131]钦峰,方舟,曹国伟.铬钼钢管高温环烷酸腐蚀性能试验[J].管道技术与设备,2009,6:39-42.
    [132]陈国兴,孙士军,宰金珉.多维相关地震动作用结构地震反应的反应谱法[J].南京建筑工程学院学报,1999,(4):15-23.
    [133]李宏男,孙立晔.地震面波产生的地震动转动分量研究[J].地震工程与工程振动,2001,21(1):15-23.
    [134]李宏男,孙丽.结构在多维地震动作用下抗震计算组合方法[J].大连理工大学学报,2003,(3):338-343.
    [135]李宏男,王苏岩.多维地震动作用下非对称结构扭转偶联随机反应分析[J].建筑结构学报,1992,13(6):12-20.
    [136]李宏男.结构多维随机地震反应分析及抗震设计计算方法的研究[J].沈阳建筑工程学院学报,1995,11:81-87.
    [137]李宏男.结构多维抗震理论与设计方法[J].科学出版社,1998:1-20.
    [138]刘季.多维地震动复合作用下结构的反应和建筑结构扭转地震效应[J].哈尔滨建筑工程学院学报,1986,2(2):59-71.
    [139]刘季.建筑结构地震扭转效应的反应谱解析方法[J].哈尔滨建筑工程学院学报,1980,(1):27-44.
    [140]刘季.结构多维地震反应的组合问题[J].哈尔滨建筑工程学院学报,1987,(2):1-9.
    [141]刘季.在多维地震动复合作用下结构的反应和建筑结构的扭转地震效应[J].哈尔滨建筑工程学院学报,1986,(2):59-71.
    [142]孙焕纯,章元崧,张晓志.在双向地震波同时作用下空间框架剪扭弹塑性 地震波反应分析[J].大连工学院学报,1982,(21):215-220.
    [143]孙士军,陈国兴.地面转动分量的标准反应谱[J].南京建筑工程学院学报,1999,(4):10-14.
    [144]孙士军,陈国兴.地面运动转动分量的合成方法[J].地震学刊,1998,(1):19-24.
    [145]薛素铎,曹资,王雪生,等.多维地震作用下网壳结构的随机分析方法[J].空间结构,2002,(1):44.
    [146]曹资,薛素铎,张毅刚,等.单层球面网壳在多维地震作用下的随机响应分析[J].空间结构,2002,(2):3-11.
    [147]陈万祥,杨成忠.结构多维弹塑性地震反应的时程分析研究[J].江苏建筑,2000,(3):37-39.
    [148]黄玉平,刘季.双向水平地震动的空间相关性[J].哈尔滨建筑工程学院学报,1987,(3):10-14.
    [149]任胜谦,高小旺.高层建筑不规则结构多维地震效应组合研究[J].建筑科学,2003,(4):9-13.
    [150]易方民,高小旺.高层建筑钢结构在多维地震动输入作用下的反应[J].建筑结构学报,2003,(3):33-43.
    [151]江宜城,唐家祥.多维地震动作用下基础隔震结构地震响应分析[J].工程抗震,2002,(2):1-6.
    [152]薛素铎,王雪生.结构多维地震作用研究综述及展望(Ⅱ)-分析方法及展望[J].世界地震工程,2002,(1):34-40.
    [153]王雪生,薛素铎.结构多维地震作用研究综述及展望(Ⅰ)-地震动输入[J].世界地震工程,2001,(4):27-33.
    [154]张誉,王卫.双向地震作用下不规则框架的扭转分析[J].土木工程学报,1994,27:37-51.
    [155]赵灿晖,周志祥.多维地震激励作用下大跨度钢管混凝土提篮拱桥的随机响应[J].地震工程与工程振动,2005,25(3):87-92.
    [156]吴健,金峰,徐艳杰.多维地震动各方向相关性对拱坝动应力的影响[J].地震工程与工程振动,2005,25(2):50-54.
    [157]朱玉华,吕西林,施卫星,等.多向地面运动作用时铅芯橡胶隔震房屋模型振动台试验研究[J].结构工程师,2001,(1):34-38.
    [158]MEDHAT A, HAROUN M, TEMRAZ K. Effects of soil-structure interaction on seismic response of elevated tanks [J]. Soil Dynamics and Earthquake Engineering,1992,11(2):73-86.
    [159]蔡新江,田石柱,振动台实验方法的研究进展[J].结构工程师,2011,27:42-46.
    [160]REINHORN A M, BRUNEAU M, WHITTAKER A S. The UB-NEES versatile high performance testing facility [C]. The 13th World Conference on Earthquake Engineering (WCEE). Vancouver,2004:557-568.
    [161]REINHORN A M, SIVASELVAN M V, ZACH L. Large scale real time dynamic hybrid testing technique-shake table substructure testing [C]. The First International Conference on Advances in Experimental Structural Engineering(AESE). Nagoya,2005:457-464.
    [162]程绍革,马路,赵鹏飞.基于凝聚技术的结构抗震混合实验原理[J].工程抗震与加固改造,2008,30(2):62-67.
    [163]CHENG S G, MA L, ZHAO P F. Hybrid test method based on system reduction [J]. Earthquake Resistant Engineering and Retrofitting,2008,30(2):62-67 (in Chinese).
    [164]王向英,田石柱,张洪涛.位移控制的子结构地震模拟振动台混合实验方法[J].世界地震工程,2009,25(2):30-35.
    [165]WANG X Y. TIAN S Z, ZHANG H T. Hybrid testing method on substructure techniques for shaking table by position control of actuator [J].World Earthquake Engineering,2009,25(2):30-50 (in Chinese).
    [166]邱法维,结构抗震实验方法进展[J].土木工程学报,2004,37(10):19-27.
    [167]QIU F W. Developments of seismic testing methods for structures [J]. China Civil Engineering Journal,2004,37(10):19-27 (in Chinese).
    [168]邱法维,钱稼茹,陈志鹏.结构抗震实验方法[M].北京:科学出版社,2000.
    [169]QIU F W, QIAN J R, CHEN Z P. Structures seismic testing methods [M]. Beijing:Science Press,2000,41-47 (in Chinese).
    [170]SATO M, INOUE T. General frame work of research topics utilizing the 3-D full-scale earthquake testing facility [J]. Journal of Japan Association for Engineering,2004,4(3):443-456.
    [171]NAKAMURA I, SHIMIZU H, MINOWA C. E-De-fence experiments on full-scale wooden houses [C]. The 14th World Conference on Earthquake Engineering (WCEE). Beijing:2008:155-159.
    [172]PRO WELL I, VELETZOS M, ELGAMAL A. Shake table test of a 65kW wind turbine and computation simulation [C]. The 14th World Conference on Earthquake Engineering (WCEE), Beijing:2008:189-192.
    [173]ISAKOVIE T, FISCHINGER M. Pushover analysis of a two-span multicolumn bent RC bridge, experimentally tested on three shake tables [C]. The 14th World Conference on Earthquake Engineering (WCEE), Beijing:2008:172-176.
    [174]陈天红,张伯艳,谢清荣.人工合成地震波研究[J].四川建筑科学研究,36(2):201-203.
    [175]李爱群,高振世.工程结构抗震与防灾[M].东南大学出版社,2003:6-10.
    [176]彭艳菊,吕悦军,黄雅虹.工程地震中的场地分类方法及适用性评述[J].地震地质,2009,31(2):349-362.
    [177]MANOS G C, CLOUGH R W. The measured and predicted shaking table response of a broad tank model [C], Proceedings of the pressure vessels and piping conference, ASME, PVP.1983,77:14-20.
    [178]MANOS G C, CLOUGH R W. Further study of the earthquake response of a broad cylindrical liquid storage tank [R]. Earthquake Engineering Research Center,1982, UCB/EERC:82-87.
    [179]CLOUGH R W, NIWA A. Static tilt tests of a tall cylindrical liquid storage tank [R]. University of California, Berkeley,1979, No. UCB/EERC-76/06.
    [180]NIWA A, SEISMIC. Behavior of tall liquid storage tanks [R]. Earthquake engineering research center. University of California, Berkeley,1978 No. UCB/EERc-78/04.
    [181]ANGELIS M D, GIANNINI R, PAOLACCI F. Experimental investigation on the seismic response of a steel liquid storage tank equipped with floating roof by shaking table tests [R]. Earthquake Engng Struct. Dyn,2010,39:377-396.
    [182]建筑抗震设计规范(GB 50011-2010)[S].
    [183]GB50341-2003《立式圆筒形钢制焊接油罐设计规范》[S].
    [184]MAURICE P. Introduction to Finite Element Vibration Analysis [M]. Cambridge University Press, Cam-, bridge, UK,1998:315-402.
    [185]王勖成.有限单元法[M].北京:清华大学出版社,2003:538-541.
    [186]林建忠.流体力学[M].北京:清华大学出版社,2005:6-7.
    [187]CHOPRA A K. Dynamics of structures:theory and applications to earthquake engineering [C].3rd ed. New Jersey:Prentice-Hall,2007:325-329.
    [188]MASOUD N A, SASSAN E. The tapered beam model for bottom plate uplift analysis of unanchored cylindrical steel storage tanks [J]. Engineering Structures, 31(2009):623-632.
    [189]MALHOTRA P K, VELETSOS A S, MEMBERS A. Uplifting response of unanchored liquid-storage tanks [EB/OL].//pubs.asce.org/copyright. 210.32.174.60.2010.
    [190]SUNG K L, EUN C P, KYUNG W M. Real-time substructuring technique for the shaking table test of upper substructures [J]. Engineering Structures,29(2007): 2219-2232.
    [191]KOLLER M, MALHOTRA P K. Seismic evaluation of unanchored cylindrical tanks [C].13th world conference on earthquake engineering,2004:553-558.
    [192]GOUDARZI M A, SABBAGH S R. Seismic analysis of hydrodynamic sloshing force on storage tank roofs [J]. Earthquake Spectra,2010,26(1):131-152.
    [193]REZAIFAR O, KABIR M Z, TARIBAKHSH A. Dynamic behaviour of 3D-panel single-storey system using shaking table testing [J]. Tehranian, Engineering Structures,2008,30:318-337.
    [194]XU Y, HU H X. Modeling and controller design of a shaking table in an active structural control system [J]. Mechanical systems and signal processing 2008,22: 1917-1923.
    [195]吴健,金峰,徐艳杰.多维地震动各方向相关性对拱坝动应力的影响[J].地震工程与工程振动,2005,25(2):50-54.
    [196]江宜城,唐家祥.多维地震动作用下基础隔震结构地震响应分析[J].工程抗震,2002,2:1-6.
    [197]陈万祥,杨成忠.结构多维弹塑性地震反应的时程分析研究[J].江苏建筑,2000,3:37-39.
    [198]王雪生,薛素铎.结构多维地震作用研究综述及展望(Ⅰ)一地震动输入[J].世界地震工程,2001,4:27-33.
    [199]薛素铎,王雪生.结构多维地震作用研究综述及展望(Ⅱ)一分析方法及展望[J].世界地震工程,2002,1:34-40.
    [200]董乐义,罗俊,程礼.雨流计数法及其在程序中的具体实现[J].计算机技术与应用,2004,24(3):38-40.
    [201]陈程礼.航空发动机状态监控与故障诊断[D].西安空军工程大学,博士,2002.
    [202]冯明琴,孟金全,孙政顺.结构材料疲劳谱载在线测试仪[J].清华大学学报,1999,11:78-82..
    [203]马建红,沈西挺.VC程序设计与软件技术基础[M].北京:中国水利水电出版社,2002.
    [204]SOPHIAN A, TIAN G Y, TALYOR D. A feature extraction technique based on principal component analysis for pulse eddy current NDT [J]. NDT&E International,2003,36(1):37-41.
    [205]王春艳,陈铁群,张欣宇.脉冲涡流检测技术的某些进展[J].无损探伤,2005,29(4):1-4.
    [206]阎楚良,卓宁生,高镇同.雨流法实时计数模型[J].北京航空航天大学学报,1998,5:623-624.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700