用户名: 密码: 验证码:
纳米氧化物半导体电极材料的制备与电化学生物传感应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
葡萄糖、过氧化氢的检测与人类身体健康、环境污染以及食品安全等息息相关,为了满足它们实时、快速和现场检测的需求,生物传感器面临着更高、更新的要求:高灵敏度、低检测限、良好的稳定性以及强的抗干扰能力等等。崭新的要求敦促着人们寻求新的电极修饰材料,纳米技术的飞速发展则为电化学生物传感器的新发展提供了无穷的机遇。在众多的纳米材料中,金属氧化物纳米材料由于其优越的电学、光学和光电性质,在电化学生物传感器中有着巨大的潜在应用价值。电化学生物传感器的一个关键组成部分就是具有生物识别能力的修饰电极,而三维多孔电极的多孔网络结构则可以为电化学反应提供适宜的场所。因此,可以预见基于金属氧化物纳米材料的三维多孔电极,将在电化学生物传感器中发挥重要的作用。静电纺丝法是制备三维网络结构的有效手段,而热压处理则可以解决纳米纤维和导电衬底间的附着性问题,结合静电纺丝法和热压处理的优势,我们成功制备了应用于葡萄糖和过氧化氢电化学生物传感的三维多孔电极。
     光电化学生物传感被认为是具备电化学和荧光传感两者优势的分析方法,它的实现要求电极具备优良的光吸收、快速的电子传输能力和良好的生物相容性。纳米结构阵列电极在光吸收和电子传输方面具有独特的优势,因此,选取具有良好生物相容性的金属氧化物半导体材料构建纳米结构阵列电极,有望实现光电化学生物传感。因此,我们利用水热法制备了一维纳米棒阵列电极,进行了有关葡萄糖光电化学传感的初步尝试。论文的主要研究成果如下:
     ⑴采用静电纺丝法制备了WO_3、TiO_2、CuO以及NiO/Co_3O_4等单一或者复合的一维纳米纤维,制备了具有管状结构的ZnO/Co_3O_4异质结纳米纤维,其直径约为200nm,管壁厚50nm左右;首次采用静电纺丝法制备了具有多级结构的CuO/TiO_2复合纳米异质结材料,其具体结构为单晶的CuO纳米片镶嵌于多晶的TiO_2纳米管中,讨论了前驱体中无机盐含量在多级结构形成过程中的作用,高分辨电镜测试表明两种半导体有着很好的接触,因此,此方法可以制备出质量较好的pN异质结结构,其在光催化、光电化学领域、气体传感和生物传感领域具有巨大的应用前景;
     ⑵结合静电纺丝和热压处理,制备了基于CuO/TiO_2多级结构三维多孔电极,并将其应用于无酶葡萄糖电化学传感。制备的电极结合了CuO/TiO_2的多级结构和复合纤维构筑的开放的三维网络结构,保证了电子的有效转移和底物在薄膜内的有效传输,表现出了高的灵敏度(1321μAmM~(-1)cm~(-2))、低的检测限(390nM)、快速的响应(响应时间小于5s)、高稳定性以及良好的可重复性;
     ⑶为了进一步探索三维多孔电极结构在电化学生物传感领域的应用价值,我们制备了基于CuO纳米纤维的膜厚可调的三维多孔电极,并将其应用于过氧化氢的无酶电化学传感。电极在不同的溶液体系中表现出不同的电化学过程,在缓冲溶液中表现出扩散控制过程,而在NaOH溶液中则为表面控制过程,它们的传感性能也表现出了各自不同的优势:在缓冲溶液中表现出高灵敏度(407.1μA mM~(-1)cm~(-2))、快速的响应(响应时间小于5s)、较在氢氧化钠溶液中,具有更宽的线性响应范围(10μM至2mM)以及良好的选择性;而在NaOH溶液中,同样表现出高灵敏度(385.4μAmM~(-1)cm~(-2))以及快速响应(响应时间小于5s),相对于缓冲溶液而言,具有更低的检测限(399nM)。在此基础上,研究了纳米纤维构建的三维多孔电极与由颗粒构建的三维多孔电极电催化性能的差异,纳米纤维构建的三维多孔电极表现出了更高的灵敏度和更大的线性范围,我们认为这首先是由于纳米纤维的一维结构保证了电子更有效的传输,而且纳米纤维构建的开放的网络结构也使底物在薄膜内部的扩散传输更加的容易;
     ⑷利用水热法在导电玻璃上制备Fe_2O_3纳米棒阵列电极,研究了其对过氧化氢的电催化性能,讨论了光电效应对电化学响应的影响。在磷酸盐缓冲溶液中,光辐照对氧化电流有明显的增强效应,而对还原电流则几乎没有影响;在NaOH体系中,光辐照对氧化电流和还原电流均有明显的影响,特别地,还原电流在光辐照后,转变为氧化电流,即电极的电流响应方向发生了改变。接下来,我们以Fe_2O_3纳米棒阵列电极构建葡萄糖光电化学检测,电极对葡萄糖表现出了稳定、快速的光电流响应,而且光电流随着葡萄糖含量的增加而增大,这样,就可以通过光电流的大小标定葡萄糖的含量。
Along with the growing demand of real time, fast and on-site detection of glucose andhydrogen peroxide, high sensitivity, low detection limit, good stability and anti-interference isproposed to biosensor fabrication. The new and high requirement of biosensing push people tosearch new electrode modified materials. Thence, researches put their eyes into the entirely newarea of nanotechnology, the fast development of nanotechnology provided a broad road todevelop electrochemical biosensor. For the metal oxide nanomaterials, because of its superiorelectric, optic and photoelectric properties, holds a promise application in the electrochemicalbiosensors. Three-dimensional porous electrode could provide suitable environment toelectrochemical reaction, so it is believed that the three-dimensional porous electrode whichbased on metal oxide nanomaterials will plays important role in electrochemical biosensors.Electrospinning is effective means to construct three-dimensional network structure, while hotpress could solve the adherence problem between the nanofiber and the FTO glass. Combinedwith these two methods, three-dimensional porous structure which fulfills glucose and hydrogenperoxide detection demand was fabricated.
     Photoelectrochemistry is expected to have the advantages of both fluorescence andelectrochemical sensors, good light harvest, fast electron transfer and good biocompatibility arethe demand of the photoelectrode. One-dimensional nanostructure arrays with goodbiocompatibility fabricated on FTO glass would satisfy the demand, while, hydrothermal is agood choice to prepare one-dimensional nanostructure array on conductive substrate. The mainresearch results are as follows:
     ⑴WO_3、TiO_2、CuO and NiO/Co_3O_4single/composite nanofiber were prepared byelectrospinning, also ZnO/Co_3O_4heterojunction nanofiber with tubular structure is prepared,which has a200nm diameter and50nm tube thickness. The CuO/TiO_2hierarchicalnanocomposites was prepared by electrospinning for the first time, which is compose ofsingle-crystal CuO nanoplate and polycrystal TiO_2nanotube, then the pN heterojunction wasformed, it holds promise applications in photocatalysis, photoelectric application, gas sensing and biosensing;
     ⑵Combine with the electrospinning and hot press process, three-dimensional porouselectrode based on CuO/TiO_2hierarchical nanocomposites was formed, which was used tononenzymatic biosensing of glucose. Profit from the advantage of CuO/TiO_2hierarchicalstructure and network structure of electrode, fast electron transfer and substrate diffusion ispromised, as a result, the electrode shows a high sensitivity of1321μA mM~(-1)cm~(-2), a lowdetection limit of390nM, a fast response time fewer than5s, good stability and reproducibility;
     ⑶Further research is processed with the thickness controllable CuO three-dimensionalporous electrode, which is applied to hydrogen peroxide nonenzymatic biosensing. We havestudied the electrochemical behaviors to hydrogen peroxide of the electrode in the phosphatebuffer solution (PBS) and NaOH solution comprehensively, and the electrode presentdiffusion-control mechanism in phosphate buffer solution, while surface-control in NaOH, also,their exhibit different advantage in different solution. In the phosphate buffer solution, theelectrode exhibits a high sensitivity of407.1μA mM~(-1)cm~(-2), a fast response time fewer than5sand wider linear response range and good selectivity compare to the result in NaOH. In NaOH, ahigh sensitivity of385.4μA mM~(-1)cm~(-2), a fast response time fewer than5s is achieved, and alow detection limit of399nM. As a result, different test requirement would fulfill through theselection of the solution used. The electrocatalysis comparison of the three-dimensional porouselectrode made of nanofibers and particles was proposed, and the three-dimensional electrodemade by nanofibers shows higher sensitivity and wider linear range, we ascribed the betterperformance to the better electron transfer in one-dimensional structure and better substratediffusion in the network structure made by electrospinning;
     ⑷Fe_2O_3nanorod array was prepared by hydrothermal on FTO conductive glass, theelectrocatalysis properties towards hydrogen peroxide was tested and the photoelectric effect onthe hydrogen peroxide electrochemical detection was studied. The result shows that theelectrocatalysis of hydrogen peroxide is notable improve under illumination in NaOH solution,especially, reduction current change to oxidation current after illumination, but the enhancementeffect just find in oxidation current in PBS. Then, take photocurrent response and glucosecatalysis into consideration, the Fe_2O_3nanorod array electrode was applied to constructphotoelectrochemical biosensor, and the prepared electrode presents a stable and fast photocurrent response, then the glucose photoelectrochemical biosensing is achieved.
引文
[1] Privett B J, Shin J H, Cchoenfisch H. Electrochemical Sensors [J]. Anal. Chem.,2008,80:4499-4517.
    [2] Ronkainen N J, Halsall H B, Heineman W R. Electrochemical biosensors [J]. Chem. Soc.Rev.,2010,39:1747-1762.
    [3] Wang J. Electrochemical Glucose Biosensors [J]. Chem. Rev.,2008,108:814-825.
    [4] Zhang W J, Li G X. Third-Generation Biosensors Based on the Direct Electron Transfer ofProteins [J]. Anal. Sci.,2004,20:603-609.
    [5] Heller A, Feldman B. Electrochemical Glucose Sensors and Their Applications in DiabetesManagement [J]. Chem.Rev.,2008,108:2482-2505.
    [6] Park S J, Boo H K, Chung T D. Electrochemical non-enzymatic glucose sensors [J]. Anal.Chim. Acta,2006,556:46-57.
    [7] Toghill K E, Compton R G, Electrochemical Non-enzymatic Glucose Sensors: A Perspectiveand an Evaluation [J]. Int. J. Electromchem. Sci.,2010,5:1246-1301.
    [8] Chen X M, Lin Z J, Chen D J, et al. Nonenzymatic amperometric sensing of glucose by usingpalladium nanoparticles supported on functional carbon nanotubes [J]. Biosens. Bielectron.,2010,25:1803-1808.
    [9] Meng L, Jin J, Yang G Y, et al., Nonenzymatic Electrochemical Detection of Glucose Basedon Palladium-Single-Walled Carbon Nanotube Hybrid Nanostructures [J]. Anal. Chem.,2009,81:7271-7280.
    [10] Li C L, Su Y, Zhang S W, et al. An improved sensitivity nonenzymatic glucose biosensorbased on a CuxO modified electrode [J]. Biosens. Bioelectron.,2010,26:903-907.
    [11] Zhang X J, Gu Aixia, Wang G F, et al. Fabrication of CuO nanowalls on Cu substrate for ahigh performance enzyme-free glucose sensor [J]. Cryst Eng Comm,2010,12:1120-1126.
    [12] Yang J, Zhang W D, Gunasekaran S, An amperometric non-enzymatic glucose sensor byelectrodepositing copper nanocubes onto vertically well-aligned multi-walled carbon nanotubearrays [J]. Biosens. Bioelectron.,2010,26:279-284.
    [13] Xu C X, Liu Y Q, Su F, et al. Nanoporous PtAg and PtCu alloys with hollow ligaments forenhanced electrocatalysis and glucose biosensing [J]. Biosens. Bioelectron.,2011,27:160-166.
    [14] Wang C X, Yin L W, Zhang L Y, Gao R, Ti/TiO2Nanotube Array Ni/Composite Electrodesfor Nonenzymatic Amperometric Glucose Sensing [J]. J. Phys. Chem. C,2010,114:4408-4413.
    [15] Chen L Y, Fujita T, Ding Y, Chen M W, A Three-Dimensional Gold-Decorated NanoporousCopper Core-Shell Composite for Electrocatalysis and Nonenzymatic Biosensing [J]. Adv. Funct.Mater.,2010,20:1-7.
    [16] Bai H Y, Han M, Du Y Z, et al., Facile synthesis of porous tubular palladium nanostructuresand their application in a nonenzymatic glucose sensor [J]. Chem. Commun.,2010,46:1739-1741.
    [17] Li Y, Zhang J J, Xuan J, et al., Fabrication of a novel nonenzymatic hydrogen peroxidesensor based on Se/Pt nanocomposites [J]. Electrochem. Commun.,2010,12:777-780.
    [18] Song Y Y, Zhang D, Gao W, Xia X H, Nonenzymatic Glucose Detection by Using aThree-Dimensionally Ordered, Macroporous Platinum Template [J]. Chem. Eur. J.,2005,11:2177-2182.
    [19] Chen J, Zhang W D, Ye J S, Nonenzymatic electrochemical glucose sensor based on MnO2MWNTs nanocomposite [J]. Electrochem. Commun.,2008,10:1268-1271.
    [20] Reitz E, Jia W Z, Gentile M, Wang Y, Lei Y, CuO Nanospheres Based NonenzymaticGlucose Sensor [J]. Electroanalysis,2008,20:2482-2486.
    [21] Pang H, Lu Q, Wang J J, et al., Glucose-assisted synthesis of copper micropuzzles and theirapplication as nonenzymatic glucose sensors [J]. Chem. Commun.,2010,46:2010.
    [22] Li Y, Wei Y Y, Shi G Y, et al., Facile Synthesis of Leaf-Like CuO Nanoparticles and TheirApplication on Glucose Biosensor [J]. Electroanalysis,2011,23:497-502.
    [23] Luo D B, Wu L Z, Zhi J F, Fabrication of Boron-Doped Diamond Nanorod ForestElectrodes and Their Application in Nonenzymatic Amperometric Glucose Biosensing [J].2009,3:2121-2128.
    [24] Chen W, Cai S, Ren Q Q, et al., Recent advances in electrochemical sensing for hydrogenperoxide: a review [J]. Analyst,2012,137:49-58.
    [25] Rad A S, Mirabi Ali, Binaian E, Tayebi H, A Review on Glucose and Hydrogen PeroxideBiosensor Based on Modified Electrode Included Silver Nanoparticles [J]. Int. J. Electrochem.Sci.,2011,6:3671-3683.
    [26] Lu L M, Zhang L, Zhang X B, et al., A MgO Nanoparticles Composite Matrix-BasedElectrochemical biosensor for Hydrogen Peroxide with High Sensitivity [J]. Electroanalysis,2010,22:471-477.
    [27] Zhou K F, Zhu Y H, Yang X L, et al. A novel hydrogen peroxide biosensor based onAu–graphene–HRP–chitosan biocomposites [J]. Electrochim. Acta,2010,55:3055-3060.
    [28] Won Y H, Aboagye D, Jang H S, et al., Core shell nanoparticles as hybrid platforms for thefabrication of a hydrogen peroxide biosensor [J]. J. Mater. Chem.,2010,20:5030-5034.
    [29] Xu X, Jiang S J, Hu Z, Liu S Q, Nitrogen-Doped Carbon Nanotubes High ElectrocatalyticActivity toward the Oxidation of Hydrogen Peroxide and Its Application for Biosensing [J]. ACSNano,2010,4:4292-4298.
    [30] Bo X G, Ndamanisha J C, Bai J, Guo L P, Nonenzymatic amperometric sensor of hydrogenperoxide and glucose based on Pt nanoparticles ordered mesoporous carbon nanocomposite [J].Talanta,2010,82:85-91.
    [31] Zao Y, Zong X L, Ye Z Z, et al., The application of complex multiple forklike ZnOnanostructures to rapid and ultrahigh sensitive hydrogen peroxide biosensors [J]. Biomaterials,2010,29:7534-7541.
    [32] Liu Y, Wang D W, Xu L, et al., A novel and simple route to prepare a Pt nanoparticle-loadedcarbon nanofiber electrode for hydrogen peroxide sensing [J]. Biosens. Bioelectron.,2011,26:4585-4590.
    [33] Zhu X L, Yuri I, Gan X, et al., Electrochemical study of the effect of nano-zinc oxide onmicroperoxidase and its application to more sensitive hydrogen peroxide biosensor preparation[J]. Biosens. Bioelectron.,2007,22:1600-1604.
    [34] Zhang L, Li H, Ni Y H, et al., Porous cuprous oxide microcubes for non-enzymaticamperometric hydrogen peroxide and glucose sensing [J]. Electrochem. Commun.,2009,11:812-815.
    [35] Xu F G, Sun Y J, Zhang Y, et al. Graphene–Pt nanocomposite for nonenzymatic detection ofhydrogen peroxide with enhanced sensitivity [J]. Electrochem. Commun.,2011,13:1131-1134.
    [36] Guascito M R, Chirizzi D, Malitesta C, et al., Low-potential sensitive H2O2detection basedon composite micro tubular Te adsorbed on platinum electrode [J]. Biosens. Bioelectron.,2011,26:3562-3569.
    [37] Meng F H, Yan X L, Liu J G, et al., Nanoporous gold as non-enzymatic sensor for hydrogenperoxide [J]. Electrochim. Acta,2011,56:4657-4662.
    [38] Won Y H, Huh K, Stanciu L A, Positively-charged gold nanoparticles as peroxidiase mimicand their application in hydrogen peroxide and glucose detection [J]. Biosens. Bioelectron.,2011,26:4514-4519.
    [39] Xie Q, Zhao Y Y, Chen X, et al., Nanosheet-based titania microspheres with hollowcore-shell structure encapsulating horseradish peroxidase for a mediator-free biosensor [J].Biomaterials,2011,32:6588-6594.
    [40] Qian Z, Bai H J, Wang G L, et al., A photoelectrochemical sensor based onCdS-polyamidoamine nano-composite film for cell capture and detection [J]. Biosens.Bioelectron.,2010,25:2045-2050.
    [41] Zhang X R, Li S G, Jin X, Zhang S S, A new photoelectrochemical aptasensor for thedetection of thrombin based on functionalized graphene and CdSe nanoparticles multilayers [J].Chem. Commun.,2011,47:4929-4931.
    [42] Yildiz H B, Freeman R, Gill R, Willner I, Electrochemical, Photoelectrochemical, andPiezoelectric Analysis of Tyrosinase Activity by Functionalized Nanoparticles [J]. Anal. Chem.,2008,80:2811-2816.
    [43] Tokudome H, Yamada Y, Sonezaki S, et al., Photoelectrochemical deoxyribonucleic acidsensing on a nanostructured TiO2electrode [J]. Appl. Phys. Lett.2005,87:213901-1-3.
    [44] Ikeda A, Nakasu M, Ogasawara S, et al., Photoelectrochemical Sensor withPorphyrin-Deposited Electrodes for Determination of Nucleotides in Water [J]. Org. Lett.,2009,11:1163-1166.
    [45] An Y, Tang L L, Jiang X L, et al., A Photoelectrochemical Immunosensor Based onAu-Doped TiO2Nanotube Arrays for the Detection of–Synuclein [J]. Chem. Eur. J.2010,16:14439-14446.
    [46] Tu W W, Lei J P, Wang P, Ju H X, Photoelectrochemistry ofFree-Base-Porphyrin-Functionalized Zinc Oxide Nanoparticles and Their Applications inBiosensing [J]. Chem. Eur. J.,2011,17:9440-9447.
    [47] Chen D, Zhang H, Li X, Li J H, Biofunctional Titania Nanotubes forVisible-Light-Activated Photoelectrochemical Biosensing [J]. Aanl. Chem.,2010,82:2253-2261.
    [48] Chen J, Zhang W D, Ye J S, Nonenzymatic electrochemical glucose sensor based onMnO2/MWNTs nanocomposite [J]. Electrochem. Commun.,2008,10:1268-1271.
    [49] Kung C W, Lin C Y, Lai Y H, et al., Cobalt oxide acicular nanorods with high sensitivity forthe non-enzymatic detection of glucose [J]. Biosens. Bioelectron.,2011,27:125-131.
    [50] Bao S J, Li C M, Zang J F, et al. New Nanostructured TiO2for Direct Electrochemistry andGlucose Sensor Applications [J]. Adv. Funct. Mater.,2008,18:591-599.
    [51] Li X G, Liu Y, Zhu Anwei, et al., Real-Time Electrochemical Monitoring of Cellular H2O2Integrated with In Situ Selective Cultivation of Living Cells Based on Dual Functional ProteinMicroarrays at Au-TiO2Surfaces [J]. Anal. Chem.,2010,82:6512-6518.
    [52] Rui Q, Komori K, Tian Y, et al. Electrochemical biosensor for the detection of H2O2fromliving cancer cells based on ZnO nanosheets [J]. Anal. Chim. Acta,2010,670:57-62.
    [53] Dai Z H, Shao G J, Hong J M, et al., Immobilization and direct electrochemistry of glucoseoxidase on a tetragonal pyramid-shaped porous ZnO nanostructure for a glucose biosensor [J].Biosens. Bioelectron.,2009,24:1286-1291.
    [54] Gaitan M, Goncales V R, Soler-Illia G J A A, et al., Structure effects of self-assembledPrussian blue confined in highly organized mesoporous TiO2on the electrocatalytic propertiestowards H2O2detection [J]. Biosens. Bioelectron.,2010,26:890-893.
    [55] Tasviri M, Rafiee-Pour H-A, Ghourchian H, et al., Amine functionalized TiO2coated oncarbon nanotube as a nanomaterial for direct electrochemistry of glucose oxidase and glucosebiosensing [J]. J. Mol. Catal. B: Enzym.,2011,68:206-210.
    [56] Liu X W, Hu Q, Wu Q, et al., Aligned ZnO Nanorods: A Useful Film to FabricateAmperometric Glucose Biosensor [J]. Colloid Surf. B-Biointerface,2009,74:154-158.
    [57] Mu Y, Jia D L, He Y Y, et al., Nano nickel oxide modified non-enzymatic glucose sensorswith enhanced sensitivity through an electrochemical process strategy at high potential [J].Biosens. Bioelectron.,2011,26:2948-2952.
    [58] Cherevko S, Chung C H, Gold nanowire array electrode for non-enzymatic voltammetricand amperometric glucose detection [J]. Sens. Actuators, B,2009,142:216-223.
    [59] Liu A, Towards development of chemosensors and biosensors with metal-oxide-basednanowires or nanotube’s [J]. Biosens. Bioelectron.,2008,24:167-177.
    [60] Yogeswaran U, Chen S M, A Review on the Electrochemical Sensors and BiosensorsComposed of Nanowires as Sensing Material [J]. Sensors,2008,8:290-313.
    [61] Wanekaya A K, Chen W, Myung N V, Mulchandani A, Nanowire-Based ElectrochemicalBiosensors [J]. Electroanalysis2006,18:533-550.
    [62] Cao X, Wang N, A novel non-enzymatic glucose sensor modified with Fe2O3nanowirearrays [J]. Analyst,2011,136:4241-4246.
    [63] Wei A, Sun X W, Wang J X, et al., Enzymatic glucose biosensor based on ZnO nanorodarray grown by hydrothermal decomposition [J]. Appl, Phys.Lett.,2006,89:123902-1-3.
    [64] Zhuang Z J, Su X D, Yuan H Y, et al., An improved sensitivity non-enzymatic glucosesensor based on a CuO nanowire modified Cu electrode [J]. Analyst,2008,133:126-132.
    [65] Li L M, Huang J, Wang T H, et al., An excellent enzyme biosensor based on Sb-doped SnO2nanowires [J]. Biosens. Bioelectron.,2010,25:2436-2441.
    [66] Kong T, Chen Y, Ye Y P, et al., An amperometric glucose biosensor based on theimmobilization of glucose oxidase on the ZnO nanotubes [J]. Sens. Actuators, B,2009,138:344-350.
    [67] Wang C, Wang D L, Wang Q M, Wang L, Fabrication of three-dimensional porousstructured Co3O4and its application in lithium-ion batteries [J]. Electrochim. Acta,2010,55:6420-6425.
    [68] Gong J M, Liu T, Song D D, et al., One-step fabrication of three-dimensional porouscalcium carbonate–chitosan composite film as the immobilization matrix of acetylcholinesteraseand its biosensing on pesticide [J]. Electrochem. Commun.,2009,11:1873-1876.
    [69] Lee B H, Song M Y, Jang S Y, et al., Charge Transport Characteristics of High EfficiencyDye-Sensitized Solar Cells Based on Electrospun TiO2Nanorod Photoelectrodes [J]. J. Phys.Chem. C,2009,113:21453-21457.
    [70] Bhardwaj N, Kundu S C, Electrospinning: A fascinating fiber fabrication technique [J].Biotechnol. Adv.,2010,28:325-347.
    [71] Che A F, Germain V, Cretin M, et al., Fabrication of free-standing eletrospun carbonnanofibers as efficient electrode materials for bioelectrocatalysis [J]. New J. Chem.,2011,35:2848-2853.
    [72] Tang H, Yan F, Tai Q D, Chan H L W, The improvement of glucose bioelectrocatalyticproperties of platinum electrodes modified with electrospun TiO2nanofibers [J]. Biosens.Bioelectron.,2010,25:1646-1651.
    [73] Ding Y, Wang Y, Su L, et al., Preparation and characterization of NiO-Ag nanofibers, NiOnanofibers, and porous Ag towards the development of a highly sensitive and selectivenon-enzymatic glucose sensor [J]. J.Meter. Chem.,2010,20:9918-9926.
    [74] Huang J, Wang D W, Hou H Q, You T Y, Electrospun Palladium Nanoparticle-LoadedCarbon Nanofibers and Their Electrocatalytic Activities towards Hydrogen Peroxide and NADH[J]. Adv. Funct. Mater.,2008,18:441-448.
    [75] Wang Z G, Wan L S, Liu Z M, et al., Enzyme immobilization on electrospun polymernanofibers: An overview [J]. J. Mol. Catal. B: Enzym..2009,56:189-195.
    [76] Liu Y, Teng H, Hou H Q, You T Y, Nonenzymatic glucose sensor based on renewableelectrospun Ni nanoparticle-loaded carbon nanofiber paste electrode [J]. Biosens. Bioelectron.,2009,24:3329-3334.
    [77] Cao F, Guo S, Ma H, et al., Nickel oxide microfibers immobilized onto electrode byelectrospinning and calcination for nonenzymatic glucose sensor and effect of calcinationtemperature on the performance [J]. Biosens. Bioelectron.,2011,26:2756-2760.
    [78] Ding Y, Wang Y, Su L, et al., Electrospun Co3O4nanofibers for sensitive and selectiveglucose detection [J]. Biosens. Bioelectron.,2010,26:542-548.
    [79] Liu Y, Wang D W, Xu L, et al., A novel and simple route to prepare a Pt nanoparticle-loadedcarbon nanofiber electrode for hydrogen peroxide sensing [J]. Biosens. Bioelectron.,2011,26:4585-4590.
    [80] Liu J, Niu J F, Yin L F, Jiang F., In situ encapsulation of laccase in nanofibers byelectrospinning for development of enzyme biosensors for chlorophenol monitoring [J]. Analyst,2011,136:4802-4808.
    [81] Luo Y L, Nartker S, Miller H, et al., Surface functionalization of electrospun nanofibers fordetecting E. coli O157H7and BVDV cells in a direct-charge transfer biosensor [J]. Biosens.Bioelectron.,2010,26:1612-1617.
    [82] Shankar K, Basham J I, Allam N K, et al., Recent Advances in the Use of TiO2Nanotubeand Nanowire Arrays for Oxidative Photoelectrochemistry [J]. J. Phys. Chem. C,2009,113:6327-6359.
    [83] Feng X J, Shankar K, Varghses O, et al., Vertically Aligned Single Crystal TiO2NanowireArrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis Details andApplications [J]. Nano Lett.,2008,8:3781-3786.
    [84] Yi G C, Wang C R, Park W II, ZnO nanorods: synthesis, characterization and applications[J]. Semicond. Sci. Technnol.,2005,20: S22-S34.
    [85] Wu F H, Xu J J, Tian Y., et al., Direct electrochemistry of horseradish peroxidase on TiO2nanotube arrays via seeded-growth synthesis [J]. Biosens. Bioelectron.,2008,24:198-203.
    [86] Xu J, Shang F J, Luong J H T, et al., Directelectrochemistry of horseradishperoxidaseimmobilized on a monolayer modified nanowire array electrode [J]. Biosens. Bioelectron.,2010,25:1313-1318.
    [87] Yang K, She G W, Wang H, et al., ZnO Nanotube Arrays as Biosensors for Glucose [J]. J.Phys. Chem.C,2009,113:20169-20172.
    [88] Kuang D, Brillet J, Chen P, et al., Application of Highly Ordered TiO2Nanotube Arrays inFlexible Dye-Sensitized Solar Cells [J]. ACS Nano,2008,2:1113-1116.
    [89] Liu B, Aydil E S, Growth of Oriented Single-Crystalline Rutile TiO2Nanorods onTransparent Conducting Substrates for Dye-Sensitized Solar Cells [J]. J. AM. CHEM. SOC.,2009,131:3985-3990.
    [90] She G W, Zhang X H, Shi W S, et al., Controlled synthesis of oriented single-crystal ZnOnanotube arrays on transparent conductive substrates [J]. Appl. Phys. Lett.,2008,92:053111(1-3).
    [91] Mulmudi H K, Mathews N, Dou X C, et al., Controlled growth of hematite (α-Fe2O3)nanorod array on fluorine doped tin oxide Synthesis and photoelectrochemical properties [J].Electrochem. Commun.,2011,13:951-954.
    [92] Wnek G E, Carr M E, Simpson D G, Bowlin G L, Electrospinning of Nanofiber FibrinogenStructures [J]. Nano Lett.,2003,3:213-216.
    [93] Li D, Xia Y N, Fabrication of Titania Nanofibers by Electrospinning [J]. Nano Lett.,2003,3:555-560.
    [94] Wang Y, Wang W, Song W B, et al., Binary CuO/Co3O4nanofibers for ultrafast andamplified electrochemical sensing of fructose [J]. Electronchim. Acta,2011,56:10191-10196.
    [95] Yu P, Zhu K, Norman A G, Nanocrystalline TiO2Solar Cells Sensitized with InAs QuantumDots [J]. J. Phys. Chem B,2006,110:25451-25454.
    [96] Ahn K S, Yan Y F, Shet S, et al., ZnO nanocoral structures for photoelectrochemical cells [J].Appl. Phys. Lett.,2008,93:163117(1-3).
    [97] Greene L E, Law M, Yuhas B D, Yang P D, ZnO-TiO2Core-Shell Nanorod P3HT SolarCells [J]. J. Phys. Chem C,2007,111:18451-18456.
    [98] Quintana M, Edvinsson T, Hagfeldt A, Boschloo G, Comparison of Dye-Sensitized ZnO andTiO2Solar Cells Studies of Charge Transport and Carrier Lifetime [J]. J. Phys. Chem C,2007,111:1035-1041.
    [99] Lee S H, Deshpande R, Parilla P A, et al., Crystalline WO3Nanoparticles for HighlyImproved Electrochromic Applications [J]. Adv. Mater.,2006,18:763-766.
    [100] Santato C, Ulmann M, Augustynski J, Enhanced Visible Light Conversion EfficiencyUsing Nanocrystalline WO3Films [J]. Adv. Mater.,2001,13:511-514.
    [101] Hahn N T, Mullins C B, Photoelectrochemical Performance of Nanostructured Ti-andSn-Doped α-Fe2O3Photoanodes [J]. Chem. Mater.,2010,22:6474-6482.
    [102] Cha H G, Song J, Kim H S, et al., Facile preparation of Fe2O3thin film withphotoelectrochemical properties [J]. Chem. Commun.,2011,47:2441-2443.
    [103] Hahn N T, Ye H C, Flaherty D W, et al., Reactive Ballistic Deposition of α-Fe2O3ThinFilms for Photoelectrochemical Water Oxidation [J]. ACS Nano,2010,4:1977-1986.
    [104] Zhong D K, Gamelin D R, Photoelectrochemical Water Oxidation by Cobalt Catalyst(“Co-Pi”)/α-Fe2O3Composite Photoanodes Oxygen Evolution and Resolution of a KineticBottleneck [J]. J. AM. CHEM. SOC.,2010,132:4202-4207.
    [105] Wang G, Ling Y C, Wheeler D A, et al., Facile Synthesis of Highly Photoactiveα-Fe2O3-Based Films for Water Oxidation [J]. Nano Lett.,2011,11:3503-3509.
    [106] Li L S, Yu Y H, Meng F, et al., Facile Solution Synthesis of α-FeF3·3H2O Nanowires andTheir Conversion to α-Fe2O3Nanowires for Photoelectrochemical Application [J]. Nano Lett.,2012,12:724-731.
    [107] Meng X Y, Qin G W, Wen X H, et al., Enhanced photoelectrochemical activity for Cu andTi doped hematite: The first principles calculations [J]. Appl. Phys. Lett.,2011,98:112104(1-3).
    [108] Cummings C Y, Marken F, Peter L M, et al., Kinetics and mechanism of light-drivenoxygen evolution at thin film α-Fe2O3electrodes [J]. Chem. Commun.,2012,48:2027-2029.
    [109] Cao X, Wang N, A novel non-enzymatic glucose sensor modified with Fe2O3nanowirearrays [J]. Analyst,2011,136:4241-4246.
    [110] Baeck S H, Chio K S, Jaramillo T F, et al., Enhancement of Photocatalytic andElectrochromic Properties of Electrochemically Fabricated Mesoporous WO3Thin Films [J].Adv. Mater.,2003,15:1269-1273.
    [111] Li X L, Lou T J, Sun X M, Li Y D, Highly Sensitive WO3Hollow-Sphere Gas Sensors [J].Inorg. Chem.,2004,43:5442-5449.
    [112] Piperno S, Passacantando S, Santucci S, Lozzi L, WO3nanofibers for gas sensingapplications [J]. J. Appl. Phys.,2007,101:124504-1-4.
    [113] Deng Z F, Gong Y C, Luo Y P, Tian Y, WO3nanostructures facilitate electron transfer ofenzyme Application to detection of H2O2with high selectivity [J]. Biosens. Bioelectron.,2009,24:2465-2469.
    [114] Kim I D, Hong J M, Lee B H, Kim D Y, Dye-sensitized solar cells using network structureof electrospun ZnO [J]. Appl. Phys. Lett.,2007,91:163109-1-3.
    [115] Tak Y J, Yong K J, A Novel Heterostructure of Co3O4/ZnO Nanowire Array Fabricated byPhotochemical Coating Method [J]. J. Phys. Chem. C,2008,112:74-79.
    [116] Tak Y J, Hong S J, Lee J S, Yong K J, Fabrication of ZnO/CdS core/shell nanowire arraysfor efficient solar energy conversion [J]. J. Mater. Chem.,2009,19:5945-5951.
    [117] Chio S H, Ankonina G, Youn D Y, et al., Hollow ZnO Nanofibers Fabricated UsingElectrospun Polymer Templates and Their Electronic Transport Properties [J]. ACS Nano,2009,3:2623-2631.
    [118] Lu X B, Zhang H J, Ni Y W, et al., Porous nanosheet-based ZnO microspheres for theconstruction of direct electrochemical biosensors [J]. Biosens. Bioelectron.,2008,24:93-98.
    [119] Li W Y, Xu Li N, Chen J, Co3O4Nanomaterials in Lithium-Ion Batteries and Gas Sensors[J]. Adv. Funct. Mater.,2005,15:851-857.
    [120] Choi K I, Kim H R, Kim K M, et al., C2H5OH sensing characteristics of various Co3O4nanostructures prepared by solvothermal reaction [J]. Sens. Actuators, B,2010,146:183-189.
    [121] Fan Y Q, Shao H B, Wang J M, et al., Synthesis of foam-like freestanding Co3O4nanosheets with enhanced electrochemical activities [J]. Chem. Commun.,2011,47:3469-3471.
    [122] Kanjwal M A, Sheikh F A, Barakat N A M, et al., Co3O4-ZnO hierarchical nanostructuresby electrospinning and hydrothermal methods [J]. Appl. Surf. Sci.,2011,257:7975-7981.
    [123] Na C W, Woo H S, Kim I D, Lee J H, Selective detection of NO2and C2H5OH using aCo3O4-decorated ZnO nanowire network sensor [J]. Chem. Commun.,2011,47:5148-5150.
    [124] Wang Y, Wang W, Song W B, Binary CuO/Co3O4nanofibers for ultrafast and amplifiedelectrochemical sensing of fructose [J]. Electrochim. Acta,2011,56:10191-10196.
    [125] Natile M M, Glisenti A, New NiO/Co3O4and Fe2O3/Co3O4Nanocomposite Catalysts:Synthesis and Characterization [J]. Chem. Mater,2003,15:2502-2510.
    [126] Lee J H, Gas sensors using hierarchical and hollow oxide nanostructures: Overview [J].Sens. Actuators, B,2009,140:319-336.
    [127] Xi G C, Yue B, Cao J Y, Ye J H, Fe3O4/WO3Hierarchical Core-Shell StructureHigh-Performance and Recyclable Visible-Light Photocatalysis [J]. Chem. Eur. J.,2011,17:5145-5154.
    [128] Sen S, Kanitkar P, Sharma A, et al., Growth of SnO2/W18O49nanowire hierarchicalheterostructure and their application as chemical sensor [J]. Sens. Actuators, B,2010,147:453-460.
    [129] Ostermann R, Li D, Yin Y D, et al., V2O5Nanorods on TiO2Nanofibers: A New Class ofHierarchical Nanostructures Enabled by Electrospinning and Calcination [J]. Nano Lett.,2006,6:1297-1302.
    [130] Zhang X J, Wang G F, Liu X W, et al., Different CuO Nanostructures: Synthesis,Characterization, and Applications for Glucose Sensors [J]. J. Phys. Chem. C,2008,112:16845-16849.
    [131] Li C L, Zhang S W, Lv X G, et al., An improved sensitivity nonenzymatic glucosebiosensor based on a CuxO modified electrode [J]. Biosens. Bioelectron.,2010,26:903-907.
    [132] Chen J, Zhang W D, Ye J S, Nonenzymatic electrochemical glucose sensor based onMnO2/MWNTs nanocomposite [J]. Electrochem. Commun.,2008,10:1268-1271.
    [133] Wang X, Hu C G, Liu H, et al., Synthesis of CuO nanostructures and their application fornonenzymatic glucose sensing [J]. Sens. Actuators, B,2010,144:220-225.
    [134] Meng L, Jin J, Yang G X, et al., Nonenzymatic Electrochemical Detection of GlucoseBased on Palladium-Single-Walled Carbon Nanotube Hybrid Nanostructures [J]. Anal. Chem.2009,81:7271-7280.
    [135] Yang J, Jinag L C, Zhang W D, Gunasekaran S, A highly sensitive non-enzymatic glucosesensor based on a simple two-step electrodeposition of cupric oxide (CuO) nanoparticles ontomulti-walled carbon nanotube arrays [J]. Talanta,2010,82:25-33.
    [136] Jiang L C, Zhang W D, A highly sensitive nonenzymatic glucose sensor based on CuOnanoparticles-modified carbon nanotube electrode [J]. Biosens. Bioelectron.,2010,25:1402-1407.
    [137] Chen X M, Lin Z J, Chen D J, et al., Nonenzymatic amperometric sensing of glucose byusing palladium nanoparticles supported on functional carbon nanotube [J]. Biosens.Bioelectron.,2010,25:1803-1808.
    [138] Zhang X J, Wang G F, Zhang W, et al., Fixure-reduce method for the synthesis of Cu2OMWCNTs nanocomposites and its application as enzyme-free glucose sensor [J]. Biosens.Bioelectron.,2009,24:3395-3398.
    [139] Luo S L, Su F, Liu C B, et al., A new method for fabricating a CuO/TiO2nanotube arrayselectrode and its application as a sensitive nonenzymatic glucose sensor [J]. Talanta,2011,86:157-163.
    [140] Wang W, Li Z Y, Zheng W, et al., Electrospun palladium (IV)-doped copper oxidecomposite nanofibers for non-enzymatic glucose sensors [J]. Electrochem. Commun.,2009,11:1811-1814.
    [141] Wang W, Zhang L L, Tong S F, et al., Three-dimensional network films of electrospuncopper oxide nanofibers for glucose determination [J]. Biosens. Bioelectron.,2009,25:708-714.
    [142] Lin Y H, Cui X L, Li L Y, Low-potential amperometric determination of hydrogenperoxide with a carbon paste electrode modified with nanostructured cryptomelane-typemanganese oxides [J]. Electrochem. Commun.,2005,7:166-172.
    [143] Salimi A, Hallaj R, Soltanian S, Mamkhezri H, Nanomolar detection of hydrogen peroxideon glassy carbon electrode modified with electrodeposited cobalt oxide nanoparticles [J]. Anal.Chim. Acta.,2007,594:24-31.
    [144] Jiang L C, Zhang W D, Electrodeposition of TiO2Nanoparticles on Multiwalled CarbonNanotube Arrays for Hydrogen Peroxide Sensing [J]. Electroanalysis,2009,21:988-993.
    [145] Elzanowska H, Abu-Irhayem E, Skrzynecka B, Birss V I, Hydrogen Peroxide Detection atElectrochemically and Sol-Gel Derived Ir Oxide Films [J]. Electroanalysis,2004,16:478-490.
    [146] Jia W Z, Guo M, Zheng Z, et al., Vertically Aligned CuO Nanowires Based Electrode forAmperometric Detection of Hydrogen Peroxide [J]. Electroanalysis,2008,20:2153-2157.
    [147] Prathap M A, Kaur B, Srivastave R, Hydrothermal synthesis of CuO micro-/nanostructures and their applications in the oxidative degradation of methylene blue andnon-enzymatic sensing of glucose/H2O2[J]. J. Colloid Interface Sci.,2012,370:144-154.
    [148] Cao F, Guo S, Ma H Y, et al., Highly sensitive nonenzymatic glucose sensor based onelectrospun copper oxide-doped nickel oxide composite microfibers [J]. Talanta,2011,86:214-220.
    [149] Song M J, Hwang S U, Whang D, Non-enzymatic electrochemical CuO nanoflowerssensor for hydrogen peroxide detection [J]. Talanta,2010,80:1648-1652.
    [150] Jia W Z, Wang K, Xia X H, Elimination of electrochemical interferences in glucosebiosensors [J]. TrAC, Trends Anal. Chem.,2010,29:306-318.
    [151] Wei N N, Xin X, Du J G, Li J L, A novel hydrogen peroxide biosensor based on theimmobilization of hemoglobin on three-dimensionally ordered macroporous (3DOM)gold-nanoparticle-doped titanium dioxide (GTD) film [J]. Biosens. Bioelectron.,2011,26:3602-3607.
    [152] You J M, Kim D K, Jeon S W, Electrocatalytic reduction of H2O2by Pt nanoparticlescovalently bonded to thiolated carbon nanostructures [J]. Electrochim. Acta,2012,65:288-293.
    [153] Chen K J, Pillai K C, Rick J, et al., Bimetallic PtM (M=Pd, Ir) nanoparticle decoratedmulti-walled carbon nanotube enzyme-free, mediator-less amperometric sensor for H2O2[J].Biosens. Bioelectron.,2012,33:120-127.
    [154] Ye Y P, Kong T, Yu X F, et al., Enhanced nonenzymatic hydrogen peroxide sensing withreduced graphene oxide/ferroferric oxide nanocomposites [J]. Talanta,2012,89:417-421.
    [155] Mathews N, Varghese B, Sun C, et al., Oxide nanowire networks and their electronic andoptoelectronic characteristics [J]. Nanoscale,2010,2:1984-1998.
    [156] Bai Y, Yang W W, Sun Y, Sun C Q, Enzyme-free glucose sensor based on athree-dimensional gold film electrode [J]. Sens. Actuators, B,2008,134:471-476.
    [157] Wang G L, Xu J J, Chen H Y, Fu S Z, Label-free photoelectrochemical immunoassay forα-fetoprotein detection based on TiO2/CdS hybrid [J]. Biosens. Bioelectron.,2009,25:791-796.
    [158] Wang G L, Xu J J, Chen H Y, Dopamine sensitized nanoporous TiO2film on electrodesPhotoelectrochemical sensing of NADH under visible irradiation [J]. Biosens. Bioelectron.,2009,24:2494-2498.
    [159] Hadour N, Chauvin J, Gondran C, Consnier S, Photoelectrochemical Immunosensor forLabel-Free Detection and Quantification of Anti-cholera Toxin Antibody [J]. J. AM. CHEM.SOC.,2006,128:9693-9698.
    [160] Xia Y N, Yang P D, Sun Y G, et al., One-Dimensional Nanostructures:Synthesis,Characterization,and Applications [J]. Adv. Mater.,2003,15:353-389.
    [161] Feigel I M, Vadala H, Star A, Biosensors based on one-dimensional nanostructures [J]. J.Mater. Chem.,2011,21:8940-8954.
    [162] Shankar K, Basham J I, Allam N K, et al., Recent Advances in the Use of TiO2Nanotubeand Nanowire Arrays for Oxidative Photoelectrochemistry [J]. J. Phys. Chem. C,2009,113:6327-6359.
    [163] Ozgur U, Alivov Y I, Liu C, et al., A comprehensive review of ZnO materials and devices[J]. J. Appl. Phys.,2005,98:041301-1-103.
    [164] Colodrero S, Mihi A, Haggman L, et al., Porous One-Dimensional Photonic CrystalsImprove the Power-Conversion Efficiency of Dye-Sensitized Solar Cells [J]. Adv. Mater.,2009,21:764-770.
    [165] Chen X, Ye J, Ouyang S, et al., Enhanced Incident Photon-to-Electron ConversionEfficiency of Tungsten Trioxide Photoanodes Based on3D-Photonic Crystal Design [J]. ACSNano,2011,28:4310-4318.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700