用户名: 密码: 验证码:
移动音频编解码关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
移动通信信道特性多变、传输带宽受限、移动终端的计算和存储资源相对有限,这一系列问题对传统音频编解码技术提出了新的挑战,面向移动网络的音频编解码技术已经成为数字音频通信领域一个新的热点研究方向。移动音频编码可以适应移动通信这种特殊的应用背景,在不同质量、速率、复杂度下解码,因而被视为移动网络环境下一种很有前景的音频频编码方法。本文在国家自然科学基金重点项目“移动音频编解码基础理论与关键技术”的资助下,从提高编码效率和质量、降低计算资源两方面入手,对量化、带宽扩展、语音/音乐混合编码等移动音频编解码中的核心关键技术进行了深入的研究,期望通过本论文的研究能够部分解决移动音频编解码技术在移动音频应用中存在的技术瓶颈。具体来讲,本论文的主要研究成果如下:
     1.论文研究了线性预测系数量化、长时预测等关键技术,实现了离散余弦变换(DCT)快速算法,并结合预加重、宽带感知加权和格型矢量量化技术,在传统的单一模式的语音/音频混合编码框架TCX基础上,将语音编码中的线性预测技术和音频编码中的变换和量化技术相结合,创新性的提出了一种新的移动语音/音频混合编码算法框架—改进的变换编码激励(MTCX),实现了对语音/音乐等复杂信号的编码。在MTCX算法框架中,导谱频率系数量化和长时预测编码是其中两个关键性的技术,决定了算法框架的压缩效率和重建的主观质量。针对这两个问题,本文进行了如下的研究:
     (1)导谱频率系数量化:导谱频率系数帧间相关性有差异,传统的导谱频率系数量化方法忽略了这种差异,采用统一的预测系数去除帧间相关,这增加了预测残差的动态变化范围,降低了量化性能。针对这一问题,论文将分类矢量量化的思想引入导谱频率系数的量化中,提出了导谱频率系数的双预测混合矢量量化算法及联合码本设计方法。算法对不同的帧间相关性选用不同的预测系数去除帧间相关,这可以有效的减少预测残差的动态变化范围,提高量化性能。实验结果表明该算法的平均谱失真较最新的AMR-WB+标准中的导谱频率系数混合矢量量化算法低0.1dB。
     (2)长时预测:宽带信号高频部分的谐波强弱特性有差异,传统长时预测算法不加选择的将长时预测激励信号的低频谐波结构扩展到高频,这导致了错误的预测匹配,降低了预测性能。针对上述问题,本文研究了长时预测激励搜索模型,模型基于频段波形相关估计宽带信号的高频谐波性强弱,然后根据估计的结果选择相应的滤波器算法计算最优的长时预测激励信号。算法模型解决了宽带语音频编码中长时预测激励错误匹配的问题。实验结果表明,该算法能够将编码的信噪比提高0.2~0.5dB,性能优于AMR-WB+中的多路选择宽带长时预测激励选择算法,并且运算复杂度降低了50%。
     2.带宽扩展算法能够显著的提高信号压缩效率,从理论上估计带宽扩展算法可以在编码质量不变的前提下,使编码的码率降低一半。但是现有带宽扩展算法提取的高频信息参数较多、编码的码率和运算复杂度较高。论文基于人耳无法分辨高频信号频谱精细结构,仅能感知高频信号频谱包络和能量的这一人耳感知特性,结合带宽扩展的基本原理,研究了基于频谱包络调整和能量修正的低运算复杂度和码率的感知带宽扩展算法,算法仅仅提取人耳感知重要的高频谱包络参数和能量参数,这可以有效降低编码的码率和运算复杂度。针对传统带宽扩展算法中高频重建频谱平滑这一难题,论文提出了一种无需额外编码比特数的合成滤波器零冲击响应匹配算法,较好的解决了对重建高频信号进行频谱平滑的问题。实验结果表明论文提出的算法在0.8kbps的编码码率下可以实现带宽扩展,并且重建音频信号的高频频谱连贯、保持了原始信号的基本谱特征,主观听觉良好。
     3.格型矢量量化具有低运算复杂度、低存储空间和高量化精度的优点,已成为当前音频编解码领域最重要的量化技术之一。但在中低码率下,现有的格型矢量量化技术不具备逐级精细量化特性,难以避免移动环境下网络带宽波动造成重建音频质量严重下降的影响。论文将格矢量量化、Voronoi胞腔可分级扩展结合起来,创新性的提出了一种基于Voronoi胞腔多级细分的可分级格型矢量量化算法,重点突破了中低码率环境下逐级精细量化的技术瓶颈,实现了可分级格型矢量量化,既为解决格型矢量量化中局外点难题提供新思路,也可以通过逐级量化技术建立量化质量的精度控制机制。实验结果表明可分级量化算法在量化性能在与AMR-WB+标准中的格型矢量量化算法相当的情况下,可以实现逐级精细量化,量化分层粒度可以达到8比特/层。
     本文在理论、方法和应用等多个层面对移动音频编解码中的关键技术进行了研究,研究成果和研究方法对其它音频编解码方法有着重要的借鉴意义。论文的最后对研究工作进行了回顾,指出了一些有待进一步研究的问题。
The changeable and limited bandwidth and limited computing and storage resources have brought new challenges to mobile audio compression. This thesis made researches on the bandwidth extension, speech/audio hybrid coding, and lattice vector quantization.
     1. This thesis first proposed a single mode of speech/audio coding schemes -Modified Transform Coding Excitation (MTCX), which solved the problem of complex audio signal compression. Then the quantization of Immittance Spectral Frequencies (ISF) and long prediction coding were studied.
     (1) Taking into account the Inter and Intra frame correlation of ISF coefficients, this thesis proposed a new switched dual prediction mixed vector quantization algorithm.
     Based on the the multi-stage and split vector quantization, two predictive coefficients for strong and weak correlation of ISF parameters were used respectively to reduce correlation of ISF parameters. The experimental results showed that the algorithm performance was better than that of mixed vector quantization scheme of AMR-WB+ standard.
     (2) Harmonic components would be extended to the high frequency of the long-term prediction excitation signal without selection. However, if the harmonic character of high-frequency signal was not strong, such non-selective extension would reduce the performance of long term prediction algorithm. The Inter-band Waveform Cross-Correlation based Adaptive long term prediction search algorithm was proposed. Correspond to the long term excitation signal, the correlation between the high-frequency part of long term excitation signal and the predictive error signal was calculated, and in accordance with relevant result to determine whether the long term excitation signal should be filtered by a low pass filter to filtering out potential non-cyclical high-frequency harmonic components. Experimental results show that the algorithm can effectively improve the segment SNR, and compared to the traditional multi-path choice algorithm adopted by AMR-WB+ standard, the proposed algorithm had less computational complexity and better performance.
     2. Bandwidth extension could significantly improve the compression efficiency, which could reduce an half coding bit-rate under the premise of the same quality. Based on the human ear perceptual character that human ears could not keep up with the changes and distinguish the fine structure of the spectrum but can only sense the energy spectrum envelope and the perception of high-frequency signal, a perceptual bandwidth extension algorithm was studied. The algorithm only extracted the energy gain and spectrum envelope parameters, which were important parameters for the perception of high frequency reconstruction. It is difficult to smooth the high-frequency reconstructed spectrum in traditional bandwidth extension algorithms. A synthesis filter zero impulse response matching algorithm was studied which usesd no additional bits to resolve the problem of smoothing the reconstruction signal spectrum. The experimental results showed that the algorithm had an advantage of a higher compression ratio (encoding bit rate 0.8 kbps) and the good quality.
     3. Lattice vector quantization with low computational complexity, low storage and higher quantization accuracy was a key technology in mobile audio coding. However, the traditional lattice vector quantization algorithm would cause large quantization error for outsides under low bit rate. To address this problem, this thesis proposed a scalable Voronoi lattice vector quantization algorithm. The quantization algorithm composed of two steps:the first was to scale the basic codebook and quantize the input vector with the scaled basic codebook vector, and the second was to use a series of Voronoi Vectors to quantize error of the first step. The series of Voronoi Vectors came from the extension Voronoi codebooks by expanding the one order Voronoi codebook step by step. The quantization algorithm not only addressed the lattice vector quantization problem for the outside. Experimental results show that the quantization performance of the proposed algorithm corresponded to that of variable rate lattice vector quantization technology of AMR-WB+ standard, and had less storage space.
     Finally, this paper summarized the research achievement and looked into the future research content.
引文
[1]Varga.I. Audio codec for mobile multimedia applications, Multimedia Signal Processing,2004 IEEE 6th Workshop on,29 Sept.-1 Oct.2004, pp:450-453
    [2]M.R.Schroeder, B.S.Atal. Code Excited Linear Predication (CELP) High Quality Speech at very Low
    Bit rates. Proceedings of IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP),pp 23-30,1985.
    [3]N.Jayant, J.Johnston and R.safranek. Signal Compression based on Models of Human Perception. Proc of the IEEE, Vol.81, No.10, October 1993, pp.1385-1422
    [4]K.Brandenburg, N.Gilchrist and C.Grewin. Introduction to perceptual coding. In Collected Papers on Digital Audio Bit-Rate Reduction,1996, pp.375-379
    [5]Ted Painter, Andreas Spanias. Perceptual Coding of Digital Audio. Proceedings of the IEEE, Vol.88, No.4, April,2000, pp.225-256
    [6]RuiMin Hu, Yong Zhang, Haojun Ai, "Digital Audio Compression Technology and AVS Audio Standard Research", International Symposium on Intelligent Signal Processing and Communication Systems, HongKong, Dec 2005.
    [7]胡瑞敏,张勇.AVS-M移动音频编码技术的研究及应用.电声技术,Vol.7,2007,pp.65-70
    [8]Rong-Yu Qiao. Mixed wideband Speech and Music Coding Using a speech/Music Discriminator. IEEE TENCON-Speech and Image Technologies for Computing and Telecommunications,1997, 605-608
    [9]L.Trancerel, S.Ragot, V.T.Ruoppila, and R.Lefebvre, Combined Speech and Audio Coding by Discrimination. IEEE Workshop on speech, Delevan, September,2000,158-160
    [10]S.A.Ramprashad, A two-stage hybrid embedded speech/audio coding structure, IEEE Int. Conf. Acoustics, Speech, Signal processing, May,1998,251-254
    [11]S.A.Ramprashad, Embedded coding using a mixed speech and audio coding paradigm, Int. J.Speech Technol. Special Issue Speech Coding, vol.2, no.4,1999,359-372
    [12]Kyung Tae Kim, Sung Kyo Jung.et.al A New Scalable wideband speech/audio coder. IEEE Int. Conf. Acoustics, Speech, Signal processing, May,2001,320-323
    [13]B.Bessette, R. Lefebvre, and R.Salami. Universal speech/audio coding using hybrid ACELP/TCX techniques. Proc. IEEE Internation Conference on Acoustics Speech and Signal Processing (ICASSP), 2005
    [14]Guillaune Fuchs, Roch Lefebvre. A Scalable CELP/Transform Coder for Low Bit Rate Speech and Audio Coding. Journal of Audio Engineering Society, pp 80-89, May.2006
    [15]Sean A. Ramprashad. The Transform Predictive Coding. IEEE Transactions on speech and audio processing, Vol 20 No 2, Jan 2001.193-198
    [16]Sean A. Ramprashad, The Multimode Transform Predictive Coding Paradigm, IEEE Transcations on Speech and Audio Processing, Vol.11, No2, March,2003,332-338
    [17]R.Lefebvre, R.Salami, C.Laflamme. High quality coding of wideband audio signals using transform coded excitation (TCX). In IEEE Int. Conf. Acoustics, Speech, Signal Processing,1994, pp193-196
    [18]S.Ragot, B.Bessette, R.Lefebvre. Low-complexity multi-rate lattice vector quantization with application to wideband TCX speech coding at 32kbps. Proceedings of IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp 501-504,2004.
    [19]E.Larsen and R.M.Aarts. Audio Bandwidth Extension-application to Psychoacoustics, Signal Processing and Loudspeaker Design. John Wiley & Sons, Ltd,2004.
    [20]Y.M.Cheng, D.O.Shaughnessy, P.Mermelstein. Statistical Recovery of Wideband Speech from Narrowband Speech. IEEE Transactions on Speech and Audio Processing, Vol.2, No.4, pp 544-548, 1994.
    [21]C.Avendano, H.Hermansky, Eric A.Wan. Beyond Nyquist:Towards the recovery of broad-bandwidth speech from narrow bandwidth speech. Proceedings of EUROSPEECH, pp 165-168,1995.
    [22]N.Enbom, W.B.Klenijn. Bandwidth expansion of speech based on Vector Quantization of the Mel Frequency Cepstral Coefficients. Proceedings of IEEE Workshop on Speech Coding, pp 171-173, 1999.
    [23]K.Y.Park, H.S.Kim. Narrowband to Wideband Conversion of speech Using GMM based Transformation. Proceedings of IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp 1843-1846,2000.
    [24]M.Dietz, L.Liljeryd, O.Kunz. Spectral Band Replication, a novel approach in audio coding. Proceedings of AES 112th Convention,2002.
    [25]党辰,戴葵等.高频重建技术SBR的研究与实现.电子学报,Vol.32,No.12,pp 189-191,2004.
    [26]ISO/IEC, JTC1/SC29/WG11 MPEG, WD Text for Backward Compatible Bandwidth Extension for General Audio Coding. March 2002
    [27]刘嘉(?),刘佩林,孙军.频谱恢复技术综述.电声技术,No.2,pp 46-50,2006.
    [28]J.Seo, D.Jang, K.Kang. A simple Method for Reproducing High Frequency Components at Low-Bit Rate Audio Coding. Proceedings of AES 112th Convention,2002.
    [29]B.Geiser, PJax, et al. Bandwidth Extension for Hierarchical Speech and Audio Coding in ITU-T Rec. G.729.1. IEEE Transactions on Audio, Speech and Language Processing, Vol.15, No.8, pp 2496-2509, 2007.
    [30]郎玥,赵胜辉,匡镜明.基于矢量量化的语音信号频带扩展.北京理工大学学报,Vol.25,No.3,pp 260-264,2005.
    [31]窦庚欣,鲍长春.一种基于矢量量化的语音信号频带扩展方法.信号处理,Vol.21,No.4A,pp152-155,2005.
    [32]陈善荣,胡剑荣,徐盛.利用一种新的谱扩展技术提高窄带语音质量.电声技术,Vol.4,pp 35-38,2004
    [33]R.M.Aarts, E.Larsen and O.Ouweltjes. A unified approach to low- and high- frequency bandwidth extension. In AES 115th Convention, New York, pp 1123-1130, October,2003.
    [34]孙圣和,陆哲明.矢量量化技术及应用.科学出版社,2002.5,pp:182-188
    [35]N.J.A.Sloane. Binary Codes, Lattices and Sphere-Packings. Proceedings of the Sixth British Combinatorial Conference, (P.J.Cameron eds), Academic Press, pp 117-164,1977.
    [36]J.H.Conway, N.J.A.Sloane. Fast Quantizing and Decoding Algorithms for Lattice Quantizers and Codes. IEEE Transactions on Information Theory, Vol.28, No.2, pp 227-232,1982.
    [37]H.Brehm, MHerbert. Lattice Quantizers in speech coding. Proceedings of IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp 375-379,1989.
    [38]3rd generation partnership project, Technical specification group services and system aspects; Audio codec processing function; Extended Adaptive Multi-Rate -Wideband (AMR-WB+) codec; Transcoding function (Release 6), Technical Specification TS 26.290,3rd Generation Partnership Project (3GPP), March 2005
    [39]D.GJeong, et al. Uniform and piecewise uniform lattice vector quantization for memoryless Gaussian and Laplacian sources. IEEE Transactions on Information Theory, Vol.39, No.3, pp 786-804,1993.
    [40]Subramaniam. Low-complexity source coding using Gaussian mixture models, lattice vector quantization, and recursive coding with application to speech spectrum quantization. IEEE Transactions on Audio, Speech, and Language Processing, Vol.14, No.2, pp 524-532,2006.
    [41]M.Xie, J.PAdoul. Embedded algebraic vector quantization (EAVQ) with application to wideband audio coding. Proceedings of IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp 240-243,1996.
    [42]J.Makinen et al. AMR-WB+:a new audio coding standard for 3rd generation mobile audio services. IEEE Int. Conf. on Acoustics Speech and Signal Processing, pp 1109-1112, Mar.2005.
    [43]贺玉成.格及其编码和译码.西安电子科技大学学报,Vol.17,No.1,pp 70-78,1990.
    [44]薛向阳,樊昌信等.一种基于双正交小波变换和格型矢量量化的视频编码算法.通信学报,Vol.17,No.1,pp 56-62,1996.
    [45]王祥林,林行刚,吴国威.采用格形矢量量化的小波图象编码方法.清华大学学报(自然科学版),Vol.37,No.10,pp 69-71,1997.
    [46]刘九芬,黄达人等.基于金字塔格型矢量量化(PLVQ)的多尺度图像编码.浙江大学学报(理学版),Vol.27,No.2,pp 152-158,2000.
    [47]邱锋海.低速率混合激励语音编码算法研究.中国科学院数学与系统科学研究所,硕士论文,pp36-52,2001.
    [48]潘旭遥,宋国新.LSF标量格型混合量化.华东理工大学学报(自然科学版),Vol.32,No.9, pp1086-1090,2006.
    [49]A.Spanias. Speech coding:A tutorial review. Proc IEEE, vol.82, pp 1541-1582, Oct.1994
    [50]Bao Changchun, et al. A review of Speech Coding. Journal of China Institute of Communications, Vol.19, pp 45-56,1998
    [51]E.Zwicker and U.Zwicker. Audio engineering and psychoacoustics—Matching signal to the final receiver, the human auditory system. Journal of Audio Engineering Society, pp 115-126, March,1991
    [52]N.Jayant, J.D.Johnston and R.Sfranek. Signal compression based on models of human perception. Proc.IEEE, vol.81, pp 1385-1422, Oct.1993.
    [53]J.Johnston. Estimation of perceptual entropy using noise masking criteria. In IEEE Int. Conf. Acoustics, Speech, Signal Processing, pp 2524-2527, May,1988
    [54]K.Brandenburg. Perceptual coding of high quality digital audio. In Application of Digital Signal Processing to Audio and Acoustics, Boston,MA:Kluwer Academic,1998
    [55]P.Craven and M.Gerzon. Lossless coding for audio discs. Journal of Engineering Society, pp 706-720, Sept,1996
    [56]Crochiere.R.E. On the Design of Subbands coders for Low-Bit-Rate Speech Communication. Bell Syst. Tech. Journal.56, pp 747-770,1977
    [57]Y.F.Dehery, M.Lever, P.Urcun. A MUSICAM source codec for digital audio broadcasting and storage. In IEEE Int. Conf. Acoustics, Speech, Signal Processing, pp 3605-3608, May,1991
    [58]J.B.Rault, P.Philippe, M.Lever. MUSICAM (ISO/MPEG audio) very low bit-rate coding at reduced sampling frequency.in Proc.95th Convention Audio Engineering Society, preprint 3741, Oct.1993
    [59]E.F.Schroder and W.Voessing. High quality digital audio encoding with 3 bit/sample using adaptive transform coding. In Proc.80th Convention Audio Engineering Society, preprint 2321, March 1986
    [60]GTheile, GStoll, M.Link. Low-bitrate coding of high quality audio signals. In Proc,82nd Convention Audio Engineering Society, March 1987
    [61]K.Brandenburg. OCF—A new coding algorithm for high quality sound signals. In IEEE Int. Conf. Acoustics, Speech, Signal Processing, pp 511-514, May,1987
    [62]James.D.Johnston. Transform Coding of Audio Signals Using Perceptual Noise criteria. IEEE Joutnal on Selected Areas in Communications, Vo 16, No 2, pp 314-323, Feb.1988
    [63]YMahieux, J.Petit. Transform Coding of Audio Signals at 64 kbits/sec. In Proc. Globecom pp 40521-40525, Nov.1990.
    [64]K.Brandenburg, J.Herre, J.D.Johnston, Y.Mahieux, E.Schroeder. ASPEC:Adaptive spectral entropy coding of high quality music signals. In Proc. Convention of Audio Engineering Society, preprint 3011, Feb.1991
    [65]M. R. Schroeder, B. S. Atal and J. L. Hall. Optimizing digital speech coders by exploiting masking properties of the human ear. J. Acoust. Soc. Am.66, No. (6), pp 1647-1652,1979.
    [66]J.Makel. Linear Prediction:A Tutorial Review. Proc. IEEE, Vol.63, pp 561-580,1975
    [67]A.Ferrerira. Convolutional effects in transform coding with TDAC:An optimal window. IEEE Trans. Speech and Audio Processing, Vol.4, pp 104-114, Mar,1996
    [68]Bistritz, Y.Peller. Immittance spectral pairs (ISP) for speech encoding. In IEEE Int. Conf.Acoustics, Speech, Signal Processing, pp 9-12,1993
    [69]So.S, Paliwal, K.K. Empirical Lower Bound on the Bitrate for the Transparent Memoryless Coding of Wideband LPC Parameters. IEEE Signal Processing Letters, Volume 13, Issue 9, pp 569-572, Sept. 2006
    [70]3rd generation partnership project, Technical specification group services and system aspects; Speech codec speech processing function; AMR Wideband speech codec; Transcoding function (Release 6), Technical Specification TS 26.190,3rd Generation Partnership Project (3GPP), Dec 2001
    [71]Stephen So, Kuldip K.Paliwal. A comparative study of LPC parameter representations and quantisation schemes for wideband speech coding. Digital Signal Processing, Elsevier, Vol.17, pp 114-137,2007
    [72]K.Paliwal and B.Atal. Efficient Vector Quantization of LPC Parameter at 24 Bits/Frame. IEEE Trans. On Speech and Audio Processing, Vol.1, No.1, pp 3-14,1993
    [73]W.R.Gardner, B.D.Dao. Theoretical Analysis of the High-Rate Vector Quatization of LPC Parameters. IEEE Trans, on Speech and Audio Processing, Vol.3, No.5, pp 367-381,1995
    [74]N.Sugamura, N.farvardin. Quantizer Design in LSP Speech Analysis-Synthesis. IEEE Journal on Selected Areas in Communications, Vol.6(2):pp 432-440,1988
    [75]S.So, K.K.Paliwal. Efficient vector quantisation of line spectral frequencies using the switched split vector quantiser, Digital Signal Processing, Elsevier, Vol.17, pp 133-166,2004
    [76]H.Ohmuro, T.Moriya et al. Coding of LSP Parameters using Interframe Moving Average Prediction and Multi-Stage Vector Quantization. Proceedings of IEEE Workshop on Speech Coding, pp 63-64, 1993
    [77]李靓,鲍长春,白燕宁,一种高效、低存储的线谱频率参数矢量量化器件,北京工业大学学报,Vol.31,No 2:pp 130-135,2005
    [78]周高洪,唐昆,崔慧娟,一种增强的LPC参数多级矢量量化技术,电子技术应用,pp 49-51,2005
    [79]鲍长春,卓力,王永会.LSF参数的模拟退火连接分裂矢量量化.电子学报,Vol.29,No 1.pp127-129.2001
    [80]鲍长春,樊昌信,王都生,线谱频率参数的分裂矢量量化,电子科学学刊,Vol.20,No 4.pp 508-513,1998
    [81]W.P.LeBlanc, B.Bhattacharya, S.A.Mahamoud, V.Cuperman. Efficient search and design procedures for robust multi-stage VQ for LPC parameter for 4kb/s speech coding. IEEE Trans. Speech and Audio Processing, Vol.1 (4). pp 373-385,1993 [82] Bhattacharya B, Leblanc.W.P, Mahmoud.S.A, et al. Tree search multi-stage vector quantization of LPC parameter for 4kb/s speech coding. IEEE ICASSP, Vo3.1, No.l, pp 13-16,1992 [83] M.Vssnsnen. Long term predictor for transform domain perceptual audio coding. In Proc.107th, Audio Engineering Society Convention, preprint 5036, Sept 1999
    [841 Y.Takamizawa. An efficient tonal component coding algorithm for MPEG-2 audio NBC. In Proc. Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP), pp 331-334,1997
    [85]Voiceage Corporation, EP1125276B1:A method and device for adaptive bandwidth pitch searching in coding wideband signals.2003:Canada
    [86]E.Larsen and R.M.Aarts. Audio Bandwidth Extension-application to Psychoacoustics, Signal Processing and Loudspeaker Design. John Wiley & Sons, Ltd,2004.
    [87]Julien Epps. Wideband Extension of Narrowband Speech for Enhancement and Coding. The thesie of Doctor Degree. The University of New South Wales, Sept 2000, pp 85-96
    [88]C.Avendano, H.Hermansky and E.A.Wan, "Beyond Nyquist:Towards the recovery of Broad-bandwidth speech from Narrow-bandwidth speech", In proceedings of European Conference on Speech Communication and Technology, Madrid,1995
    [89]M.Hosoki and T.Nagai and A.Kurematsu, "Speech Signal Bandwidth Extension and Noise Removal Using Subband HMM", In IEEE ICASSP, pp245-248,2002
    [90]N.Enbom and W.B.Klenijn, "Bandwidth expansion of speech based on Vector Quantization of the Mel Frequency Cepstral Coefficients", In IEEE Workshop on Speech Coding, Finland, pp 171-173,1999
    [91]Laura Kallio, "Artificial bandwidth expansion of narrowband speech in Mobile Communication systems", Master's Thesis, Helsinki, Dec 9,2002, pp 54-86
    [92]Chi-Min Liu, Wen-Chieh Lee, Han-Wen Hsu, High Frequency reconstruction by linear extrapolation. Audio Engineering Society, Convention Paper 5968, Oct,2003
    [93]Ronald M.Aarts, Erik Larsen, Okke Ouweltjes. A unified approach to low- and high- frequency bandwidth extension. Audio Engineering Society, Convention Paper 5921, Oct,2003
    [94]VLSI solution, "PlusV Specification",2005, pp10-37
    [95]白晓亮,胡剑凌,徐盛.基于最小熵的音频信号高频重建.电声技术,2004,Vol.2,pp37-40
    [96]AVS音频工作组,AVS音频内部主观听力测试参考规范,2005
    [97]C.Lamblin and J.-P.Adoul. Spherical vector quantization algorithm based on an eight dimensional gosset lattice. Annales des Telecommunications, Vol.43, pp 172-186,1988
    [98]J.H.Conway, N.J.A.Solane. Voronoi Regions of Lattices, Second Moments of Polytopes and Quantization. IEEE Transcations on Theory, Vol.28, pp 211-226, March 1982
    [99]J.H.Conway, N.J.A.Solane. On the Voronoi Regions of Certain Lattices. SIAM Journal of Alg.Disc, Ath,1983, pp 137-152
    [100]P.Rault and C.Guillemot. Indexing algorithm for Zn,An,Dn and Dn++lattice vector quantizers. IEEE Transactions on Multimedia, Vol.3 (4):pp 372-378,2002
    [101]李弼程,郑勇,沙基昌,周铁强,罗建书.关于塔式网络矢量量化中格点的标号.国防科技大学学报.Vol.19,No.6,pp 86-91,1997.
    [102]李静,赵耀.基于格型矢量量化的分布式信源编码研究.硕士学位论文,北京交通大学,2007年3月.pp 46-55
    [103]J.Pieter, M.Schalkwijk. An Algorithm for Source Coding. IEEE Transcations on Information Theory, Vol.18, No.3, pp 395-399, May 1972
    [104]GDavid Forney, JR. Coset Codes—Part Ⅰ:Introduction and Geometrical Classification. IEEE Transcation on Theory, Vol.34, No.5, pp 1123-1151, Sept,1988
    [105]GDavid Forney, JR. Coset Codes—Part Ⅱ:Binary Lattices and Related Codes. IEEE Transcation on Theory, Vol.34, No.5, pp 1152-1187, Sept,1988
    [106]GDavid Forney. Multidimensional Constellations—Part Ⅱ:Voronoi Constellations. IEEE Trans. Select.Areas in Commun, Vol.7, no.6, pp 941-958, Aug.1989
    [107]李彩容,胡瑞敏.MPEG-1 layer 3解码在VFAST DSP芯片上的实现.硕士学位论文,武汉大学,2004,pp30-37
    [108]杨行俊,迟惠生.语音信号数字处理.电子工业出版社,1995,pp7-8
    [109]王柄锡,王洪编著.变速率语音编码.西安电子科技大学,2004,pp51-52
    [110]鲍长春.数字语音编码原理.2007,pp172-178
    [111]马鸿飞.低速率高保真音频编码算法研究.博士学位论文,西安电子科技大学,1998,pp20-21

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700