用户名: 密码: 验证码:
煤热解过程多环芳烃生成规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤利用过程产生的环境污染已经成为煤洁净转化的重要议题,其中煤热加工过程排放的有机污染物特别是多环芳烃(PAHs)类物质,由于其具有“三致”作用,更是近年来关注的热点。煤炭作为世界特别是中国的主要能源,在使用过程中释放出许多此类污染物,使得研究煤的利用过程中PAHs排放具有重要的理论和社会意义。
     热解是煤热转化的最基本过程,无论是燃烧、干馏、气化还是液化,都有煤的热解作为其初始和伴随反应,并对后续转化产生重要影响,所以本课题重点是对煤热解过程中多环芳烃排放规律的研究。
     本文在充分研究煤的热解机理及影响因素的基础上,对煤热解过程中PAHs生成与排放规律进行了研究。为了避免先用溶剂吸收再分析的传统分析方法中带来的误差,采用了快速热解在线分析方法。快速升温热解仪升温速率最大可达到2×104℃/s,可以进行同一煤样不同热解温度段产生多环芳烃的在线分析。实验收集了国内16种不同变质程度的煤样进行热解,对热解过程中PAHs生成排放从内因和外因两个方面进行了研究。内因主要有挥发份含量、碳含量、氧含量、硫含量、灰分以及煤岩组成;外在因素主要指热解温度和升温速率的影响。得到的主要结论有:煤种对煤热解过程中PAHs的排放影响很大,随着煤中挥发份的提高,PAHs排放量先增大后减少,在高挥发性烟煤阶段生成量最大;随碳含量增加PAHs生成量先增大后减少,烟煤生成量最大;煤中矿物质对PAHs生成有促进作用,随着煤中灰份含量的增大热解生成PAHs量增大;煤中所含的氧和硫含量对PAHs生成也有不同影响;煤岩组成对PAHs热解过程有着重要影响,实验表明煤中惰质组含量越高热解生成PAHs量越大;随热解温度增加,PAHs生成量先增大后减少在800℃出现最大值,PAHs环数分布也随之变化,2~3环PAHs在800℃下生成量最大;4环PAHs在600℃下最高;5~6环PAHs在高温下含量最高;自由基芳构化反应主要在600~800℃下进行,高温下主要发生了缩合反应;随升温速率增加PAHs生成量减少;煤热解PAHs生成来源有煤自身芳烃结构挥发及热解生成自由基高温聚合,且热解过程PAHs主要来自于自由基高温合成而不是煤自身所含芳烃结构。
The environment problems caused by coal utilization have been paid widespread attention. It is very necessary to do some research on the formation, emission and control of PAHs during coal utilization,because trace PAHs is widely distributed , is generally difficult to decompose, is harmful with biological accumulation and three-cause tardy effects including carcinogenesis,aberration, mutation.
     Pyrolysis research, in particular, has gained considerable momentum because of its close connection to combustion,gasification and liquefaction.The results of scientific investigations of coal pyrolysis are the indispensable basis for technology in almost all areas of coal utilization. So the present paper focus on the emission of PAHs from coal pyrolysis.
     This study was carried out based on the full understanding of the coal pyrolysis process. In order to avoid the error that caused by isolation of particles on filters with subsequent analysis performed, the experiment used flash pyrolysis and Real-time analysis. The pyrolyzer can reach a heating rate as fast as 2×104℃/s and could pyrolyze the same sample at different temperature. PAHs emitted from 16 kinds of different rank Chinese coals during pyrolysis were studied from the internal factors and external factors. The internal factors contains volatile content, carbon content, oxygen content, sulfur content, ash content and maceral. The external factors contain temperature and heating rate. The results show that: the coal type has a remarkable influence on PAHs emission and the high volatile bituminous emit the most PAHs at the same pyrolysis condition. The emission of total PAHs increase with ash content increased. The oxygen and sulfur content has influence on PAHs emission. Maceral components of coal have influence on PAHs emission too, the higher of inertinite content in coal the more PAHs emited. Temperature is an important parameter in coal pyrolysis and with temperatre increased it shows a single peak at 800℃. The PAHs emission decreases with heating rate increasing.
引文
[1] BP Statistical.Review of world Energy.June 2009,32.
    [2]陈文颖,吴宗鑫.用MARKAL模型研究中国未来可持续能源发展战略[J].清华大学学报(自然科学版),2001,41(12):103-106.
    [3]尹雪峰.燃烧过程中多环芳烃和二恶英的关联机理及在线监测初步研究[D].浙江:浙江大学,2007.
    [4]谢克昌.煤的结构与反应性[M].北京:科学出版社,2002:210-215.
    [5]虞继舜.煤化学[M].北京:冶金工业出版社,2000:172-177.
    [6]许世森,张东亮,任永强.大规模煤气化技术[M].北京:化学工艺出版社,2006:2-4.
    [7] A.Arenillas,F.Rubiera,J.J.Pis,etc . Thermal behaviour during the pyrolysis of low rank perhydrous coals[J].Journal of Analytical and Applied Pyrolysis,2003,69(8):371-385.
    [8] H.Hu,Q.Zhou,S Zhu etc.Product distribution and sulfur behavior in coal pyrolysis[J].Fuel Process Technol,2004,85(8-10):849-861.
    [9] Y Zhuo,L.Lemaignen,I.N.Chatzakis etc.Attempt to correlate conversions in pyrolysis and gasification with FT-IR spectra of coals[J].Energy﹠Fuels,2000,14(5):1049-1058.
    [10] R.Alvarez,J.J.Pis,M A.Diez,etc.Studies on generation of excessive coking pressure, 1.Semicoke contraction versus thermoplastic properties of coals[J].Energy&Fuels,1997,11(5):978-981.
    [11] M.V Kok,E.Ozbas,O.Karacan.Effect of particle size on coal pyrolysis[J].Journal of Analytical and Applied Pyrolysis,1998,5(2):103-110.
    [12]徐建国,魏兆龙.用热分析法研究煤的热解特性[J].燃烧科学与技术,1999,5(2):175-179.
    [13] A.B Fuertes,J.J Pis,A.J.Perez,etc.Kinetic study of the reaction of a metallurgical coke with CO2[J].Solid State lonics,1990,38(1-2):75-80.
    [14] M.A.Telfer,C.A.Heidenreich,D.K.Zhang.Effect of particle size and heating rate on the transformation of sulphur during pyrolysis of a South Australian low-rank coal[J]. Developments in Chemical Engineering and Mineral Processing,1 999,7(3):409-426.
    [15] W.Wanzl,D.Bittner.Experiments on pyrolysis behaviour of different coals[J].Fuel
    [47] Wang H,Frenklach M.A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames[J].Combustion and Flame,1997,110:173-221.
    [48] J.Thomas Mckinnon , Eleanor Meyer , Jack B. Howard.Infrared Analysis of Flame-Generated PAH Samples[J].Combustion and Flame,1996,105:161-166.
    [49] Stephen J.Harris,AnitaM.Weinerand,Richard J.Blini.Kinetic and Thermodynamic issues in the formation of aromatic compounds in flames of aliphatic fuels[J].Combustion and Flame,1988,72:91-109.
    [50]晏蓉,原煤及燃后飞灰抽提液中有机物污染物的研究,全国高等学校工程热物理研究会第六届学术会议论文集,武汉,1996,427-430.
    [51] Z.B. Zhao,K.L. Liu,W. Xie etc. Soluble Polycyelic aromatic hydrocarbons in raw coals[J].Journal of Hazardous Materials,2000,B73:77-85.
    [52] L.L. Sloss,I.M. Smith.Organic compounds from coal utilisation,IEACR/63,IEA Coal Research,London,1993.
    [53]李晓东,姚艳,严建华等.中国部分煤种二氯甲烷萃取液中极性和烃类有机物分布特性研究[J].燃料化学学报,2002,30(6):529-534.
    [54]刘振学,魏贤勇,宗志敏.东胜煤有机溶剂分级萃取物的GC/MS分析研究[J].煤炭转化,2003,26(1):37-40.
    [55]姚艳,严建华,陆胜勇等.原煤中多环芳烃含量特性的初步研究[J].热力发电,2003,4:5-8.
    [56]晏蓉.原煤二氯甲烷浸取液中多环芳烃分布特征[J].中国环境监测,1996,12(2):5-7.
    [57]傅钢.煤燃烧过程中多环芳烃类有机污染物排放特性的研究[D].浙江,浙江大学,2002.
    [58] Ming-Yen,Wey .The influence of Heavy Metals on Partitioning of PAHs during incineration[J].Journal of Hazardous Materials, 2000,A77:77-87.
    [59] Ming-Yen Wei,Wen-Yu.Pollutants in incineration flue gas[J]. Joural of hazardous materials,2001,B82,247-262.
    [60] E.B.Ledesma etc. Formation and fate PAH during Pyrolysis and fuel-rich combustion of coal Primary tar[J].Fuel,2000,79:1801-1814.
    [61] M.Blumenstock,R.Zimmermann,K-W.Sehramm.Influence of combustion conditions on the PCDD/F-,PCB-,PCBz-,and PAH-concentration in the Post-combustion chamber of a waste incineration Pilot Plant[J].Chemosphere,2000, 40:987一993.
    [62]叶翠平.煤大分子化合物结构测定及模型构建[D].太原,太原理工大学,2008.
    [63]刘惠永,燃煤过程中多环芳烃污染物生成排放得影响因子研究,中国工程热物理学会燃烧学学术会议,2000,4009:356一361.
    [64] Ana M.Mastral,MarisonCalle,Carmen Mayoral ect. Polycyclic aromatie hydrocarbon emissions from fluidized bed combustion of coal[J].Fuel,1993,74(12):1762-1766.
    [65] A.M.Mastral,etc.Toxic organic emissions fromcoal combustion[J].Fuel Proeessing Technology,2000,67:l-10.
    [66] Chun-TheLi,Hsiao-Hsuan Mi,Wen-Jhy Lee etc.PAHs emission from the industria lboilers[J].Journal of Hardous Materials,1999,A69:l-11.
    [67] A.M.Mastral etc.Assessment of PAHs emissions as a function of coal combustion variables in fiuidised bed.2.Air exeess percentage[J].Fuel,1998,77:1513-1516.
    [68] Kunlei Liu,Wenjun Han,Wei-Ping Pan ect.Polycyclic aromatic hydrocarbon (PAH) emissions from a coal-fired pilot FBC system[J]. Journal of Hazardous Materials,2001,B84:175-188.
    [69] Ana Maria Mastrial,Marisol Callen,and RajmonMurillo.Assessment of PAHs emissions as a function of coal combustion variables,Fuel,1996,75(13):1533-1536.
    [70] Ana.M.Mastral,Maria S.Callen,Ramon Murillo ect.Polycyclie aromatie hydrocarbons and organic matter associated to Particulate matter emitted from atmospheric fiuidized bed coal combustion[J],Environ.Sei.Teehnol,1999,33:3177-3184.
    [71] J.Hayashi,T.Kawakami,T.Taniguchi ect. Control of molecular composition of tar by secondary reaction in fluidized-bed pyrolysis of a subbituminous coal[J]. Energy Fuels,1993,7:57-66.
    [72] Wornat MJ,Sarofim AF,Longwell JP. Changes in the Degree of Substitution of Polycyclic Aromatic Compounds from Pyrolysis of a High-VolatileBituminous Coal[J]. Energy Fuels,1987,1:431-437.
    [73]黄美玉,朱子彬,何亦华等.烟煤快速加氢热解研究Ⅲ,焦油组成考察[J].燃料化学学报,2000,28(1):55-58.
    [74]李晓东,祁明峰,尤孝方等.烟煤燃烧过程中多环芳烃生成研究[J].中国电机工程学报,2002,22(12):127-132.
    [75]严建华,尤孝方,李晓东等.煤中氯对多环芳烃生成的影响研究[J].工程热物理学报,2003,24(2):335-338.
    [76] A Mitra,AF Sarofim, E Bar-Ziv.The influence of coal type on the evolution of polycyclic aromatic hydrocarbons during coal devolatilization[J].Aerosol Science & Technology,1987,6:261-271.
    [77]李春雷,郝永梅,盛国英.居室空气中PM2.5上PAHs的定量分析[J].复旦学报(自然科学版),2005,44(1):144-148.
    [78]成玉,盛国英,傅家谟,闵育顺.大气气溶胶中多环芳烃的定量分析[J].环境化学,1996,15(4):360-365.
    [79] L.Bonfanti,Ll.Comellas,J.Ll.Lliberia,etc.Production of n-alkanes and polycyclic aromatic hydrocarbons in coal pyrolysis[J].Journal of Analytical and Applied Pyrolysis,1997, 44:89–99.
    [80]罗孝俊.珠江三角洲河流、河口和邻近南海海域水体和沉积物中多环芳烃和有机氯农药研究[D].广州:中国科学院广州地球化学研究所,2004.
    [81]钮志远.不同煤中多环芳烃的分布及环境意义[D].合肥,中国科技大学,2008.
    [82]刘惠永.云贵川地区有关燃煤环境有机污染问题机治理措施研究[D].北京,中国地质大学,1999.
    [83] K.Tuppuraine,I.Halonen,P.Ruokojzry ect.Formation of PCDD/Fs in Municipal Waste Incineration and its Inhabition Meehanisms:AReview[J].ChemosPere,1998,36(7):1493-1511.
    [84]夏燕青,王春江,孟仟祥等,稠环芳烃和多环芳烃成因模拟[J].沉积学报, 1998,16(2):1-4.
    [85]刘全润.煤的热解转化合脱硫研究[D].大连:大连理工大学,2005.
    [86]丁华.煤及其显微组分热解气化反应特性研究[D].北京,煤炭科学研究总院,2006.
    [87]孙庆雷,李文,李保庆.神木煤显微组分热解特性研究[J].中国矿业大学学报(自然科学版),2001,30(3):272-276.
    [88]李文,王娜,李保庆.煤的多段加氢热解过程及机理分析[J].高等学校化学学报,2002,23:1767-1771.
    [89]朱学栋,朱子彬,韩崇家等.煤的热解研究III.煤中官能团与热解生成物[J].华东理工大学学报,2000,26(1):14-17.
    [90]朱学栋,朱子彬,张成芳等.煤的热解研究IV.官能团热解模型[J].华东理工大学学报,2001,27(2):113-126.
    [91]尤孝方.燃烧过程中多环芳烃的生成与数值模拟[D].浙江:浙江大学,2006.
    [92] V.Seebauer,J.Petek,G.Staudinger.Effects of particle size, heating rate and pressure on measurement of pyrolysis kinetics by thermogravimetric analysis[J].Fuel,1997,76(13):1277-1282.
    [93]闫鹏.黄土庙和锦界原煤及其溶胀煤的热解研究[D].西安:西北大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700