用户名: 密码: 验证码:
多酚类化合物与血清白蛋白相互作用的结构—结合力关系、理论模型和应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,中药活性成分与血清蛋白质的相互作用已经引起研究者的广泛关注。中药活性小分子在人体血液中与血浆载体蛋白的相互作用直接影响药物的分布、排泄、代谢、活性和毒副作用。中药活性成分与血液载体蛋白的相互作用研究可以为营养学和临床医学提供重要的信息,对了解药物在体内的代谢过程,阐明药物的作用机制,研究药代动力学以及药物的毒性,解释蛋白质结构和功能的关系和开发新药等都有重要的意义。本论文主要研究多酚类化合物和牛血清白蛋白之间的相互作用,选择常见的有代表性的黄酮类化合物和白藜芦醇,研究中药小分子与生物大分子相互作用的结构-结合力关系、理论模型及其应用。
     1.多光谱法研究葛根素与牛血清白蛋白的相互作用
     采用荧光光谱,红外光谱,共振散射光谱和同步荧光光谱考察了葛根素与牛血清白蛋白的相互作用。在20℃和30℃时,葛根素和牛血清白蛋白之间的表观结合常数(K_a)分别是1.13×10~4 L/mol(20℃)和1.54×10~4L/mol(30℃),结合位点数(n)是0.95±0.02。实验结果显示,葛根素可以通过插入到牛血清白蛋白分子内部,通过形成葛根素-牛血清白蛋白的配合物来猝灭其内源荧光。随着葛根素浓度的增加,牛血清白蛋白的共振散射强度减弱,在溶液中呈现聚集的形态。静态猝灭和无辐射能量转移都是导致荧光猝灭的主要原因。正的熵变和焓变表明葛根素和牛血清白蛋白之间主要是疏水作用力。吉布斯自由能变是负值说明这个过程是自发的。
     2.黄酮醇B环羟基对其与血清白蛋白作用的影响
     黄酮醇B环多羟基对电子共振和转移起重要作用,黄酮醇B环多羟基也是其清除自由基能力的决定因素。然而黄酮醇B环羟基对其与血清蛋白作用的影响还不清楚。高良姜素,山奈酚,槲皮素和杨梅素具有相同的A环和C环结构,仅B环上的羟基数目不同,通过测定它们与牛血清白蛋白的结合常数和结合位点发现具有相同A环和C环结构的黄酮醇,其B环羟基的增加将增强其与血清白蛋白的作用,B环上每增一个羟基可以提高结合常数1个数量级。同时研究了黄酮醇的疏水常数(lgK_(ow))和在C_(18)柱上的色谱保留指数(K′)与结合常数(lgK_a)的关系。亲脂性越高的黄酮醇,其与牛血清白蛋白的结合力越弱;黄酮醇的色谱保留指数(K′)随B环羟基的增加而减小。研究结果还发现黄酮醇的抗氧化性越强则与牛血清白蛋白的结合力越大。
     3.黄酮羟基的糖苷化对其与血清蛋白作用的影响
     天然的生物类黄酮多是以糖苷形式存在于植物中,在人体内被酶水解成黄酮苷元才能发挥其药效作用。黄酮苷元比黄酮苷更易被人体吸收。然而黄酮羟基的糖苷化对其与血清蛋白作用的影响还不清楚。论文研究了四种黄酮苷元及其常见的黄酮苷与牛血清白蛋白的结合常数与结合位点数,结果表明黄酮母环上的羟基被糖苷取代后将削弱其与血清白蛋白的作用,导致其与牛血清白蛋白的结合常数降低1-3个数量级。槲皮素与牛血清白蛋白的结合常数是槲皮苷与牛血清白蛋白的结合常数的5000多倍,而染料木素与牛血清白蛋白的结合常数仅为染料木苷与牛血清白蛋白的结合常数的6倍。
     4.应用药物与牛血清白蛋白相互作用研究表没食子儿茶酚没食子酸酯(EGCG)增强石杉碱甲对乙酰胆碱酯酶的抑制效果
     课题组研究发现EGCG可以在体内增强石杉碱甲对乙酰胆碱酯酶的抑制效果,降低石杉碱甲的使用量而具有同样的效果,然而相关机理还不清楚。论文通过研究EGCG和石杉碱甲与牛血清白蛋白的相互作用来解释增强机理。荧光光谱显示EGCG与牛血清白蛋白之间有很强的结合力,石杉碱甲与牛血清白蛋白之间几乎没有作用力,但在EGCG存在下,石杉碱甲可以接近牛血清白蛋白的氨基酸残基并与牛血清白蛋白发生作用。同步荧光研究显示,EGCG与牛血清白蛋白形成配合物后对酪氨酸残基和色氨酸残基的结构和微环境都有影响;在EGCG存在下,石杉碱甲接近牛血清白蛋白酪氨酸残基,石杉碱甲的加入增强了EGCG和牛血清白蛋白酪氨酸残基的结合力。酪氨酸残基的结构和微环境受到明显的改变,而石杉碱甲远离色氨酸残基,对色氨酸残基没有影响。红外光谱显示EGCG比石杉碱甲更能影响牛血清白蛋白的二级结构。因此,可能的机理是EGCG首先和血清白蛋白的酪氨酸残基通过氢键形成稳定的配合物,然后石杉碱甲通过氢键与EGCG-血清白蛋白配合物中的EGCG发生作用,并通过EGCG远距离传递电子给血清白蛋白酪氨酸残基,增加了EGCG和血清白蛋白酪氨酸残基的结合力。与EGCG相比,GCG与牛血清白蛋白的结合力降低了100倍。EGCG与GCG具有相似的结构,差异仅在2位上空间结构,说明手性异构体影响其与BSA的相互作用。
     5.基于生物大分子荧光猝灭的二项式分布模型用于分析药物小分子与生物大分子的相互作用——以白藜芦醇和牛血清白蛋白为例
     药物小分子和血清白蛋白存在高结合力和低结合力的结合位点,通常通过Stern-Volmer方程和双对数曲线方程及其修改形式获得的结合常数仅反映具有高结合力的结合位点。与具有高结合力的位点相比,低结合力的位点实际上并没有被药物分子占据。因此药物实际占据的位点数和结合位点数是不同的,许多模型没有考虑到这一点。本文在此基础上,以白藜芦醇和牛血清白蛋白为例,建立了一个基于生物大分子荧光猝灭的二项式分布模型用于研究药物小分子和生物大分子的相互作用,并用同步荧光和红外光谱深入了解白藜芦醇和牛血清白蛋白的相互作用。白藜芦醇与牛血清白蛋白的主要作用方式是范德华力和氢键作用力,△G是负值说明该过程是自发的。同步荧光光谱表明白藜芦醇与牛血清白蛋白色氨酸残基和酪氨酸残基很接近,影响了色氨酸残基和酪氨酸残基的微环境。白藜芦醇更能影响酪氨酸残基,不仅猝灭酪氨酸残基的荧光强度而且引起酪氨酸残基的最大发射波长蓝移。在牛血清白蛋白的红外光谱中表征其二级结构中酰胺Ⅰ的特征峰(1620-1700 cm~(-1))几乎消失,酰胺Ⅱ谱带从1541.60 cm~(-1)移动为1544.10 cm~(-1),这表明牛血清白蛋白的二级结构已发生改变。研究还发现白藜芦醇和牛血清白蛋白结合的临界距离(R_0)几乎不随温度变化而变化,且与荧光测量参数的取值无关,如激发光栅狭缝宽度,发射光栅狭缝宽度和灯电压等。
The interaction between bio-active compounds from Chinese medicine and proteins has attracted great interests among researchers,which can provide important information for their nutritional and medical effects on human health. The work in this thesis mainly concerns about the interaction between polyphenols and BSA.The flavonoids and resveratrol were selected to study the structure-affinity relationship,theory model and application about the interaction between small molecules and biomacromolecules.
     1.Analysis of interaction between puerarin and BSA by multispectroscopic method
     The interaction between puerarin and BSA is investigated by means of fluorescence spectroscopy,resonance light-scattering spectroscopy,infrared spectroscopy,and synchronous fluorescence spectra.The binding constants(K_a) between puerarin and BSA are 1.13×10~4 L/mol(20℃),and 1.54×10~4 L/mol (30℃),and the number of binding site(n) is 0.95±0.02.The experimental results shows that puerarin can be inserted into BSA and quenches the inner fluorescence by forming the puerarin-BSA complex.The addition of increasing puerarin to BSA solution leads to the gradual enhancement in RLS intensity, exhibiting the formation of the aggregate in solution.It is found that both static quenching and non-radiation energy transfer are the main reasons for the fluorescence quenching.The positive entropy change and enthalpy change indicate that the interaction of puerarin and BSA is driven mainly by hydrophobic interaction.The process of binding is a spontaneous process in which Gibbs free energy change is negative.
     2.Effect of hydroxyl groups in the ring B of flavonols on binding with BSA
     The hydroxyl group in ring B of flavonols is a significant structural feature as free radical scavengers and antioxidants.In this paper,four flavonols (galangin,kaempferol,quercetin,and myricetin) with different hydroxyl groups in ring B are studied for their affinities for BSA by quenching the protein intrinsic fluorescence.From the spectra obtained,the quenching constants,the binding constants,and the number of binding sites are calculated.The hydroxyl groups in ring B of flavonols significantly affect the binding process;in general, the binding affinity increases with increasing hydroxyl groups in the ring B. The binding constants(K_a) are determined as:myricetin(4.54×10~8 L/mol)>quercetin(3.65×10~7 L/mol)>kaempferol(2.57×10~6 L/mol)>galangin(6.43×10~5 L/mol).Addition of another hydroxyl group on the ring B can enhance the affinity for BSA by one order of magnitude.The hydrophobicity of these four flavonols is assessed by the partition coefficient values(K_(ow)) and the chromatographic retention factors(K') of these four flavonols are determined by HPLC.K' and lgK_(ow) are inversely proportional to lgK_a for flavonols with increasing hydroxyl groups on the ring B.These results showed that the hydrogen bond force plays an important role in binding flavonols to BSA. These results are also in agreement with the generally accepted structure -dependent free radical scavenger and antioxidant abilities of flavonols.
     3.Effect of glycosylation of flavonids on binding with serum albumin
     The dietary sources of flavonoids are almost always glycosides,which in most cases are hydrolyzed to aglycones to produce effects.Four flavonoid aglycones(baicalein,quercetin,daidzein,and genistein) and their glycosides (baicalin,quercitrin,daidzin,and genistin) are studied for their affinities for BSA.The glycosylation of flavonoids affects the binding process;in general, the glycosylation decreases the binding affinity.Glycosidation could lower the affinity for BSA by one to three orders of magnitude depending on the conjugation site.For quercetin and quercitrin,the binding constants for BSA are 3.65×10~7 and 6.47×10~3 L/mol,respectively.For baicalein and baicalin,the binding constants are 4.54×10~8 and 1.63×10~6 L/mol,respectively.This result partly supports that the flavonoid aglycones are easier absorbed than flavonoid glycosides.The E_(1/2) values of flavonoids are inversely proportional to the binding constants binding to BSA.Higher binding affinities with BSA are associated with higher anti-oxidant and free radical scavenger activities for this class of compounds.
     4.Investigate the mechanism of enhancement effect of EGCG on huperzine A inhibiting AChE activity by binding with BSA
     The mechanism of enhanced effect of(-)-epigallocatechin-3-gallate (EGCG) on huperzine A(Hup A) inhibiting acetylcholinesterase(AChE) was investigated by studying the binding process with BSA using multi-spectroscopic techniques.Hup A is a potent and reversible inhibitor of AChE and available currently in the market for Alzheimer's disease.EGCG is the main polyphenol in green tea and the most widely studied polyphenol for disease prevention.EGCG can enhance the inhibitory effect of Hup A on AChE and also can greatly prolong the inhibitory time.The fluorescence quenching and infrared spectra data indicate that there is a strong binding force between EGCG and BSA and Hup A hardly interacts with the main transport protein in blood.The binding constant(K_a) between EGCG and BSA was 2.96×10~7 L/mol(37℃).In the presence of EGCG,Hup A can affect BSA.The synchronous fluorescence data shows that EGCG is close to Trp and Tyr residues and affects their microenvironment.After bound with EGCG,Hup A can affect BSA and Hup A remarkably affected the microenvironment of Tyr residues,but Hup A didn't affect the microenvironment of Trp residues. According to the above results,here showed the suggested mechanism of enhanced effect of EGCG on Hup A inhibiting AChE.At first,the EGCG-BSA complex forms.Hup A is suggested to bind to EGCG-BSA complex and locates in close proximity to the Tyr residues.The binding Hup A to EGCG also increases the affinity of EGCG for BSA through electron transfer.The enhanced transporting of Hup A in blood might be a cause of the enhanced effect of EGCG on Hup A inhibiting AChE.The binding constant(K_a) between GCG and BSA was 2.98×10~5 L/mol(R=0.9930) and the number of binding site(n) was 1.22.The affinity of GCG to BSA is 100-times lower than that of EGCG for BSA.GCG and EGCG have the same structure;only the bond of C-2 is a epimer.
     5.A new model based on binomial distribution to analysis the interaction between drug and protein.
     A new model based on binomial distribution by means of fluorescence quenching was developed to gain insights into the interaction of small molecules with protein.Trans-resveratrol and BSA were used to test.The binding number maximum of Trans-resveratrol was determined to be 8.86 at 293.15 K,23.42 at 303.15 K and 33.94 at 313.15 K and the binding mechanism analyzed in detail.The apparent binding constants(Ka) between Trans-resveratrol and BSA were 5.02×10~4(293.15 K),8.89×10~4(303.15 K) and 1.60×10~5 L/mol(313.15 K),and the binding distances(r) between Trans-resveratrol and BSA were 2.44,3.01,and 3.38 nm at 293.15,303.15,and 313.15 K,respectively.The negative entropy change and enthalpy change indicated that the interaction of Trans-resveratrol and BSA was driven mainly by van der Waals interactions and hydrogen bonds.The process of binding was a spontaneous process in which Gibbs free energy change was negative.The interaction of Trans-resveratrol and BSA was confirmed by synchronous fluorescence and FTIR spectra.
引文
[1]Wolf FA,Brett GM.Ligand-binding proteins:their potential for application in systems for controlled delivery and uptake ofligands.Pharmacol Rev,2000,52:207-236.
    [2]Papadopoulou A,Green RJ,Frazier RA.Interaction of flavonoids with bovine serum albumin:A fluorescence quenching study.J Agdc Food Chem,2005,53:158-163.
    [3]Rawel HA,Meidtner K,Kroll J.Binding of selected phenolic compounds to proteins.J Agric Food Chem,2005,53:4228-4235.
    [4]Kim D,Park J,Kim J,Han C,Yoon J,Kim N,Seo J,Lee C.Flavonoids as mushroom tyrosinase inhibitors:A fluorescence quenching study.J Agric Food Chem,2006,54:935-941.
    [5]Qian ZM,Wen XD,Li HJ,Liu Y,Qin SJ,Li P.Analysis of interaction property of bioactive components in Flos Lonicerae Japonicae with protein by microdialysis coupled with HPLC-DAD-MS.Biol Pharm Bull 2008,31:26-130.
    [6]Qi ZD,Zhou B,Xiao Q,Shi Chuan,Liu Yi,Dai J.Interaction of rofecoxib with human serum albumin:Determination of binding constants and the binding site by spectroscopic methods.J Photochem Photobiol A,2008,193:81-88.
    [7]Kandagal PB,Shaikh SMT,Manjunatha DH,Seetharamappa J,Nagaralli BS.Spectroscopic studies on the binding of bioactive phenothiazine compounds to human serum albumin.J Photoch Photobio A,2007,189:121-127.
    [8]陶慰孙,李惟,姜涌明.蛋白质分子基础[M].高等教育出版社,1995,85.
    [9]Kragh-Hansen U.Molecular aspect of ligand binding to serum albumin.Pharmco Rev.,1981,33:17-53.
    [10]Abou-Zied OK,Al-Shihi OIK.Characterization of subdomain ⅡA binding site of human serum albumin in its native,unfolded,and refolded states using small molecular probes.J Am Chem Soc,2008,130:10793-10801.
    [11]马大龙.生物技术药物[M].北京:科学出版社,2001.
    [12]Ware WR.Oxygen quchening of fluorescence in solution-an experimental study of diffusion process.Phys.Chem,1962,66,445-458.
    [13]Kamaukhova E.Interactions of human serum albumin with retinoic acid,retinal and retinyl acetate.Biochem Pharm,2007,73:901-910.
    [14]Lakowicz JR.Principles of fluorescence spectroscopy,second ed.Kluwer Academic Publishers/Plenum Press,New York,1999.
    [15]Lakowicz JR,Weber G.Quenching of fluorescence by oxygen.A probe for structural fluctuations in macromolecules.Biochemistry,1973,12:4161-4170.
    [16]Tian J,Liu J,He W,et al.Probing the binding of scutellarin to human serum albumin by circular dichroism,fluorescence spectroscopy,FTIR,and molecular modeling method.Biomacromolecules,2004,5:1956-1961.
    [17]Fabriciova G.Sanchez-Cortes S,Garcia-Ramos JV,et al.Joint application of micro-Raman and surface enhanced Raman spectroscopy to the interaction study of the antitumoral anthra-quinone drugs danthron and quinizarin with albumins.J Raman Spectrosc 2004,35:384-389.
    [18]Chen ZG,Ding WF,Pen FL,et al.Resonance light scattering technique for determination of proteins with ammonium molybdate.Can J Anal Sc Spectr,2005,50:94-99.
    [19]Tabak M,de Sousa Neto D,Garrido Salmon CE.On the interaction of bovine serum albumin(BSA) with cethyltrimethyl ammonium chloride surfactant:electron paramagnetic resonance(EPR) study.Brazil J.Phys.,2006,36(1A):83-89.
    [20]Fritz-Niggli H,Frohlich E.Reduction of radiation-inducedearly skin damage(mouse foot) by O-(hydroxyethyl)-rutoside.(German).ROFO Fortschr Geb Rontgenstr Nuklearmed,1980,133:316-321.
    [21]Schmidt H,Hampel CM,Schmidt G,et al.Double-blind trial of the effect of a propolis-containing mouthwash on inflamed and healthy gingiva.(German).Stomat DDR,1980,30:491-497.
    [22]Calzada F,Meckes M,Cedillo-Rivera R.Antiamoebic and antigiardial activity of plant flavonoids.Planta Med,1999,65:78-80.
    [23]KorkinaL G,Afanas'ev IB.Antioxidant and chelating properties of flavonoids.Adv Pharmacol,1997,38:151-163.
    [24]Bohm H,Boeing H,Hempel J,et al.Flavonols,flavone and anthocyanins as natural anti-oxidants of food and their possible role in the prevention of chronic diseases.Z Emahrungswiss,1998,37:147-163.
    [25]Arts ICW,Hollman PCH,Kromhout D.Chocolate as a source of tea flavonoids.Lancet,1999,354:488.
    [26]Ait-Si-Ali S,Ramirez S,Barre FX,et al.Histone acetyl transferase activity of CBP is controlled by cycle-dependent kinases and oncoprotein E1A.Nature,1998,396:184-186.
    [27]Le Bail JC,Laroche T,Marre-Foumier,et al.Aromatase and 17beta- hydroxysteroid dehydro-genase inhibition by flavonoids.Cancer Lett,1998,133:101-106.
    [28]Young JF,Nielsen SE,Haraldsdottir J,et al.Effect of fruit juice intake on urinary quercetin excretion and biomarkers of antioxidative status.Am J Clin Nutr,1999,69:87-94.
    [29]Jinsart W,Temai B,Polya GM.Inhibition of rat liver cyclic AMP-dependent protein kinase by flavonoids.Biol Chem Hoppe Seyler,1992,373:205-211.
    [30]Conney AH,Buening MK,Pantuck EJ,et al.Regulation of human drug metabolism by dietary factors.Ciba Found Syrup,1981,76:147-167.
    [31]Squadrito F,Altavilla D,Squadrito G,et al.Genistein supplementation and estrogen replacement therapy improve endothelial dysfunction induced by ovariectomy in rats.Cardiovasc Res,2000,45:454-462.
    [32]Habs M,Habs H,Berger MR,et al.Negative doseresponse study for carcinogenicity of orally administered rutin sulphate in Sprague-Dawley rats.Cancer Lett 1984,23,103-108.
    [33]Bourne HR.The importance of being GTP.Nature,1994,369:611-612.
    [34]Griebel G,Perrault G,Tan S,et al.Pharmacological studies on synthetic flavonoids:comparison with diazepam.Neuropharmacology,1999,38:965-977.
    [35]Ahmadiani A,Fereidoni M,Semnanian S,et al.Antinociceptive and anti-inflammatory effects of Sambucus ebulus rhizome extract in rats.J Ethnopharmacol,1998,61:229-235.
    [36]Wrzesinski J,Michalowski D,Ciesiolka J,et al.Specific RNA cleavages induced by manganese ions.FEBS Lett,1995,374:62-68.
    [37]Voelter W,Doughty CC.O-(Beta-Hydroxyethyl)-Rutoside.Experimentelle und Klinische Ergebmisse.Berlin:Springer,1978.
    [38]Cao G,Sofic E,Prior R L.Antioxidant and prooxidant behavior of flavonoids:structure-activity relationships.Free Radio Biol Med,1997,22:749-760.
    [39]Cao Y,Cao R.Angiogenesis inhibited by drinking tea.Nature,1999,398:381.
    [40]Brandao MG,Krettli AU,Soares LS,et al.Antimalarial activity of extracts and fractions from Bidens pilosa and other Bidens species(Asteraceae) correlated with the presence of acetylene and flavonoid compoimds. J Ethnopharmacol, 1997, 57:131- 138.
    [41] Holden C. Cheers for chocolate. Science, 1999,284: 39.
    [42] Lama G, Angelucci C, Bruzzese N, et al. Sensitivity of human melanoma cells to oestrogens, tamoxifen and quercetin: is there any relationship with type Ⅰ and Ⅱ oestrogen binding site expression? Melanoma Res, 1998, 8: 313-322.
    [43] Makela S, Poutanen M, Kostian ML, et al. Inhibition of 17beta-hydroxysteroid oxidoreductase by flavonoids in breast and prostate cancer cells. Proc Soc Exp Biol Med, 1998,217:310-316.
    [44] Malaveille C, Hautefeuille A, Pignatelli B, et al. Dietary phenolics as anti-mutagens and inhibitors of tobacco-related DNA adduction in the uroth-elium of smokers. Carcinogenesis, 1996,17: 2193-2200.
    [45] Malaveille C, Hautefeuille A, Pignatelli B, et al. Antimutagenic dietary phenolics as antigenotoxic substances in urothelium of smokers. Mutat Res, 1998,402: 219- 224.
    [46] Kitaoka M, Kadokawa H, Sugano M, et al. Prenyl flavonoids: a new class of non-steroidal phytoestrogen (Part 1). Isolation of 8-isopentenyl naringenin and an initial study on its structure activity relationship. Planta Med, 1998,64: 511-515
    [47] Asgary S, Naderi G, Sarrafzadegan N, et al. Anti-oxidant effect of flavonoids on hemoglobin glycosylation. Pharm Acta Helv, 1999, 73: 223-226.
    [48] Reiners JJ, Jr. Clift R, Mathieu P. Suppression of cell cycle progression by flavonoids: dependence on the aryl hydrocarbon receptor. Carcinogenesis, 1999,20:1561-1566.
    [49] Fine A, Matsui R, Zhan X, et al. Discordant regulation of human type-1 collagen genes by prostaglandin E2. Biochim Biophys Acta, 1992,1135: 67- 72.
    [50] Rohwedder D. Propolis. Der Staff aus dem Gesundheit est Taschenbachberlag. Berlin: BTV Taschenbuchverlags GmbH, 1987.
    [51] Ronzere MC, Herbage D, Garrone R, et al. Influence of some flavonoids on reticulation of collagen fibrils in vitro. Biochem Pharmacol, 1981, 30: 1771- 1776.
    [52] Lehrer SS. Solute Perturbation of Protein Fluorescence. The quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry, 1971,10: 3254-3263.
    [53] Silva D, Cortez CM, Cunha-Bastos J, Louro SRW. Methyl parathion interaction with human and bovine serum albumin. Toxic Lett, 2004,147: 53-61.
    [54] Bi SY, Ding L, Tian Y, Song DQ, Zhou X, Zhang HQ. Investigation of the interaction between flavonoids and human serum albumin.J Mol Struct,2004,703:37-45.
    [55]Cui Y,Guo JF,Xu BJ,Chen ZY.Binding of chlorpyrifos and cypermethrin to blood proteins.Pesticide Biochemistry and Physiology,2006a,85:110-114.
    [56]Cui FL,Wang JL,Cui YR,Li JP.Fluorescent investigation of the interactions between N-(p-chlorophenyl)-N-(1-naphthyl) thiourea and serum albumin:Synchronous fluorescence determination of serum albumin.Anal Chim Acta,2006b,571:175-183.
    [57]Levine RL.Fluorescence-quenching studies of binding of bilirubin to albumin.Clin Chem,1977,23:2292-2301.
    [58]Benesi HA,Hildebrand JH.A spectrophotometric investigation of interaction of iodine with aromatic hydrocarbons.J Am Chem Soc,1949,71:2703-2707.
    [59]Scatchard G.The attractions of proteins for small molecules and ions.Ann NY Acad Sci,1949,51:660-672.
    [60]Nanda RK,Sarkar N,Banerjee R.Probing the interaction of ellagic acid with human serum albumin:A fluorescence spectroscopic study.J Photochem Photobio A,2007,192:152-158.
    [61]Johansson JS,Eckenhoff RG,Dutton L.Binding of halothane to serum albumin demonstrated using tryptophan fluorescence.Anesthesiology 1995,83:316-324.
    [62]Lehrer SS,Fasman GD.The fluorescence of lysozyme and lysozyme substrate complexes.Bioehem Biophys Res Co,1966,23:133-138.
    [63]Rao AGA,Cann JR.A comparative study of the interaction of chlorpromazine,trifluoperazine,and promethazine with mouse brain tubulin.Mol Pharmacol,1981,19:295-301.
    [64]Rawel HM,Frey SK,Meidtner K,Kroll J,Schweigert FJ.Determining the binding affinities of phenolic compounds to proteins by quenching of the intrinsic tryptophan fluorescence.Mol Nutr Food Res,2006,50:705-713.
    [65]Dangles O,Dufour C,Bret S.Flavonol-serum albumin complexation.Two-electron oxidation of flavonols and their complexes with serum albumin.J Chem Soc Perkin Trans,1999,2:737-744.
    [66]Dufour C,Dangles O.Flavonoid-serum albumin complexation:determination of binding constants and binding sites by fluorescence spectroscopy.BBA Gen Subjects,2005,1721:164-173.
    [67]Wang C,Wu QH,Wang Z,et al.Interaction of quercetin and bovine serum albumin. Spectroscopy and Spectral Analysis, 2006,26:1672-1675.
    [68] Mishra B, Barik A, Priyadarsini KI. Fluorescence spectroscopic studies on binding of a flavonoid antioxidant quercetin to serum albumins. J Chem Sci 2005,117: 641-647.
    [69] Chen DW, Xie QJ, Jiang XQ, Yao SZ. Interactions of quercetin with casein and bovine serum albumin as well as effects of coexisting carbon nanotubes. Acta Phys Chim Sin, 2008,24: 379-387.
    [70] Berezhkovskiy LM. On the calculation of the concentration dependence of drug binding to plasma proteins with multiple binding sites of different affinities: Determination of the possible variation of the unbound drug fraction and calculation of the number of binding sites of the protein. J Pharm Sci, 2007,96: 249-257.
    [71] Cherdshewasart W, Subtang S, Dahlan W. Major isoflavonoid contents of the phytoestrogen rich-herb Pueraria mirifica in comparison with Pueraria lobata. J Pharmaceut Biomed, 2007,43: 428-434.
    [72] Wang LY, Zhao AP, Chai XS. Effects of puerarin on cat vascular smooth muscle in vitro. Acta Pharmacol. Sin. 1994,15:180-182.
    [73] Overstreet DH, Lee YW, Rezvani AH, et al. Suppression of Alcohol Intake after Administration of the Chinese Herbal Medicine. Alcohol. Clin. Exp. Res., 1996, 20: 221-227.
    [74] Song XP, Chen PP, Chai XS. Effects of puerarin on blood pressure and plasma renin activity in spontaneous hypertensive rats. Acta Pharmacol. Sin., 1988,9: 55-58.
    [75] Chai XS, Wang ZX, Chen PP, et al. Anti-arrhythmic action of puerarin. Acta Pharmacol Sin, 1985, 6,166-168.
    [76] Tan Y, Liu M, Wu B. Puerarin for acute ischemic stroke. Stroke, 2008,39: 2188.
    [77] Lakowicz JR, Weber G Biochemistry, 1973,12:4171-4179.
    [78] Ross PD, Subramanian S. Biochemistry, 1981,20: 3096.
    [79] Kandagal PB, Ashoka S, Seetharamappa J, et al. J Pharmaceut Biomed, 2006, 41: 393-399.
    [80] Shaklai N, Yguerabide J, Ranney HM. Biochemistry, 1977,16: 5585-5592.
    [81] Tantipolphan R, Rades T, McQuillan AJ, et al. Adsorption of bovine serum albumin (BSA) onto lecithin studied by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. Int J Pharm, 2007, 337: 40-47.
    [82] Hertog MG, Hollman PC, Katan MB. Content of potentially anticarcinogenic flavonoids of 28 vegetables and 9 fruits commonly consumed in the Netherlands. J Agric Food Chem, 1992,40:2379-2383.
    [83] Hertog MG, Hollman PC, van de Putte B. Content of potentially anticarcinogenic flavonoids of tea infusions wines, and fruit juices. J Agric Food Chem, 1993, 41: 1242-1246.
    [84] Manach C, Scalbert A, Morand C, R(?)m(?)sy C, Jim(?)nez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr, 2004, 79: 727-747.
    [85] Miyake T, Shibamoto T. Antioxidative activities of natural compounds found in plants. J. Agric. Food Chem, 1997,45: 1819-1822.
    [86] Cushnie TPT, Hamilton VES, Chapman DG, et al. Aggregation of Staphylococcus aureus following treatment with the antibacterial flavonol galangin. J. Appl. Microbiol, 2007,103: 1562-1567.
    [87] Bestwick CS, Milne L. Influence of galangin on HL-60 cell proliferation and survival. Cancer Lett, 2006,243: 80-89.
    [88] Park JS, Rho HS, Kim DH, et al. Enzymatic preparation of kaempferol from green tea seed and its antioxidant activity. J Agric Food Chem, 2006,54: 2951-2956.
    [89] Tu Y, Lian T, Yen J, et al. Antiatherogenic effects of kaempferol and rhamnocitrin. J Agric Food Chem, 2007, 55: 9969-9976.
    [90] Hu Y, Cheng Z, Heller LI, et al. Kaempferol in red and pinto bean seed (Phaseolus vulgaris L.) coats inhibits iron bioavailability using an in vitro digestion/human Caco-2 cell model. J Agric Food Chem. 2006, 54: 9254-9261.
    [91] Ramos FA, Takaishi Y, Shirotori M, et al. Antibacterial and antioxidant activities of quercetin oxidation products from yellow onion (Allium cepa) skin. J Agric Food Chem, 2006,54:3551-3557.
    [92] McPhail DB, Hartley RC, Gardner PT, et al. Kinetic and stoichiometric assessment of the antioxidant activity of flavonoids by electron spin resonance spectroscopy. J Agric Food Chem, 2003, 51:1684-1690.
    [93] Woodman OL, Meeker WF, Boujaoude M. Vasorelaxant and antioxidant activity of flavonols and flavones: Structure-activity relationships. J Cardiovasc Pharm, 2005, 46, 302-309.
    [94] Heijnen CGM, Haenen GRMM, van Acker FAA, van der Vijgh WJF, Bast A. Flavonoids as peroxynitrite scavengers: the role of the hydroxyl groups. Toxicol in Vitro 2001,15:3-6.
    [95]Kim JD,Liu L,Guo W,M Meydani.Chemical structure of flavonols in relation to modulation of angiogenesis and immune-endothelial cell adhesion.J Nutr Biochem,2006,17:165-176.
    [96]Chen JW,Zhu ZQ,Hu TX,Zhu DY.Structure-activity relationship of natural flavonoids in hydroxyl radical-scavenging effects.Acta Pharmcol Sin,2002,23:667-672.
    [97]Yang B,Kotani A,Arai K,et al.Estimation of the antioxidant activities of flavonoids from their antioxidant potentials.Anal Sci,2001,17:599-604.
    [98]Mahesha HG,Singh SA,Srinivasan N,et al.A spectroscopic study of the interaction of isoflavones with human serum albumin.FEBS J,2006,273:451-467.
    [99]Li JH,Ren CL,Zhang YH,et al.Spectroscopic studies on binding of puerarin to human serum albumin.J Mol Struct,2008,885:64-69.
    [100]Cao H,Liu Q,Shi J,et al.Comparing the affinities of flavonoid isomers with protein by fluorescence spectroscopy.Anal Lett,2008,41:521-532.
    [101]Pastukhov AV,Levchenko LA,Sadkov AP.Spectroscopic study on binding of rutin to human serum albuminJ Mol Struct,2007,842:60-66.
    [102]Wang YQ,Zhang HM,Zhang GC,et al.Interaction of the flavonoid hesperidin with bovine serum albumin:A fluorescence quenching study.J Lumin,2007,126:211-218.
    [103]Fang F,Li JM,Pan QH,Huang WD.Determination of red wine flavonoids by HPLC and effect of aging.Food Chem 2007,101:428-433.
    [104]Qu LB,Cben XL,Yang R,et al.Investigation of the interaction between isoflavonoids and bovine serum albumin by fluorescence spectroscopy.Chin J Chem,2007,25:1151-1155.
    [105]Toropov AA,Toropova AP,Raska I.QSPR modeling of octanol/water partition coefficient for vitamins by optimal descriptors calculated with SMILES.Eur J Med Chem,2008,43:714-740.
    [106]Sinadinovic-Fiser S,Jankovic M.Prediction of the partition coefficient for acetic acid in a two-phase system soybean oil-water.J Am Oil Chem Soc,2007,84:669-674.
    [107]Moreira MR,Kanashiro A,Kabeya LM.Neutrophil effector functions triggered by Fc-gamma and/or complement receptors are dependent on B-ring hydroxylation pattem and physicochemical properties of flavonols.Life Sci,2007,81:317-326.
    [108]Burda S,Oleszek W.Antioxidant and antiradical activities of flavonoids.J Agile Food Chem, 2001,49: 2774-2779.
    [109] Pietta PG. Flavonoids as antioxidants. J Nat Prod, 2000,63: 1035-1042.
    [110] William RJ, Spencer JP, Rice-Evans C. Flavonoids: antioxidants or signaling molecular? Free Radic Biol Med, 2004,36: 838-894.
    [111] Walle T, Browning AM, Steed LL, et al. Flavonoid glucosides are hydrolyzed and thus activated in the oral cavity in humans. J Nutr, 2005,135: 48-52.
    [112] Griffiths LA, Barrow A. Metabolism of flavonoid compounds in germ-free rats. Biochem J., 1972,130:1161-1162.
    [113] Bokkenheuser VD, Shackleton CHL, Winter J. Hydrolysis of dietary flavonoid glycosides by strains of intestinal Bacteroides from humans. Biochem J., 1987, 248: 953-956.
    [114] Hollman PCH, de Vries JHM, van Leeuwen SD, et al. Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers. Am J Clin Nutr, 1995, 62: 1276-282.
    [115] Walle T. Absorption and metabolism of flavonoids. Free Rad Bio Med, 2004, 36: 829- 837.
    [116] Chow JM, Shen SC, Huan SK, Lin HY, Chen YC. Quercetin, but not rutin and quercitrin, prevention of H_2O_2-induced apoptosis via anti-oxidant activity and heme oxygenase 1 gene expression in macrophages. Biochem Pharmacol, 2005,69:1839-1851.
    [117] Lin HY, Shen SC, Chen YC. Anti-inflammatory effect of heme oxygenase 1: Glycosylation and nitric oxide inhibition in macrophages. J Cell Physiol, 2005,202: 579- 590.
    [118] Pastukhov AV, Levchenko LA, Sadkov AP. Spectroscopic study on binding of rutin to human serum albumin. J Mol Struct, 2007, 842: 60-66.
    [119] Luan NN, Wu JX, Song YM, et al. Thermodynamics studies on the binding of rutin and serum albumin. Spectr Spect Anal, 2008,28: 856-859.
    [120] Li JH, Ren CL, Zhang YH, et al. Spectroscopic studies on binding of Puerarin to human serum albumin. J Mol Struct, 2008, 885: 64-69.
    [121] He Y, Wang YW, Tang LF, et al. Binding of puerarin to human serum albumin: A spectroscopic analysis and molecular docking. J Fluoresc, 2008, 18:433-442.
    [122] Qu LB, Wang L, Chen XL, et al. Study on the interaction of bovine serum albumin with puerarin and its derivatives. Acta Chim Sin, 2007,65:2417-2422.
    [123]Zhang GW,Que QM,Pan JH.Studies on the interaction between puerarin and bovine serum albumin.Spectrosc Spect Anal,2007,27:1784-1787.
    [124]Qu LB,Chen XL,Yang R,et al.Investigation of the interaction between isoflavonoids and bovine serum albumin by fluorescence spectroscopy.Chin J Chem,2007,25:1151-1155.
    [125]Xiao JB,Shi J,Cao H,et al.Analysis of binding interaction between puerarin and bovine serum albumin by multi-spectroscopic method.J Pharmaceut Biomed,2007,45:609-615.
    [126]Camps P,El Achab R,Morral J,Munoz-Torrero D,Badia A,Banos JE,Vivas NM,Barril X,Orozco M,Luque FJ.New tacrine-huperzine A hybrids(huprines):highly potent tight-binding acetylcholinesterase inhibitors of interest for the treatment of Alzheimer's disease.J Med Chem,2000,43:4657-4666.
    [127]Wang R,Yan H,Tang XC.Progress in studies of huperzine A,a natural cholinesterase inhibitor from Chinese herbal medicine.Acta Pharmacol Sin 2006,27:1-26.
    [128]Houghton PJ,Howes MJ.Natural products and derivatives affecting neurotransmission relevant to Alzheimer's and Parkinson's disease.Neurosignals,2005,14:6-22.
    [129]Sims NR,Bowen DM,Allen SJ,Smith CC,Neary D,Thomas DJ.Presynaptic cholinergic dysfunction in patients with dementia.J Neurochem,1983,40:503-509.
    [130]DeKosky ST,Harbaugh RE,Schmitt FA,Bakay RA,Chui HC,Knopman DS.Cortical biopsy in Alzheimer's disease:diagnostic accuracy and neurochemical,neuropath-ological and cognitive correlations.Ann Neurol,1992,32:625-632.
    [131]Darrouzain F,Dallet P,Dubost JP,Ismalli L,Pehourcq F,Bannwarth B,Matoga M,Guillaume YC.Molecular lipophilicity determination of a huperzine series by HPLC:Comparison of C18 and IAM stationary phases.J Pharmaceut Biomed,2006,41:228-232.
    [132]Cheng DH,Tang XC.Comparative studies of huperzine A,E-2020 and tacrine on behavior and cholinesterase activities.Pharmacol Biochem Behav,1998,60:377-386.
    [133]Patocka J.Huperzine A—an interesting anticholinesterase compound from the Chinese herbal medicine.Acta Medica.(Hradec.Kralove),1998,41:155-157.
    [134]Tang LL,Wang R,Tang XC.Huperzine A protects SHSYSY neuroblastoma cells against oxidative stress damage via nerve growth factor production.Eur J Pharmacol, 2005,519:9-15.
    [135]Liu WH,Song JL,Liu K,Chu DF,Li YX.Preparation and in vitro and in vivo release studies of huperzine A loaded microspheres for the treatment of Alzheimer's disease.J Control Release,2005,107:417-427.
    [136]Liang YQ,Tang XC.Comparative effects of huperzine A,donepezil and dvastigmine on cortical acetylcholine level and acetylcholinesterase activity in rats.Neurosci Lett,2004,361:56-59.
    [137]Wang ZF,Tang LL,Yan H,Wang YJ,Tang XC.Effects of huperzine A on memory deficits and neurotrophic factors production after transient cerebral ischemia and reperfusion in mice.Pharmacol Biochem Be,2006,83:603-611.
    [138]Xiong ZQ,Tang XC.Effect of huperzine A,a novel acetylcholinesterase inhibitor,on radial maze performance in rots.Pharmacol Biochem Behav,1995,51:415-419.
    [139]Badia A,Ba(?)os JE,Camps P,et al.Synthesis and evaluation of tacdne-huperzine A hybrids as acetylcholinesterase inhibitors of potential interest for the treatment of Alzheimer's disease.Bioorg Med Chem,1998,6:427-440
    [140]Camps P,Cusack B,Mallender WD,et al.Huprine X is a novel high-affinity inhibitor of acetylcholinesterase That is of interest for treatment of Alzheimer's Disease.Mol Pharm,2000,57:409-417.
    [141]Sano M,Emesto C,Thomas RG.A controlled trial of selegiline alpha-tocopherol,or both as treatment for Alzheimer's disease.Nengl J Med,1997,336:1216-1222.
    [142]Le-Bars PL,Katz MM,Berman N.A placebo-controlled,double blind randomized trial of an extract of Ginkgo biloba for dementia.J Am Med Assoc,1997,278:1327-1332.
    [143]Frei B.Reactive oxygen species and antioxidant vitamins mechanisms of action.Am J Med 1994,97:5S-13S.
    [144]Benzi G,Moretti A.Are reactive oxygen species involved in Alzheimer's disease?Neurobiol Aging,1995,16:661-674.
    [145]Frolich L,Riedener P.Free radical mechanisms in dementia of Alzheimer type and the potential for antioxidative treatment.Arzneimittelforschung,1995,45:443-446.
    [146]Pitehumoni SS,Doraiswamy PM.Current status of antioxidant therapy for Alzheimer's disease.J Am Geriatr Soc,1998,46:1566-1572.
    [147]严镭,吴森.茶多酚对老年性痴呆早期防治的研究.浙江中西医结合杂志,2001,11(9):538-540.
    [148]Nagle DG,Ferreira D,Zhou YD.Epigallocatechin-3-gallate(EGCG):Chemical and biomedical perspectives.Phytochemistry,2006,67:1849-1855.
    [149]Jin JY,Park SH,Bae JH,Cho HC,Lira JG,Park WS,Han J,Lee JH,Song DK.Uncoupling by(-)-epigallocatechin-3-gallate of ATP-sensitive potassium channels from phosphatidylinositol polyphosphates and ATP.Pharmacol Res,2007,56:237-347.
    [150]Adachi N,Tomonaga S,Tachibana T,Denbow DM,Furuse M.(-)-Epigallocatechin gallate attenuates acute stress responses through GABAergic system in the brain.Eur J Pharmacol,2006,531:171-175.
    [151]Fern(?)ndez-Pach(?)n MS,Villa(?)o D,Troneoso AM,Garc(?)a-Parrilla MC.Determination of the phenolic composition of sherry and table white wines by liquid chromatography and their relation with antioxidant activity.Anal Chim Acta,2006,563:101-108.
    [152]Krueger KJ,McClain CJ,McClave SA,Dryden GW.Nutritional supplements and alternative medicine.Curr Opin Gastroen,2004,20:130-138.
    [153]陈思文,陈岳祥,谢渭芬.茶多酚的药理学作用及其在肝病中的应用.国外医学·消化系疾病分册,2005,25(2):109-111.
    [154]Zhang L.Study on the inhibitory effect of huperzine A and EGCG on the acetylcholinesterase activity.Thesis for master degree,Central South University,2006.
    [155]Zeng F,Jiang H,Zhai Y,Zhang H,Chen K,Ji R.Synthesis and aeetylcholinesterase inhibitory activity of huperzine-E2020 combined compound.Bioorg Med Chem Lett,1999,9:3279-3284.
    [156]Raves ML,Harel M,Pang YP,Silman I,Kozikowski AP,Sussman JL.Structure of acetylcholinesterase complexed with the nootropic alkaloid,(-)-huperzine A.Nat Struct Biol,1997,4:57-63.
    [157]Shen SR,Yu HN,Jin CE.Isolation and purification of Huperzine A.J Zhejiang Univ A,2002,25:591-594.
    [158]Ma X,Tan C,Zhu D,Gang DR.A survey of potential huperzine A natural resources in China:The Huperziaceae.J Ethnopharmacol,2006,104:54-67.
    [159]Yamada F,Kozikowski AP,Reddy ER,Pang YP,Miller JH,McKinney M.A route to optically pure(-)-huperzine A;molecular modeling and in vitro pharmacology.J Am Chem Soc,1991,113:4695-4696.
    [160]Almajano MP,Delgado ME,Gordon MH.Changes in the antioxidant properties of protein solutions in the presence of epigallocatechin gallate.Food Chem,2007,101:126- 130.
    [161]Zhang B,Osborne NN.Oxidative-induced retinal degeneration is attenuated by EGCG.Brain Res,2006,1124:176-187.
    [162]Ullmann U,Hailer J,Decourt JP,Girault N,Girault J,Richard-Caudron AS,Pineau B,Weber P.A single ascending dose study of epigallocatechin gallate in healthy volunteers.J Int Med Res,2003,31:88-101.
    [163]Kandagai PB,Seetharamappa J,Shaikh SMT,Manjunatha DH.Binding of trazodone hydrochloride with human serum albumin:A spectroscopic study.J Photochem Photobiol A,2007,185:239-244.
    [164]Jiang CQ,Gao MX,He JX.Anal Chim Acta,2002,452:185.
    [165]Mallick A,Haldar B,Chattopadhyay N.Spectroscopic investigation on the interaction of ICT probe 3-Acetyl-4-oxo-6,7-dihydro-12H Indolo-[2,3-a]quinolizine with serum albumins.J Phys Chem,B 2005,109:14683-14690.
    [166]Sengupta B,Sengupt PK.Biochem Biophys Res Co 2002,299:400.
    [167]Tachiya M.Kinetics of Quenching of Luminescent Probes in Micellar Systems Ⅱ.J Chem Phys,1982,76:340-348.
    [168]F(o|¨)rster T.Modern Quantum Chemistry,Academic Press,New York,1965.
    [169]Timaseff SN.Proteins of Biological Fluids,Pergamon Press,Oxford,1972.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700