用户名: 密码: 验证码:
面向图像融合和图像复原的稀疏表示研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀疏表示是一种新型的图像信息表示理论,能够对图像进行简洁地表示。通过特定的字典,任意图像都可以表示成少数几个原子的线性组合。这些稀疏系数及其对应的原子有效地刻画了图像的内在本质。目前,稀疏表示引起了国内外研究人员广泛关注,并取得了一定的研究成果。但是稀疏表示理论以及相关应用研究仍不完善,一些难点问题亟待解决。因此本论文主要以图像融合和图像复原应用为背景,展开稀疏表示相关理论和应用研究。
     本论文主要研究工作和创新点如下:
     1.提出了一种基于联合稀疏模型的多模图像融合算法。该算法在充分考虑不同传感器之间联系的基础上,首先将同一场景的多模图像构成一个信号整体,然后对信号整体进行联合稀疏表示,将其分解成共同稀疏部分和不同稀疏部分,最后通过共同稀疏部分和不同稀疏部分得到融合图像。通过联合稀疏模型获得的共同稀疏部分和不同稀疏部分充分反映出多模图像之间的内在联系,解决了多模图像中互补信息难以分离的问题。
     2.提出了一种基于稀疏重构的遥感图像融合算法。由于现有遥感卫星无法提供高分辨率多光谱图像,因此已有的基于稀疏表示遥感图像融合方法不能有效地构造高分辨率多光谱图像字典,从而严重制约了此类方法在实际遥感领域中的应用与发展。为了解决这一难题,本文算法采用联合字典学习策略,其中全色图像和低分辨率多光谱图像字典通过样本学习得到,而高分辨率多光谱图像字典从全色图像字典和低分辨率多光谱图像字典中构造出,从而有效地解决了无高分辨率多光谱图像训练样本的难题,极大地提高了算法的实际应用性。此外,本文算法通过联合字典学习策略降低了字典维数、加速了稀疏分解、提高了算法的鲁棒性。
     3.提出了一种纹理约束稀疏表示模型。该模型充分考虑了图像的复杂纹理特性,采用不同类型的纹理字典对图像中相应的纹理区域进行稀疏表示,解决了单个字典不能对整幅图像中所有纹理信息进行有效稀疏表示的问题。此外,本文还提出了一种基于纹理约束稀疏表示的图像超分辨率算法,通过采用不同的纹理字典对相应的纹理区域进行表示提升了算法对纹理细节的超分辨率复原的性能。
     4.提出了一种基于稀疏表示的同步图像融合和图像超分辨率算法。为了获得高分辨率融合图像,传统策略需要分别进行图像融合和图像超分辨率,造成扭曲信息的传递并放大。本文算法充分考虑了图像融合和图像超分辨率之间的相似性,并通过稀疏表示将图像融合和图像超分辨率建立一个有机整体,实现了图像融合和图像超分辨率同步完成,有效地解决了低分辨率图像融合问题。
     5.提出了一种面向群稀疏表示的非凸群稀疏求解模型以及DL-GSGR字典学习算法。群稀疏表示不仅利用了信号的稀疏先验信息,同时还充分考虑了稀疏信号的内在结构,其性能优于传统稀疏表示。针对群稀疏表示求解问题,本文建立了非凸群稀疏求解模型,该模型利用非凸的(?)2,p(0Sparse representation is a novel image representation theory, which can representate an image concisely. Based on a specific dictionary, any image can be expressed as a linear combination of a few atoms, which can reveal the intrinsic properties of image effectively. Currently, sparse representation has drawn a lot of attentions from the international and domestic researchers, and certain research achievements have been obtained. However, the theory of sparse representation and its applications are imperfect, and some difficulties need to be studied further. Therefore, this thesis mainly investigates the theory of sparse representation and its applications for image fusion and image restoration.
     The main contributions of this thesis are as follows:
     1. A multimodal image fusion method based on joint sparse model is proposed. Firstly, the multimodal images for the same scene form a signal ensemble due to the relationship of different sensors. Then, all signals in this ensemble are jointly sparsely represented as common and innovation sparse components. At last, the fused image is generated from the common and innovation sparse components. Specially, the common and innovation sparse components indicate the intrinsic relationship among the multimodal images, which solve the problem of the complementary information separation effectively.
     2. A remote sensing image fusion method based on sparse reconstruction is proposed. The current method based on sparse representation can not construct the dictionary for high resolution multispectral images (MS) effectively due to the shortage of high resolution MS, which hinders the applications and developments of such method. To solve this problem, the proposed method designs a joint dictionaries learning strategy. In this strategy, the dicitionaries for panchromatic image (PAN) and low resolution MS are learned from training set jointly, and the dictionary for high resolution MS is constructed from the dictionaries for PAN and low resolution MS. The proposed method does not need the high resolution MS training set, which makes the method more practical. In addition, the learned dictionaries can reduce the dimensionality of dictionary, speed up the sparse decomposition, and improve the robustness.
     3. A texture constrained sparse representation model is proposed. In this model, different texture dictionaries are used to sparsely represent the corresponding texture regions. So it can solve the problem that the single dictionary could not represent all texture information effectively. In addition, this thesis proposes an image super resolution method based on the texture constrained sparse representation model. The sparse representation with corresponding texture dictionaries can improve the performance of super resolution in restorating the texture details.
     4. A simultaneous image fusion and super resolution method based on sparse representation is proposed. The tradition approaches generate a high-resolution fused image by performing image fusion and super resolution separately, which results in the propagation and magnification of artifacts. Noting that the image fusion and super-resolution have some same foundations, the proposed method makes image fusion and super resolution as an organic whole by sparse representation, which can perform image fusion and super resolution simultaneously, and consequently resolve the problem of low resolution image fusion effectively.
     5. A non-convex group sparse reconstruction model and the DL-GSGR dictionary learning algorithm for group sparse representation are proposed. Group sparse representation employs the sparse prior information and the intrinsic structure of sparse signal, which surpasses the traditional sparse representation. For the group sparse reconstruction problem, this thesis develops a non-convex group sparse reconstruction model. In this model, the non-convex (?)2,p(0
引文
[1]Bruckstein A M, Donoho D L, Elad M. From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Review,2009,51(1): 34-81
    [2]OLshausen B A, Field D J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature,1996,381(6583):607-609
    [3]Mallat S. A wavelet tour of signal processing. New York:Academic Press,2009
    [4]Candes E J. Ridgelets:theory and applications:[Ph. D dissertation]. Stanford: Stanford University,1998
    [5]Candes E J, Donoho D L. Curvelets-a surprisingly effective nonadaptive representation for objects with edges. Nashville, TN:Vanderbilt University Press,1999,105-120
    [6]Candes E J, Demanet L, Donoho D L, et al. Fast discrete curvelet transforms. Multiscale Modeling & Simulation,2006,5(3):861-899
    [7]Do M N, Vetterli M. The contourlet transform:an efficient directional multiresolution image representation. IEEE Transactions on Image Processing, 2005,14(12):2091-2106
    [8]Selesnick I W, Baraniuk R G, Kingsbury N C. The dual-tree complex wavelet transform. IEEE Signal Processing Magazine,2005,22(6):123-151
    [9]Le Pennec E, Mallat S. Sparse geometric image representations with bandelets. IEEE Transactions on Image Processing,2005,14(4):423-438
    [10]Elad M, Aharon M. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing,2006,15(12): 3736-3745
    [11]Mairal J, Bach F, Ponce J, et al. Non-local sparse models for image restoration. In:Proc of IEEE Int Conf on Computer Vision. Kyoto,2009,2272-2279
    [12]Ogawa T, Haseyama M. Missing image data reconstruction based on adaptive inverse projection via sparse representation. IEEE Transactions on Multimedia, 2011,13(5):974-992
    [13]Dong W S, Zhang L, Shi G M, et al. Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Transactions on Image Processing,2011,20(7):1838-1857
    [14]Yang J C, Wright J, Huang T S, et al. Image super-resolution via sparse representation. IEEE Transactions on Image Processing,2010,19(11):2861-2873
    [15]Kulkarni N, Nagesh P, Gowda R, et al. Understanding Compressive Sensing and Sparse Representation Based Super Resolution. IEEE Transactions on Circuits and Systems for Video Technology,2012,22(5):778-789
    [16]Yang B, Li S T. Multifocus image fusion and restoration with sparse representation. IEEE Transactions on Instrumentation and Measurement,2010, 59(4):884-892
    [17]Yang B, Li S T. Pixel-level image fusion with simultaneous orthogonal matching pursuit. Information Fusion,2012,13(1):10-19
    [18]Greer J B. Sparse demixing of hyperspectral images. IEEE Transactions on Image Processing,2012,21(1):219-228
    [19]Candes E J, Romberg J, Tao T. Robust uncertainty principles:exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory,2006,52(2):489-509
    [20]Candes E J, Tao T. Decoding by linear programming. IEEE Transactions on Information Theory,2005,51(12):4203-4215
    [21]Candes E J, Romberg J, Tao T. Stable signal recovery from incomplete and inaccurate measurements. Communications on Pure and Applied Mathematics, 2006,59(8):1207-1223
    [22]Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006,52(4):1289-1306
    [23]Elad M, Figueiredo M T, Ma Y. On the role of sparse and redundant representations in image processing. Proceedings of the IEEE,2010,98(6): 972-982
    [24]Plumbley M D, Blumensath T, Daudet L, et al. Sparse representations in audio and music:from coding to source separation. Proceedings of the IEEE,2010, 98(6):995-1005
    [25]Wright J, Ma Y, Mairal J, et al. Sparse representation for computer vision and pattern recognition. Proceedings of the IEEE,2010,98(6):1031-1044
    [26]Mallat S G, Zhang Z. Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing,1993,41(12):3397-3415
    [27]Tropp J A. Greed is good:algorithmic results for sparse approximation. IEEE Transactions on Information Theory,2004,50(10):2231-2242
    [28]Blumensath T, Davies M E. Gradient pursuits. IEEE Transactions on Signal Processing,2008,56(6):2370-2382
    [29]Donoho D L, Tsaig Y, Drori I, et al. Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit. IEEE Transactions on Information Theory,2012,58(2):1094-1121
    [30]Needell D, Vershynin R. Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit. Foundations of Computational Mathematics,2009,9(3):317-334
    [31]Blumensath T, Davies M E. Normalized iterative hard thresholding:guaranteed stability and performance. IEEE Journal of Selected Topics in Signal Processing, 2010,4(2):298-309
    [32]Jost P, Vandergheynst P, Frossard P. Tree-based pursuit:algorithm and properties. IEEE Transactions on Signal Processing,2006,54(12):4685-4697
    [33]Needell D, Tropp J A. CoSaMP:Iterative signal recovery from incomplete and inaccurate samples. Applied and Computational Harmonic Analysis,2009,26(3): 301-321
    [34]Dai W, Milenkovic O. Subspace pursuit for compressive sensing signal reconstruction. IEEE Transactions on Information Theory,2009,55(5):2230-2249
    [35]Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit. SIAM Review,2001,43(1):129-159
    [36]Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B,1996,58(1):267-288
    [37]Figueiredo M T, Nowak R D, Wright S J. Gradient projection for sparse reconstruction:application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing,2007,1(4):586-597
    [38]Bioucas-Dias J M, Figueiredo M T. A new TwIST:two-step iterative shrinkage/ thresholding algorithms for image restoration. IEEE Transactions on Image Processing,2007,16(12):2992-3004
    [39]Berg E D, Friedlander M P. Probing the pareto frontier for basis pursuit solutions. SIAM Journal on Scientific Computing,2008,31(2):890-912
    [40]Yin W T, Osher S, Goldfarb D, et al. Bregman iterative algorithms for 11-minimization with applications to compressed sensing. SIAM Journal on Imaging Sciences,2008,1(1):143-168
    [41]Gorodnitsky I F, Rao B D. Sparse signal reconstruction from limited data using focuss:a re-weighted minimum norm algorithm. IEEE Transactions on Signal Processing,1997,45(3):600-616
    [42]Lai M J, Wang J Y. An unconstrained 1q minimization with 0< q≤1 for sparse solution of under-determined linear systems. SIAM Journal on Optimization, 2011,21(1):82-101
    [43]Chartrand R. Exact reconstruction of sparse signals. via nonconvex minimization. IEEE Signal Processing Letters,2007,14(10):707-710
    [44]Chartrand R, Staneva V. Restricted isometry properties and nonconvex com-pressive sensing. Inverse Problems,2008,24(3):035020
    [45]Feuer A, Nemirovski A. On sparse representation in pairs of bases. IEEE Transactions on Information Theory,2003,49(6):1579-1581
    [46]Elad M, Bruckstein A M. A generalized uncertainty principle and sparse representation in pairs of bases. IEEE Transactions on Information Theory,2002, 48(9):2558-2567
    [47]Engan K, Aase S O, Hakon-Husoy J. Method of optimal directions for frame design. In:Proc of IEEE Int Conf on Acoustics, Speech, and Signal Processing. Phoenix,1999,2443-2446
    [48]Skretting K, Engan K. Recursive least squares dictionary learning algorithm. IEEE Transactions on Signal Processing,2010,58(4):2121-2130
    [49]Aharon M, Elad M, Bruckstein A. K-SVD:an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing,2006,54(11):4311-4322
    [50]Mairal J, Bach F, Ponce J, et al. Online learning for matrix factorization and sparse coding. Journal of Machine Learning Research,2010,11:19-60
    [51]Burt P J, Adelson E H. The Laplacian pyramid as a compact image code. IEEE Transactions on Communications,1983,31(4):532-540
    [52]Toet A. Image fusion by a ratio of low-pass pyramid. Pattern Recognition Letters, 1989,9(4):245-253
    [53]Toet A, Van Ruyven L J, Valeton J M. Merging thermal and visual images by a contrast pyramid. Optical Engineering,1989,28(7):789-792
    [54]Toet A. A morphological pyramidal image decomposition. Pattern Recognition Letters,1989,9(4):255-261
    [55]Burt P J. A gradient pyramid basis for pattern selective image fusion. Society for Information Display Digest of Technical Papers,1985,16:467-470
    [56]Li H, Manjunath B S, Mitra S. Multisensor image fusion using the wavelet transform. Graphical Models and Image Process,1995,57 (3):235-245
    [57]Chipman L J, Orr T M, Graham L N. Wavelets and image fusion. In:Proc of IEEE Int Conf on Image Processing. Washington,1995,248-251
    [58]Li S T. Multisensor remote sensing image fusion using stationary wavelet transform:effects of basis and decomposition level. International Journal of Wavelets, Multiresolution and Information Processing,2008,6(1):37-50
    [59]Wang H H. A new multiwavelet-based approach to image fusion. Journal of Mathematical Imaging and Vision,2004,21(2):177-192
    [60]Yang X H, Jiao L C, Qi Y, et al. Multifocus image fusion based on multiwavelet and immune clonal selection. Lecture Notes in Computer Science,2006, 4222:805-815
    [61]Lewis J J, Ocallaghan R J, Nikolov S G, et al. Pixel-and region-based image fusion with complex wavelets. Information Fusion,2007,8(2):119-130
    [62]杨晓慧,金海燕,焦李成.基于DT-CWT的红外与可见光图像自适应融合.红外与毫米波学报,2007,26(6):419-424
    [63]De I, Chanda B. A simple and efficient algorithm for multifocus image fusion using morphological wavelets. Signal Processing,2006,86(5):924-936
    [64]Li S T, Kwok J T, Tsang I W H, et al. Fusing images with different focuses using support vector machines. IEEE Transactions on Neural network,2004, 15(6):1555-1561
    [65]Nencini F, Garzelli A, Baronti S, et al. Remote sensing image fusion using the curvelet transform. Information Fusion,2007,8(2):143-156
    [66]Chen T, Zhang J, Zhang Y. Remote sensing image fusion based on ridgelet transform. In:Proc of Int on Geoscience and Remote Sensing Symposium. Seoul, 2005,115-1153
    [67]Yang L, Guo B L, Ni W. Multimodality medical image fusion based on multiscale geometric analysis of contourlet transform. Neurocomputing, 2008,72(1-3):203-211
    [68]Yang S Y, Wang M, Jiao L C, et al. Image fusion based on a new contourlet packet. Information Fusion,2010,11(2):78-84
    [69]Zhang Q, Guo B L. Multifocus image fusion using the nonsubsampled contourlet transform. Signal Processing,2009,89(7):1334-1346
    [70]Miao Q G, Shi C, Xu P F, et al. A novel algorithm of image fusion using shearlets. Optics Communications,2011,284(6):1540-1547
    [71]Pajares G, de la Cruz J M. A wavelet-based image fusion tutorial. Pattern Recognition,2004,37(9):1855-1872
    [72]Tsai R Y, Huang T S. Multipleframe image restoration and registration. In: Advances in computer vision and image processing. Greenwich,1984,317-339
    [73]Keys R G. Cubic convolution interpolation for digital image processing. IEEE Transactions on Acoustics, Speech, and Signal Processing,1981,29(6): 1153-1160
    [74]Kim H, Cha Y, Kim S. Curvature Interpolation method for image zooming. IEEE Transactions on Image Processing,2011,20(7):1895-1903
    [75]Giachetti A, Asuni N. Real time artifact-free image upscaling. IEEE Transactions on Image Processing,2011,20(10):2760-2768
    [76]Li X, Orchard M T. New edge-directed interpolation. IEEE Transactions on Image Processing,2001,10(10):1521-1527
    [77]Irani M, Peleg S. Motion analysis for image enhancement:Resolution, occlusion, and transparency. Journal of Visual Communication and Image representation, 1993,4(4):324-335
    [78]Elad M, Feuer A. Restoration of single super-resolution image from several blurred, noisy and down-sampled measured images. IEEE Transactions on Image Processing,1997,6(12):1646-1658
    [79]Nguyen N, Milanfar P, Golub G H. A computationally efficient image superresolution algorithm. IEEE Transactions on Image Processing,2001,10(4): 573-583
    [80]Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D:Nonlinear Phenomena,1992,60(1-4):259-268
    [81]Li Y, Santosa F. A computational algorithm for minimizing total variation in image restoration. IEEE Transactions on Image Processing,1996,5(6):987-995
    [82]Farsiu S, Dirk Robinson M, Elad M, et al. Fast and robust multiframe super resolution. IEEE Transactions on Image Processing,2004,13(10):1327-1344
    [83]Li X L, Hu Y T, Gao X B, et al. A multi-frame image super-resolution method. Signal Processing,2010,90(2):405-414
    [84]Krishnan D, Fergus R. Fast image deconvolution using hyper-laplacian prior. In: Advances in Neural Information Processing Systems. Vancouver,2009, 1033-1041
    [85]Dai S Y, Han M, Xu W, et al. SoftCuts:a soft edge smoothness prior for color image super-resolution. IEEE Transactions on Image Processing,2009,18(5): 969-981
    [86]Sun J, Sun J, Xu Z B, et al. Gradient profile prior and its applications in image super-resolution and enhancement. IEEE Transactions on Image Processing, 2011,20(6):1529-1542
    [87]Freeman W T, Pasztor E C, Carmichael O T. Learning low-level vision. International Journal of Computer Vision,2000,40(1):25-47
    [88]Chang H, Yeung D, Xiong Y. Super-resolution through neighbor embedding. In: Proc of IEEE Int Conf on Computer Vision and Pattern Recognition. Washington, 2004,275-282
    [89]Fan W, Yeung D. Image hallucination using neighbor embedding over visual primitive manifolds. In:Proc of IEEE Int Conf on Computer Vision and Pattern Recognition. Minneapolis,2007,1-7
    [90]Chan T, Zhang J, Pu J, et al. Neighbor embedding based super-resolution algorithm through edge detection and feature selection. Pattern Recognition Letters,2009,30(5):494-502
    [91]Gao X B, Zhang K B, Tao D C, et al. Image super-resolution with sparse neighbor embedding. IEEE Transactions on Image Processing,2012,21(7):3194-3205
    [92]Zeyde R, Protter M, Elad M. On single image scale-up using sparse representation. Lecture Notes in Computer Science,2012,6920:711-730
    [93]Yang S Y, Liu Z Z, Wang M, et al. Multitask dictionary learning and sparse representation based single-image super-resolution reconstruction. Neurocom-puting,2011,74(17):3193-3203
    [94]Jing G D, Shi Y H, Kong D H, et al. Image super-resolution based on multi-space sparse representation. Multimedia Tools and Applications,2012, doi:10.1007/s11042-011-0953-4
    [95]Tang Y, Yuan Y, Yan P K, et al. Greedy regression in sparse coding space for single-image super-resolution. Journal of Visual Communication and Image Representation,2012, doi:10.1016/j.jvcir.2012.02.003
    [96]孙玉宝,费选,韦志辉,等.基于前向后向算子分裂的稀疏性正则化图像超分辨率算法.自动化学报,2010,36(9):1232-1238
    [97]孙玉宝,韦志辉,肖亮,等.多形态稀疏性正则化的图像超分辨率算法.电子学报.2010,38(12):2898-2903
    [98]练秋生,张伟.基于图像块分类稀疏表示的超分辨率重构算法.电子学报,2012,40(5):920-925
    [99]李民,程建,乐翔,等.稀疏字典编码的超分辨率重建.软件学报,2012,23(5):131-1324
    [100]Wang X G, Tang X O. Hallucinating face by eigentransformation. IEEE Transactions on Systems, Man, and Cybernetics-Part C:Applications and Reviews,2005,35(3):425-434
    [101]Park J, Lee S. An example-based face hallucination method for single-frame, low-resolution facial images. IEEE Transactions on Image Processing,2008, 17(10):1806-1816
    [102]Gunturk B K, Batur A U, Altunbasak Y, et al. Eigenface-domain super-resolution for face recognition. IEEE Transactions on Image Processing, 2003,12(5):597-606
    [103]Ni K S, Nguyen T Q. Image superresolution using support vector regression. IEEE Transactions on Image Processing,2007,16(6):1596-1610
    [104]Yang S Y, Wang M, Wei M R, et al. Evolution-enhanced multiscale overcomplete dictionaries learning for image denoising. Engineering Applications of Artificial Intelligence,2012,25(6):1259-1264
    [105]Liu Q G, Wang S S, Luo J H, et al. An augmented Lagrangian approach to general dictionary learning for image denoising. Journal of Visual Communication and Image Representation,2012,23(5):753-766
    [106]He Y M, Gan T, Chen W F, et al. Multi-stage image denoising based on correlation coefficient matching and sparse dictionary pruning. Signal Processing,2012,92(1):139-149
    [107]蔡泽民,赖剑煌.一种基于超完备字典学习的图像去噪方法.电子学报,2009,37(2):347-350
    [108]李恒建,张家树,陈怀新.一种快速稀疏分解图像去噪新方法.光子学报,2009,38(11):3009-3015
    [109]Buades A, Coll B, Morel J M. A non-local algorithm for image denoising. In: Proc of IEEE Int Conf on Computer Vision and Pattern Recognition. San Diego, 2005,60-65
    [110]Dong W S, Li X, Zhang L, et al. Sparsity-based image denoising via dictionary learning and structural clustering. In:Proc of IEEE Int Conf on Computer Vision and Pattern Recognition. Colorado Springs,2011,457-464
    [111]Mairal J, Elad M, Sapiro G. Sparse Representation for color image restoration. IEEE Transactions on Image Processing,2008,17(1):53-69
    [112]Protter M, Elad M. Image sequence denoising via sparse and redundant representations. IEEE Transactions on Image Processing,2009,18(1):27-35
    [113]Rubinstein R, Zibulevsky M, Elad M. Double sparsity:learning sparse dictionaries for sparse signal approximation. IEEE Transactions on Signal Processing,2010,58(3):1553-1564
    [114]Duarte M F, Sarvotham S, Baron D, et al. Distributed compressed sensing of jointly sparse signals. In:Proc of 39th Asilomar Conf on Signals, Systems and Computer. Pacific Grove,2005,1537-1541
    [115]Li S T, Yang B, Hu J W. Performance comparison of different multi-resolution transforms for image fusion. Information Fusion,2011,12(2):74-84
    [116]Qu G H, Zhang D L, Yan P F. Information measure for performance of image fusion. Electronics Letters,2002,38(7):313-315
    [117]Piella G, Heijmans H. A new quality metric for image fusion. In:Proc of IEEE Int Conf on Image Processing. Barcelona,2003,173-176
    [118]Wang Z, Bovik A C. A universal image quality index. IEEE Signal Processing Letters,2002,9(3):81-84
    [119]Xydeas C S, Petrovic V. Objective image fusion performance measure. Electronics Letters,2000,36(4):308-309
    [120]Lewis J J, Nikolov S G, Canagarajah C N, et al. Uni-modal versus joint segmentation for region-based image fusion. In:Proc of the 9th Int Conf on Information Fusion. Florence,2006,10-13
    [121]Wald L. Some terms of reference in data fusion. IEEE Transactions on Geoscience and Remote Sensing,1999,37(3):1190-1193
    [122]Pohl C, Van Genderen J L. Multisensor image fusion in remote sensing: concepts, methods and applications. International Journal of Remote Sensing, 1998,19(5):823-854
    [123]Tu T M, Huang P S, C. L. Hung, et al. A fast intensity-hue-saturation fusion technique with spectral adjustment for IKONOS imagery. IEEE Geoscience and Remote Sensing Letters,2004,1(4):309-312
    [124]Choi M. A new intensity-hue-saturation fusion approach to image fusion with a tradeoff parameter. IEEE Transactions on Geoscience and Remote Sensing, 2006,44(6):1672-1682
    [125]Chavez P S, Sides S C, Anderson J A. Comparison of three different methods to merge multiresolution and multispectral data:Landsat TM and SPOT panchromatic. Photogrammetric Engineering & Remote Sensing,1991,57(3): 295-303
    [126]Li S T, Kwok J T, Wang Y. Using the discrete wavelet frame transform to merge Landsat TM and SPOT panchromatic images. Information Fusion,2002, 3(1):17-23
    [127]Pradhan P S, King R L, Younan N H, et al. Estimation of the number of decomposition levels for a wavelet-based multiresolution multisensor image fusion. IEEE Transactions on Geoscience and Remote Sensing,2006,44(12): 3674-3686
    [128]Nuuez J. Otazu X, Fors O, et al. Multiresolution-based image fusion with additive wavelet decomposition. IEEE Transactions on Geoscience and Remote Sensing,1999,37(3):1204-1211
    [129]Otazu X, Gonzalez-Audicana M, Fors O, et al. Introduction of sensor spectral response into image fusion methods. Application to wavelet-based methods. IEEE Transactions on Geoscience and Remote Sensing,2005,43(10):2376-2385
    [130]Garzelli A, Nencini F. Interband structure modeling for pansharpening of very high-resolution multispectral images. Information Fusion,2005,6(3):213-224
    [131]Zheng S, Shi W, Liu J, et al. Remote sensing image fusion using multiscale mapped LS-SVM. IEEE Transactions on Geoscience and Remote Sensing,2008, 46(5):1313-1322
    [132]Alparone L, Wald L, Chanussot J, et al. Comparison of pansharpening algorithms:Outcome of the 2006 GRS-S data-fusion contest. IEEE Transactions on Geoscience and Remote Sensing,2007,45(10):3012-3021
    [133]Yang X H, Jiao L C. Fusion algorithm for remote sensing images based on nonsubsampled contourlet transform. ACTA Automatica Sinica,2008,34(3): 274-281
    [134]Choi J, Yu K, Kim Y. A new adaptive component-substitution-based satellite image fusion by using partial replacement. IEEE Transactions on Geoscience and Remote Sensing,2011,49(1):295-309
    [135]Joshi M, Jalobeanu A. MAP Estimation for multiresolution fusion in remotely sensed images using an IGMRF prior model. IEEE Transactions on Geoscience and Remote Sensing,2010,48(3):1245-1255
    [136]Li Z, Leung H. Fusion of multispectral and panchromatic images using a restoration-based method. IEEE Transactions on Geoscience and Remote Sensing,2009,47(5):1482-1491
    [137]Li S T, Yang B. A new pan-sharpening method using a compressed sensing technique. IEEE Transactions on Geoscience and Remote Sensing,2011,49(2): 738-746
    [138]Jiang C, Zhang H Y, Shen H F, et al. A practical compressed sensing-based pan-sharpening method. IEEE Geoscience and Remote Sensing Letters,2012, 9(4):629-633
    [139]Molina R, Vega M, J. Mateos, et al. Variational posterior distribution approximation in Bayesian super resolution reconstruction of multispectral images. Applied and Computational Harmonic Analysis,2008,24(2):251-267
    [140]Aiazzi B, Alparone L, Baronti S, et al. MTF-tailored multiscale fusion of high-resolution MS and Pan imagery. Photogrammetric Engineering & Remote Sensing,2006,72(5):591-596
    [141]Khan M M, Alparone L, Chanussot J. Pansharpening quality assessment using the modulation transfer functions of instruments. IEEE Transactions on Geoscience and Remote Sensing,2009,47(11):3880-3891
    [142]Laben C A, Brower B V. Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening. U.S. Patent.6011875,2000-01-04
    [143]Vega M, Mateos J, Molina R, et al. Super resolution of multispectral images using 11 image models and interband correlation. Journal of Signal Processing Systems,2011,65(3):509-523
    [144]Ranchin T, Aiazzi B, Alparone L, et al. Image fusion—the ARSIS concept and some successful implementation schemes. ISPRS Journal of Photogrammetry and Remote Sensing,2003,58(1/2):4-18
    [145]Yuhas R H, Goetz A H, Boardman J W. Discrimination among semi-arid landscape endmembers using the spectral angle mapper (SAM) algorithm. In: Proc Summaries 4th JPL Airborne Earth Sci Workshop.1992, pp.147-149
    [146]Wald L, Ranchin T, Mangolini M. Fusion of satellite images of different spatial resolutions:Assessing the quality of resulting images. Photogrammetric Engineering & Remote Sensing,1997,63(6):691-699
    [147]Alparone L, Baronti S, Garzelli A, et al. A global quality measurement of pan-sharpened multispectral imagery. IEEE Geoscience and Remote Sensing Letters,2004,1(4):313-317
    [148]Alparone L, Aiazzi B, Baronti S, et al. Multispectral and panchromatic data fusion assessment without reference. Photogrammetric Engineering & Remote Sensing,2008,74(2):193-200
    [149]Cour T, Benezit F, Shi J. Spectral segmentation with multiscale graph decomposition. In:Proc of IEEE Int Conf on Computer Vision and Pattern Recognition. San Diego,2005,1124-1131
    [150]Varma M, Zisserman A. A statistical approach to texture classification from single images. International Journal of Computer Vision,2005,62(1/2):61-81
    [151]Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment:from error visibility to structural similarity. IEEE Transactions on Image Processing,2004, 13(4):600-612
    [152]Oster J, Pietquin O, Kraemer M, et al. Nonlinear Bayesian filtering for denoising of electrocardiograms acquired in a magnetic resonance environment. IEEE Transactions on Biomedical Engineering,2010,57(7):1628-1638
    [153]Dabov K, Foi A, Katkovnik V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Transactions on Image Processing,2007,16(8):2080-2095
    [154]Coupe P, Yger P, Prima S, et al. An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Transactions on Medical Imaging,2008,27(4):425-441
    [155]Rabbani H, Nezafat R, Gazor S. Wavelet-domain medical image denoising using bivariate Laplacian mixture model. IEEE Transactions on Biomedical Engineering,2009,56(12):2826-2837
    [156]Lin J W, Laine A F, Bergmann S R. Improving PET-based physiological quantification through methods of wavelet denoising. IEEE Transactions on Biomedical Engineering,2001,48(2):202-212
    [157]Rabbani H, Vafadust M, Abolmaesumi P, et al. Speckle noise reduction of medical ultrasound images in complex wavelet domain using mixture priors. IEEE Transactions on Biomedical Engineering,2008,55(9):2152-2160
    [158]Wink A M, Roerdink J. Denoising functional mr images:a comparison of wavelet denoising and gaussian smoothing. IEEE Transactions on Medical Imaging,2004,23(3):374-387
    [159]Pizurica A, Philips W, Lemahieu I, et al. A versatile wavelet domain noise filtration technique for medical imaging. IEEE Transactions on Medical Imaging, 2003,22(3):323-331
    [160]Borsdorf A, Raupach R, Flohr T, et al. Wavelet based noise reduction in ct-images using correlation analysis. IEEE Transactions on Medical Imaging, 2008,27(12):1685-1703
    [161]Drapaca C S. A nonlinear total variation-based denoising method with two regularization parameters. IEEE Transactions on Biomedical Engineering,2009, 56(3):582-586
    [162]Wong A, Mishra A K. Quasi-monte Carlo estimation approach for denoising MRI data based on regional statistics. IEEE Transactions on Biomedical Engineering,2011,58(4):1076-1083
    [163]Guo Y, Ruan S, LandreJ, et al. A sparse representation method for magnetic resonance spectroscopy quantification. IEEE Transactions on Biomedical Engineering,2010,57(7):1620-1627
    [164]Li Y, Namburi P, Yu Z, et al. Voxel selection in fMRI data analysis based on sparse representation. IEEE Transactions on Biomedical Engineering,2009, 56(10):2439-2451
    [165]Xu P, Tian Y, Chen H, et al. Lp norm iterative sparse solution for EEG source localization. IEEE Transactions on Biomedical Engineering,2007,54(3):400-409
    [166]Wang G, Bresler Y, Ntziachristos V. Compressive sensing for biomedical imaging. IEEE Transactions on Medical Imaging,2011,30(5):1013-1016
    [167]Huang J, Zhang T. The benefit of group sparsity. Annals of Statistics,2010, 38(4):1978-2004
    [168]Rosenblum K, Zelnik-Manor L, Eldar Y C. Dictionary optimization for block-sparse representations. In:AAAI Fall 2010 Symposium on Manifold Learning. Arlington,2010,50-58
    [169]Eldar Y C, Kuppinger P, Bolcskei H. Block-sparse signals:uncertainty relations and efficient recovery. IEEE Transactions Signal Processing,2010, 58(6):3042-3054
    [170]Yuan M, Lin Y. Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society Series B-Statistical Methodology,2006,68(1):49-67
    [171]Majumdar A, Ward R K. Fast group sparse classification. Canadian Journal of Electrical and Computer Engineering,2009,34(4):136-144
    [172]Duarte M F, Davenport M A, Takhar D, et al. Single-pixel imaging via compressive sampling. IEEE Signal Processing Magazine,2008,25(2):83-91
    [173]Lustig M, Donoho D L, Pauly J M. Sparse MRI:the application of compressed sensing for rapid MR imaging. Magnetic Resonance in Medicine, 2007,58(6):1182-1195
    [174]Lustig M, Donoho D L, Santos J M, et al. Compressed sensing MRI. IEEE Signal Processing Magazine,2008,25(2):72-82
    [175]Akcakaya M, Nam S, Hu P, et al. Compressed sensing with wavelet domain dependencies for coronary MRI: a retrospective study. IEEE Transactions on Medical Imaging,2011,30(5):1090-1099
    [176]Ravishankar S, Bresler Y. MR image reconstruction from highly undersampled k-space data by dictionary learning. IEEE Transactions on Medical Imaging,2011,30(5):1028-1041
    [177]Montefusco L B, Lazzaro D, Papi S, et al. A fast compressed sensing approach to 3d MR image reconstruction. IEEE Transactions on Medical Imaging,2011, 30(5):1064-1075
    [178]Ye X, Chen Y, Huang F. Computational acceleration for MR image reconstruction in partially parallel imaging. IEEE Transactions on Medical Imaging,2011,30(5):1055-1063
    [179]Majumdar A, Ward R K. Exploiting rank deficiency and transform domain sparsity for MR image reconstruction. Magnetic Resonance Imaging,2012, 30(1):9-18
    [180]Potter L C, Ertin E, Parker J T, et al. Sparsity and compressed sensing in radar imaging. Proceedings of the IEEE,2010,98(6):1006-1020
    [181]Mishali M, Eldar Y. From theory to practice:Sub-Nyquist sampling of sparse wideband analog signals. IEEE Journal of Selected Topics on Signal Processing, 2010,4(2):375-391
    [182]Gomaa A, Al-Dhahir N. A new design framework for sparse FIR MIMO equalizers. IEEE Transactions on Communications,2011,59(8):2132-2140
    [183]Bobin J, Starck J L, Ottensamer R. Compressed sensing in astronomy. IEEE Journal of Selected Topics in Signal Processing,2008,2(5):718-726
    [184]Baraniuk R G. Compressive sensing. IEEE Signal Processing Magazine,2007, 24(4):118-121
    [185]Edwards J. Focus on compressive sensing. IEEE Signal Processing Magazine, 2011,28(2):11-13
    [186]Romberg J. Imaging via compressive sampling. IEEE Signal Processing Magazine,2008,25(2):14-20
    [187]李树涛,魏丹.压缩传感综述.自动化学报,2009,35(11):1369-1377
    [188]石光明,刘丹华,高大化,等.压缩感知理论及其研究进展.电子学报,2009,37(5):1070-1081
    [189]焦李成,杨淑媛,刘芳,等.压缩感知回顾与展望.电子学报,2011,39(7):1651.1662
    [190]戴琼海,付长军,季向阳.压缩感知研究.计算机学报,2011,34(4):425-434
    [191]杨海蓉,张成,丁大为,等.压缩传感理论与重构算法.电子学报,39(1):142-148
    [192]Eldar Y C, Mishali M. Robust recovery of signals from a structured union of subspaces. IEEE Transactions on Information Theory,2009,55(11):5302-5316
    [193]Cai D, He X, Han J, et al. Graph regularized nonnegative matrix factorization for data representation. IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(8):1548-1560
    [194]Gudbjartsson H, Patz S. The Rician distribution of noisy MRI data. Magnetic Resonance in Medicine,1995,34(6):910-914
    [195]Bao P. Zhang L. Noise reduction for magnetic resonance images via adaptive multiscale products thresholding, IEEE Transactions on Medical Imaging,2003, 22(9):1089-1099
    [196]Dupe F X, Fadili J M, Starck J L. A proximal iteration for deconvolving Poisson noisy images using sparse representation. IEEE Transactions on Image Processing,2009,18(2):310-321
    [197]Brain Web. http://brainweb.bic.mni.mcgill.ca/brainweb/
    [198]Foi A. Noise estimation and removal in MR imaging:the variance stabilization approach. In:Proc IEEE Int Symp Biomedical Imaging:From Nano to Macro. Chicago,2011,1809-1814
    [199]Manjon J V, Carbonell-Caballero J, Lull J J, et al. MRI denoising using non-local means. Medical Image Analysis,2008,12(4):514-523
    [200]Dabov K, Foi A, Egiazarian K. Video denoising by sparse 3D transform-domain collaborative filtering. In:Proc European Signal Processing Conf. Poznan,2007,145-149

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700