用户名: 密码: 验证码:
非完美测试条件下的测试性设计理论与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
测试性设计对降低装备的全寿命周期费用、提高装备的故障诊断性能、保证装备的安全运行具有重要的意义。然而,随着测试性工程逐步深入应用于空间站等复杂装备,当前以完美测试(perfect test)假设(0-1相关性)为基础的测试性设计理论暴露出不少的问题。比如:在设计阶段未对诊断时效性进行评估和优化设计,使得系统可能存在一定的设计缺陷;测试性理论对工程中存在的测试不可靠和时延等因素考虑不够充分,导致所构建的诊断系统虚警率和漏检率普遍偏高;基于现有测试性理论构建序贯诊断策略的过程中仅针对测试执行费用进行序列优化,使得维修诊断策略全寿命周期费用偏高。
     测试性工程应用中存在的上述问题,主要是由于现有测试性设计过程的完美测试假设以及相关的建模、分析、推理方法与实际工程问题不完全匹配,进行了不合理简化造成的。为此,本文针对上述问题系统研究了非完美测试条件下的测试性设计理论和方法。在此,非完美测试(imperfect test)指的是针对确定的故障状态,测试结果(正常或异常)不确定或与时间相关的测试。与测试性设计流程一致,论文研究围绕非完美测试条件下的测试性建模、测试优化选择、动态故障诊断、序贯诊断等关键问题展开,对非完美测试条件下的测试性设计理论和方法进行了探索。具体包括:
     (1)研究了非完美测试条件下的测试性建模和信息描述方式,实现了测试不可靠、时延、故障耦合传播等信息的有效表达,为后续测试性设计工作的开展奠定了基础。
     (2)提出了非完美测试条件下的测试性评价指标计算方法,研究了非完美测试的优化选择问题,对其进行了数学描述,提出采用遗传算法和拉格朗日松弛算法进行求解。针对遗传算法,设计了整体计算流程,提出了生成可行解的启发式方法,对测试不可靠、时延、多值、非独立费用测试等各种非完美测试情形下的测试选择问题进行了详细论述。针对拉格朗日松弛算法,推导了问题分解策略,将原始问题划分为三个可解子问题进行求解。通过实例和仿真验证说明了两种方法的有效性和不同特点。
     (3)提出了含时延特性的动态耦合故障诊断推理(Delay Dynamic CoupledFaults Diagnosis, DDCFD)模型,有效克服了传统模型对测试不可靠、时延、故障耦合传播等因素表达能力不足而导致的虚警、漏检等问题。由于基于DDCFD模型的推理问题不具有可分解结构,提出了部分采样算法(Partial-sampling Algorithm)和分块坐标上升-维特比算法(Block Coordinate Ascent with the Viterbi Algorithm,BCV算法)进行诊断推理。在部分采样算法中,利用边界求解,有效减少了重复运算的次数,提高了推理速度。在分块坐标上升-维特比算法中,利用循环迭代策略简化了问题的求解,采用软状态的方式有效克服了局部最优的问题。针对高阶马尔可夫链的状态求解问题,推导了高阶维特比算法。通过仿真试验对所提的模型和算法进行了验证,得出了两种算法的特点,总结了不同参数对算法的影响。验证结果表明DDCFD模型以及两种推理算法可有效解决含时延及耦合特性的动态故障诊断推理问题,两种算法具有不同的特性,适用于具有不同长度时延的情形。
     (4)研究了面向全寿命周期的序贯诊断策略优化生成问题,对该问题的来源和内涵进行了阐述,并进行了数学推导。针对非完美测试一般情形和完美测试这一子情形提出了基于与或图搜索的算法,并提出了简化计算的策略。通过仿真实验及算法对比证明了所提算法生成的诊断策略优于传统方法生成的诊断策略,具有更低的全寿命周期费用。
     (5)以某航天器热控分系统为例对本文所提的非完美测试条件下的测试性设计有关理论方法进行了应用验证,系统实现了包含测试性建模、测试优化选择、动态故障诊断、序贯诊断的测试性设计技术流程,并与传统的基于完美测试假设所得的测试性设计结果进行了对比。结果表明,所提方法可有效实现非完美测试条件下的测试性设计,提高了诊断系统的诊断精度,减少了序贯诊断策略的全寿命周期费用。相关成果可推广应用于其它分系统和装备,在实现装备安全运行、高效保障上发挥重要作用。
Testability design has an important significance in reducing life cycle cost of theequipment, improving the performance of the diagnostic systems and the guarantee ofequipment safe running. However, some problems are met when the testability theorybased on perfect test assumption (0-1dependency relationship) is applied to thecomplex equipment such as the space station. For example, the diagnostic timeliness isnot taken into account when designing the diagnostic systems, which may leads to theexistence of critical design defects in the equipment; false alarm rate and missingdetection rate are commonly high because the unreliability and latency of the tests is notfully considered; the optimal generation of the sequential fault diagnostic strategy isonly based on the execution cost of the tests, which may result in a high life cycle cost.
     The problems discussed above are basically caused by the unreasonable perfect testassumption and the testability modeling, analysis and inference method based on it. Inorder to resolve these problems, the testability design theory and method with imperfecttests is studied in this thesis, where imperfect tests denote those tests that are unreliableand have test latency. The research on testability modeling, test selection, dynamic faultdiagnosis and sequential fault diagnosis based on imperfect tests is carried out accordingto the design process of testability, which forms a whole testability design theoreticalsystem. The details of the content are as follows.
     (1) Testability modeling and information expression method based on imperfecttest assumption is proposed, where test delay, unreliable test and fault propagation canbe effectively modeled, which lay a good foundation for the consequential testabilitydesign process.
     (2) Testability evaluation method with imperfect tests is proposed. The imperfecttest selection problem is formulated. A genetic algorithm (GA) and a LagrangianRelaxation Algorithm (LRA) are proposed to solve the problem. A heuristic method togenerate the feasible solution in GA is formulated. GA is a general approach for solvingthe problem with imperfect tests including the scenarios with delayed and multiple testoutcomes, non-independent cost, et al. The LRA overcomes the computationalcomplexity of the primal optimization problem by decomposing it into three tractablesub-problems. Theoretical analysis and simulation experiments show that the twomethods are effective to solve the test selection problem, with different characteristics.
     (3) A delay dynamic coupled fault diagnosis (DDCFD) model to deal with theproblem of coupled fault diagnosis with fault propagation/transmission delays andobservation delays with imperfect test outcomes is proposed, which has the potential toreduce the false alarm rate and missing detection rate of the diagnostic systems. Sincethe faults are coupled, the problem does not have a decomposable structure. Consequently, we propose a Partial-sampling method and a method based on blockcoordinate ascent and the Viterbi algorithm (BCV) to deal with the coupled-stateproblem. By reducing the number of samples and avoiding redundant computations, thecomputation time of Partial-sampling method is substantially smaller than the regularAnnealed MAP method with no noticeable impact on diagnostic accuracy. This BCValgorithm reduces complexity by assuming all other faults to be constant from theprevious iteration when computing the state sequence of a component. Furthermore, thelocal maximum is escaped by using soft state relaxation. For the state estimationproblem of single Markov chain, a high order Viterbi algorithm is formulated. Finally,we test the inference algorithms proposed in this paper by applying them to systems ofdifferent complexity. Some conclusions are obtained, which indicate that the twomethods have different performances in different applying scenarios. They are suitablefor the systems with long delays and short delays, respectively.
     (4) The test sequencing problem considering life cycle cost is firstly addressed,which is formulated as a complex optimization problem. For the cases with imperfecttests and its special scenario that the tests are perfect, two algorithms and theirvariations reducing the computational time are proposed based on AND/OR graphsearch. Comparisons based on the simulation and the application results show that thediagnostic strategy generated by the proposed algorithms is better than the one obtainedby the traditional method, which has a lower life cycle cost.
     (5) The theory and method proposed in this thesis are applied on the thermalcontrol system of a spacecraft. The technical process consisting of testability modeling,test selection, dynamic fault diagnosis and sequential fault diagnosis based on imperfecttest assumption is realized. Meanwhile, the similar process is implemented using theexisting theory based on perfect test assumption. Comparisons are made, which indicatethat the proposed theoretical system has a better performance (e.g., more accuratereal-time diagnostic result, lower life cycle cost of the sequential fault diagnosticstrategy, et al.) in realizing testability design with imperfect tests. It has the greatpotential to be applied to other systems and equipment.
引文
[1] GJB2547-95,装备测试性大纲GJB2547-95[S].
    [2] MIL-STD-2165A, Military Standard Testability Program for Systems andEquipments[S].
    [3] QJ3051-1998,航天产品测试性设计准则[S].
    [4] QJ3050-1998,航天产品故障模式、影响及危害分析指南[S].
    [5]张勇.装备测试性虚拟验证试验关键技术研究[D].长沙:国防科学技术大学机电工程与自动化学院,2012.
    [6] Erdinc Q, Brideau C, Willett P, et al. The Problem of Test Latency in MachineDiagnosis [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans,2008,38(1):88~92.
    [7]黄志坚,袁周.液压设备故障诊断与监测实用技术[M].北京:机械工业出版社,2005.
    [8] Kurtoglu T, Johnson S B, Barszcz E, et al. Integrating System HealthManagement into the Early Design of Aerospace Systems Using FunctionalFault Analysis [C]//International Conference on Prognostics and HealthManagement, Denver, Colorado, USA,2008:1~11.
    [9] Dod-Hdbk-791, Maintainability Design Techniques [M].1988.
    [10]温熙森,徐永成,易晓山等.智能机内测试理论与应用[M].北京:国防工业出版社,2002.
    [11]胡政.边界扫描测试理论方法研究[D].国防科学技术大学,1998.
    [12]温熙森,胡政,易晓山等.可测试性技术的现状与未来[J].测控技术,2000,19(1):9~12.
    [13]陈希祥.装备测试性方案优化设计技术研究[D].长沙:国防科学技术大学机电工程与自动化学院,2011.
    [14]钱彦岭.测试性建模技术及其应用研究[D].长沙:国防科学技术大学机电工程与自动化学院,2002.
    [15] Franco John R J. Experiences Gained Using the Navy's IDSS Weapon SystemTestability Analyzer [C]//IEEE International Automatic Testing Conference,Futuretest (AUTOTESTCON'88), Minneapolis, MN, USA: IEEE,1988:129~132.
    [16] Franco J. WSTA-the IDSS Weapon System Testability Analyzer[C]//AUTOTESTCON'87, San Francisco, California, USA,1987:435~440.
    [17] Pillari J, Pertowski T, Protin A, et al. Integrating Testability Analysis Toolswith Automatic Test Systems (ATS)[C]//AUTOTESTCON '95, Atlanta,Georgia, USA,1995:503~507.
    [18] Gould E. Modeling It Both Ways: Hybrid Diagnostic Modeling and itsApplication to Hierarchical System Designs [C]//AUTOTESTCON2004:IEEE,2004:576~582.
    [19] Simpson W R. The Application of the Testability Discipline to Full SystemAnalysis [C]//1983Automatic Test Program Generation Workshop, SanFrancisco, California, USA,1983:12~18.
    [20] Simpson W R. Active Testability Analysis and Interactive Fault IsolationUsing STAMP [C]//IEEE AUTOTESTCON'87Conference, San Francisco,California, USA: IEEE,1987:105~112.
    [21] Pattipati K R, Deb S, Dontamsetty M, et al. Start: System Testability Analysisand Research Tool [J]. IEEE Aerospace and Electronic Systems Magazine,1991,6(1):13~20.
    [22] QSI. Testability Engineering and Maintenance System (Teams) Tool[EB/OL].http://www.teamsqsi.com,2012-6-25.
    [23]曲东才.系统可测试性与航空武器系统[J].测控技术,1997,16(2):8~10.
    [24]刘冠军.基于边界扫描的智能板级BIT技术研究[D].长沙:国防科学技术大学机电工程与自动化学院,2000.
    [25]陈刚勇.复杂系统分层诊断策略优化技术研究[D].长沙:国防科学技术大学机电工程与自动化学院,2008.
    [26]刘津.回路系统诊断策略优化技术研究[D].长沙:国防科学技术大学机电工程与自动化学院,2009.
    [27]吕克洪.基于时间应力分析的BIT降虚警与故障预测技术研究[D].长沙:国防科学技术大学机电工程与自动化学院,2008.
    [28]杨鹏.基于相关性模型的诊断策略优化设计技术[D].国防科学技术大学机电工程与自动化学院,2008.
    [29]李天梅.装备测试性验证试验优化设计与综合评估方法研究[D].长沙:国防科学技术大学机电工程与自动化学院,2010.
    [30]苏永定.装备系统测试性需求分析技术研究[D].长沙:国防科学技术大学机电工程与自动化学院,2011.
    [31]沈亲沐.装备系统级测试性分配技术研究及应用[D].长沙:国防科学技术大学机电工程与自动化学院,2007.
    [32]王刚.装备测试性参数优化选择技术研究[D].长沙:国防科学技术大学机电工程与自动化学院,2010.
    [33]邱静,刘冠军,杨鹏等.装备测试性建模与设计技术[M].北京:科学出版社,2012.
    [34]石君友,张鑫,邹天刚.多信号建模与诊断策略设计技术应用[J].系统工程与电子技术,2011,33(4):811~815.
    [35]石君友,田仲.故障诊断策略的优化方法[J].航空学报,2003,24(3):212~215.
    [36]石君友,龚晶晶,徐庆波.考虑多故障的测试性建模改进方法[J].北京航空航天大学学报,2010,36(3):270~273,298.
    [37]田仲,石君友.系统测试性设计分析与验证[M].北京:北京航空航天大学出版社,2003.
    [38]张延生,黄考利,陈建辉.基于遗传算法的测试性优化分配方法[J].测试技术学报,2011,25(2):153~157.
    [39]薛凯旋,黄考利,张玮昕等.基于多信号模型的测试性分析与故障诊断策略设计[J].弹箭与制导学报,2008,28(4):225~227,305.
    [40]王宝龙,黄考利,苏林等.基于遗传算法的复杂电子装备测试性优化分配[J].计算机测量与控制,2007,15(7):925~928.
    [41]连光耀,王卫国,黄考利等.基于粒子群优化算法的测试选择优化方法研究[J].计算机测量与控制,2008,16(10):1387~1389.
    [42]龙兵.多信号建模与故障诊断方法及其在航天器中的应用研究[D].哈尔滨:哈尔滨工业大学,2005.
    [43]龙兵,王日新,姜兴渭.多信号模型航天器配电系统最优测试技术[J].哈尔滨工业大学学报,2005,37(4):440~443.
    [44]龙兵,姜兴渭,宋政吉.基于多信号模型航天器多故障诊断技术研究[J].宇航学报,2004,25(5):591~594.
    [45]王子玲,许爱强.基于最小碰集的多故障诊断算法研究[J].兵工学报,2010,31(3):337~342.
    [46]王子玲,许爱强,牛双诚.基于多故障假设的诊断策略研究与应用[J].工程设计学报,2009,16(4):281~285.
    [47]王子玲,许爱强,王文双等.基于扩展单故障策略的多故障诊断算法[J].海军航空工程学院学报,2009,24(6):695~698.
    [48]孔令宽.基于多信号模型的卫星故障诊断技术研究[D].长沙:国防科学技术大学机电工程与自动化学院,2009.
    [49]向睿.在轨卫星远程诊断关键技术研究[D].长沙:国防科学技术大学机电工程与自动化学院,2009.
    [50]张帅.基于多信号模型的空间站测试性设计技术研究[D].长沙:国防科学技术大学机电工程与自动化学院,2011.
    [51] Simpson W R, Sheppard J W. System Complexity and Integrated Diagnostics[J]. IEEE Design&Test of Computers,1991,8(3):16~30.
    [52] Sheppard J W, Simpson W R. A Mathematical Model for IntegratedDiagnostics [J]. IEEE Design&Test of Computers,1991,8(4):25~38.
    [53] Sheppard J W, Simpson W R. Applying Testability Analysis for IntegratedDiagnostics [J]. IEEE Design&Test of Computers,1992,9(3):65~78.
    [54] Simpson W R, Sheppard J W. System Testability Assessment for IntegratedDiagnostics [J]. IEEE Design&Test of Computers,1992,9(1):40~54.
    [55] Simpson W R, Sheppard J W. System Test and Diagnosis [M].Springer,1994.
    [56] Deb S, Pattipati K R, Shrestha R. QSI 'S Integrated Diagnostics Toolset[C]//IEEE Autotestcon, Anaheim, CA: IEEE,1997:408~421.
    [57] Deb S, Pattipati K R, Raghavan V, et al. Multi-Signal Flow Graphs:a NovelApproach for System Testability Analysis and Fault Diagnosis [C]//IEEEAUTOTESTCON, Anaheim, CA: IEEE,1994:361~373.
    [58] Deb S, Ghoshal S, Mathur A, et al. Multisignal Modeling for Diagnosis,FMECA, and Reliability [C]//IEEE International Conference on Systems, Man,and Cybernetics, San Diego, CA: IEEE,1998:3026~3031.
    [59] Patterson-Hine A, Deb S, Kulkarni D, et al. Automated System Checkout toSupport Predictive Maintenance for the Reusable Launch Vehicle [C]//IEEEInternational Conference on Systems, Man, and Cybernetics, La Jolla, CA,USA,1998.
    [60] Deb S, Domagala M C, Shrestha M R, et al. Model-Based TestabilityAssessment and Directed Troubleshooting of Shuttle Wiring Systems[C]//SPIE AeroSense Conference, Orlando, FL, USA,2001:163~173.
    [61] Deb S, Domagala C, Ghosal S, et al. Remote Diagnosis of the InternationalSpace Station Utilizing Telemetry Data [C]//SPIE,2001:60~71.
    [62] Raghuraj R, Bhushan M, Rengaswamy R. Locating Sensors in ComplexChemical Plants Based On Fault Diagnostic Observability Criteria [J]. AIChEjournal,1999,45(2):310~322.
    [63] Bhushan M, Rengaswamy R. Design of Sensor Network Based On the SignedDirected Graph of the Process for Efficient Fault Diagnosis [J]. Industrial&engineering chemistry research,2000,39(4):999~1019.
    [64] Bagajewicz M, Fuxman A, Uribe A. Instrumentation Network Design andUpgrade for Process Monitoring and Fault Detection [J]. AIChE journal,2004,50(8):1870~1880.
    [65] Zhang Y, Chen X, Liu G, et al. Optimal Test Points Selection Based OnMulti-Objective Genetic Algorithm [C]//2009IEEE Circuits and SystemsInternational Conference on Testing and Diagnosis, Chengdu, China: IEEE,2009:1~4.
    [66] Spanache S, Escobet T, Travé-Massuyès L. Sensor Placement OptimisationUsing Genetic Algorithms [C]//15th International Workshop on Principles ofDiagnosis, Carcassonne, France: Citeseer,2004:179~184.
    [67] Santi L M, Sowers T, Aguilar R. Optimal Sensor Selection for HealthMonitoring Systems [C]//41st Joint Propulsion Conference and Exhibit, Tucson,AZ, USA: Citeseer,2005:1~22.
    [68] Narasimhan S, Mosterman P J, Biswas G. A Systematic Analysis ofMeasurement Selection Algorithms for Fault Isolation in Dynamic Systems[C]//9th Int. Workshop DX, Cape Cod, MA, USA,1998:94~101.
    [69] Yan Y. Sensor Placement and Diagnosability Analysis at Design Stage[C]//16th European Conference on Artificial Intelligence, Valencia, Spain:Citeseer,2004:1~7.
    [70] Fijany A, Vatan F. A New Efficient Algorithm for Analyzing and Optimizingthe System of Sensors [C]//2006IEEE Aerospace Conference, Big Sky, MT,USA: IEEE,2006:1~12.
    [71] Sarrate R, Puig V, Escobet T, et al. Optimal Sensor Placement forModel-Based Fault Detection and Isolation [C]//46th IEEE Conference onDecision and Control, New Orleans, LA, USA: IEEE,2007:2584~2589.
    [72] Nejjari F, Sarrate R, Rosich A. Optimal Sensor Placement for Fuel Cell SystemDiagnosis Using Bilp Formulation [C]//18th Mediterranean Conference onControl&Automation, Marrakech, Morocco: IEEE,2010:1296~1301.
    [73]陈希祥,邱静,刘冠军.基于混合二进制粒子群-遗传算法的测试优化选择研究[J].仪器仪表学报,2009,30(8):1674~1680.
    [74]蒋荣华,王厚军,龙兵.基于离散粒子群算法的测试选择[J].电子测量与仪器学报,2008,22(2):11~15.
    [75] Yang C, Tian S, Long B. Application of Heuristic Graph Search to Test-PointSelection for Analog Fault Dictionary Techniques [J]. IEEE Transactions onInstrumentation and Measurement,2009,58(7):2145~2158.
    [76] Prasad V C, Babu N S C. Selection of Test Nodes for Analog Fault Diagnosisin Dictionary Approach [J]. IEEE Transactions on Instrumentation andMeasurement,2000,49(6):1289~1297.
    [77] Pinjala K K, Kim B C. An Approach for Selection of Test Points for AnalogFault Diagnosis [C]//18th IEEE International Symposium on Defect and FaultTolerance in VLSI Systems, Boston, MA, USA: IEEE,2003:287~294.
    [78] Starzyk J A, Liu D, Liu Z, et al. Entropy-Based Optimum Test Points Selectionfor Analog Fault Dictionary Techniques [J]. IEEE Transactions onInstrumentation and Measurement,2004,53(3):754~761.
    [79] Golonek T, Rutkowski J. Genetic-Algorithm-Based Method for OptimalAnalog Test Points Selection [J]. IEEE Transactions on Circuits and Systems II:Express Briefs,2007,54(2):117~121.
    [80] Zhang C, He G, Liang S. Test Point Selection of Analog Circuits Based OnFuzzy Theory and Ant Colony Algorithm [C]//2008IEEE AUTOTESTCON,Salt Lake Cirty, UT, USA: IEEE,2008:164~168.
    [81] Deb S, Mathur A, Willet P K, et al. De-Centralized Real-Time Monitoring andDiagnosis [C]//IEEE International Conference on Systems, Man, andCybernetics, San Diego, USA,1998.
    [82] Deb S, Ghoshal S, Malepati V N, et al. Tele-Diagnosis: Remote Monitoring ofLarge-Scale Systems [C]//IEEE Aerospace Conference, Big Sky, MT, USA:IEEE,2000:31~42.
    [83] Mathur A, Deb S, Pattipati K R. Modeling and Real-Time Diagnostics inTeams-Rt [C]//American Control Conference, Philadelphia, Pennsylvania,1998:1610~1614.
    [84] Cavanaugh K. An Integrated Diagnostics Virtual Test Bench for Life CycleSupport [C]//IEEE Aerospace Conference, Big sky, MT, USA: IEEE,2001:3246.
    [85] Deb S, Ghoshal S, Malepati V N, et al. Remote Diagnosis Server [C]//The19thDigital Avionics Systems Conference: IEEE,2000.
    [86] Luo J, Tu F, Azam M S, et al. Intelligent Model-Based Diagnostics for VehicleHealth Management [J]. Proceedings of SPIE, System Diagnosis and Prognosis:Security and Condition Monitoring,2003,5107(III):13~26.
    [87] Deb S, Malepati V N, Paquet M D, et al. Validation of a COTS EHM Solutionfor the JSF Program [C]//IEEE Aerospace Conference, Big Sky, MT, USA:IEEE,2006:1~7.
    [88] Azam M, Pattipati K, Allanach J, et al. In-Flight Fault Detection and Isolationin Aircraft Flight Control Systems [C]//IEEE Aerospace Conference, Big Sky,MT, USA: IEEE,2005:3555~3565.
    [89] Luo J, Ghoshal S, Pattipati K R. Distributed Fault Diagnosis UsingDependency Modeling without Revealing Subsystem Details [C]//IEEEAerospace Conference, Big Sky, MT, USA,2008:1~10.
    [90] Kodali A, Singh S, Pattipati K. Dynamic Set-Covering for Real-Time MultipleFault Diagnosis [C]//IEEE Aerospace Conference, Big Sky, Montana, USA:IEEE,2008:1~11.
    [91]龚勇,景小宁,陈云翔等.基于多信号流图的飞控系统实时故障诊断[J].电光与控制,2006,13(6):89~92.
    [92] Long B, Song Z, Jiang X. On-Line Monitoring and Diagnosis for SatelliteTelemetry Data [J]. Aircraft Engineering and Aerospace Technology,2005,77(1):42~51.
    [93]李寅啸,王宏力,侯青剑.惯性测量组合在线诊断系统研究[J].计算机测量与控制,2009,17(12):2363~2364,2367.
    [94]赵建军,梁翔宇,张小枫等.基于多信号模型的武器装备故障诊断系统设计[J].电子测量技术,2008,31(11):103~107.
    [95]王秋生,樊久铭,徐敏强等.基于解析冗余关系的动态系统故障检测和隔离[J].哈尔滨工业大学学报,2007,39(6):924~927.
    [96]帕孜来·马合木提,张健.基于键合图模型的新型解析冗余关系故障诊断方法研究[J].自动化技术与应用,2011,30(10):60~63,71.
    [97] Raghavan V, Shakeri M, Pattipati K. Optimal and Near-Optimal TestSequencing Algorithms with Realistic Test Models [J]. IEEE Transactions onSystems, Man, and Cybernetics-Part A: Systems and Humans,1999,29(1):11~26.
    [98] Pattipati K R, Alexandridis M G. Application of Heuristic Search andInformation Theory to Sequential Fault Diagnosis [J]. IEEE Transactions onSystems, Man, and Cybernetics-Part A: Systems and Humans,1990,20(4):872~886.
    [99] Shakeri M, Raghavan V, Pattipati K R, et al. Sequential Testing Algorithms forMultiple Fault Diagnosis [J]. IEEE Transactions on Systems, Man, andCybernetics-Part A: Systems and Humans,2002,30(1):1~14.
    [100] Shakeri M, Pattipati K R, Raghavan V, et al. Near-Optimal Sequential TestingAlgorithms for Multiple Fault Isolation [C]//IEEE International Conference onSystems, Man, and Cybernetics,'Humans, Information and Technology', SanAntonio, TX, USA: IEEE,1994:1908~1913.
    [101] Shakeri M, Pattipati K R, Raghavan V, et al. Sequential Test Strategies forMultiple Fault Isolation [C]//AUTOTESTCON95, Atlanta, GA, USA: IEEE,1995:512~527.
    [102] Gao L, Zeng G. A Novel Sequential Testing Algorithm Based OnRough-Compact Sets Theory for Multiple Fault Diagnosis [C]//WorldCongress on Computer Science and Information Engineering, Wilshire GrandLos Angeles, USA: IEEE,2009:17~23.
    [103] Gao L, Zeng G. Dynamic Testing Algorithm Based On Rough Sets forMultiple Fault Diagnosis [C]//Fifth International Conference on Fuzzy Systemsand Knowledge Discovery, Shandong, China: IEEE,2008:157~163.
    [104]闫鹏程,连光耀,刘晓芹等.基于多故障模糊组的序贯多故障诊断方法[J].计算机测量与控制,2012,20(1):34~37.
    [105]王红霞,潘红兵,叶晓慧.多故障的测试序列问题研究[J].兵工学报,2011,32(12):1518~1523.
    [106] Raghavan V, Shakeri M, Pattipati K R. Test Sequencing Problems Arising inTest Planning and Design for Testability [J]. IEEE Transactions on Systems,Man, and Cybernetics-Part A: Systems and Humans,1999,29(2):153~163.
    [107] Raghavan V, Pattipati K R. Near-Optimal Test Sequencing Algorithms forSequential Fault Diagnosis [C]//The Third Annual Atlantic TestWorkshop(ATW94): IEEE,1994:1~4.
    [108] Biasizzo A, u ek A, Novak F. Sequential Diagnosis with Asymmetrical Tests[J]. The Computer Journal,1998,41(3):163~170.
    [109] Novak F, Biasizzo A, Zele M. Sequential Fault Diagnosis in SystemMaintenance [C]//Computers in Design, Manufacturing (CompEuro93),Pris-Evry: IEEE,1993:119~129.
    [110] Tu F, Pattipati K R. Rollout Strategies for Sequential Fault Diagnosis [J]. IEEETransactions on Systems, Man, and Cybernetics-Part A: Systems and Humans,2003,33(1):86~99.
    [111] Yang P, Yang S, Qiu J, et al. A Novel Sequential Diagnostic Method forComplex Equipments [C]//2011International Conference on IntelligentComputation Technology and Automation (ICICTA), Shenzhen, Guangdong,China: IEEE,2011:564~567.
    [112] Ruan S, Tu F, Pattipati K R, et al. On a Multimode Test Sequencing Problem[J]. IEEE Transactions on Systems, Man and Cybernetics-Part B: Cybernetics,2004,34(3):1490~1499.
    [113] Pietersma J, van Gemund A J C, Bos A. A Model-Based Approach toSequential Fault Diagnosis-A Best Student Paper Award Winner at IEEEAutotestcon2005[J]. IEEE Instrumentation&Measurement Magazine,2007,10(2):46~52.
    [114] Pietersma J, van Gemund A J C, Bos A. A Model-Based Approach toSequential Fault Diagnosis [C]//IEEE AUTOTESTCON, Oriando, FL, USA:IEEE,2005:621~627.
    [115] Boumen R. Integration and Test Plans for Complex Manufacturing Systems
    [D]. Eindhoven: Eindhoven University of Technology,2007.
    [116] Boumen R, de Jong I S M, Vermunt J W H, et al. Test Sequencing in ComplexManufacturing Systems [J]. IEEE Transactions on Systems, Man, andCybernetics-Part A: Systems and Humans,2008,38(1):25~37.
    [117] Boumen R, Ruan S, de Jong I S M, et al. Hierarchical Test Sequencing forComplex Systems [J]. IEEE Transactions on Systems, Man, andCybernetics-Part A: Systems and Humans,2009,39(3):640~649.
    [118] Pattipati K R, Dontamsetty M. On a Generalized Test Sequencing Problem [J].IEEE Transactions on Systems, Man and Cybernetics,1992,22(2):392~396.
    [119] Kundakcioglu O E, Unluyurt T. Bottom-Up Construction of Minimum-Costand/or Trees for Sequential Fault Diagnosis [J]. IEEE Transactions on Systems,Man, and Cybernetics-Part A: Systems and Humans,2007,37(5):621~629.
    [120] Wang W, Hu Q, Yu D. Application of Multivalued Test Sequencing to FaultDiagnosis [C]//The Eighth International Conference on ElectronicMeasurement and Instruments, Xian, Shanxi, China: IEEE,2007:737~740.
    [121] Wang W, Hu Q, Yu D. On a Multivalued Test Sequencing Problem [C]//TheSixth International Conference on Machine Learning and Cybernetics, HongKong, China: IEEE,2007:2541~2546.
    [122] Wang W, Yang K, Bai J, et al. Research On Optimal Method for FaultMaintenance Strategy Based On and/or Graph Searching [C]//8th InternationalConference on Reliability, Maintainability and Safety, Chengdu, Sichuan,China: IEEE,2009:670~673.
    [123]杨鹏,邱静,刘冠军.基于多值测试的诊断策略优化生成[J].仪器仪表学报,2008,29(8):1675~1678.
    [124] Lian G, Huang K, Chen J, et al. Optimization Method for Diagnostic SequenceBased On Improved Particle Swarm Optimization Algorithm [J]. Journal ofSystems Engineering and Electronics,2009,20(4):899~905.
    [125]蒋荣华,王厚军,龙兵.基于DPSO的改进AO*算法在大型复杂电子系统最优序贯测试中的应用[J].计算机学报,2008,31(10):1835~1840.
    [126]吕晓明,黄考利,连光耀.基于混沌粒子群优化的系统级故障诊断策略优化[J].系统工程与电子技术,2010,32(1):217~220.
    [127] Chen Z, Yang Y, Hu Z. A Technical Framework and Roadmap of EmbeddedDiagnostics and Prognostics for Complex Mechanical Systems in Prognosticsand Health Management Systems [J]. IEEE Transactions on Reliability,2012,61(2):314~322.
    [128] Ruan S, Zhou Y, Yu F, et al. Dynamic Multiple-Fault Diagnosis with ImperfectTests [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans,2009,39(6):1224~1236.
    [129] Ying J, Kirubarajan T, Pattipati K R, et al. A Hidden Markov Model-BasedAlgorithm for Fault Diagnosis with Partial and Imperfect Tests [J]. IEEETransactions on Systems, Man, and Cybernetics-Part C: Applications andReviews,2000,30(4):463~473.
    [130] Shakeri M, Pattipati R, Raghavan V, et al. Optimal and Near-OptimalAlgorithms for Multiple Fault Diagnosis with Unreliable Tests [J]. IEEETransactions on Systems, Man, and Cybernetics-Part C: Applications andReviews,1998,28(3):431~440.
    [131] Singh S, Kodali A, Choi K, et al. Dynamic Multiple Fault Diagnosis:Mathematical Formulations and Solution Techniques [J]. IEEE Transactions onSystems, Man, and Cybernetics-Part A: Systems and Humans,2009,39(1):160~176.
    [132] Raghavan V, Shakeri M, Pattipati K. Test Sequencing Algorithms withUnreliable Tests [J]. IEEE Transactions on Systems, Man, andCybernetics-Part A: Systems and Humans,1999,29(4):347~357.
    [133] Wilson S, Flood B, Goyal S, et al. Parameter Estimation for a Model with BothImperfect Test and Repair [C]//25th IEEE VLSI Test Symposium, Berkeley,CA, USA: IEEE,2007:271~276.
    [134] Woodbury M H, Shin K G. Measurement and Analysis of Workload EffectsOn Fault Latency in Real-Time Systems [J]. IEEE Transactions on SoftwareEngineering,1990,16(2):212~216.
    [135] QSI. Timing Analysis in Teams-Designer [Z].
    [136] Shin K G, Lee Y. Measurement and Application of Fault Latency [J]. IEEETransactions on Computers,1986, C-35(4):370~375.
    [137] Simeu-Abazi Z, Bouredji Z. Monitoring and Predictive Maintenance: Modelingand Analyse of Fault Latency [J]. Computers in Industry,2006,57:504~515.
    [138]张志洲.高速磁浮列车单铁悬浮系统的容错控制问题研究[D].长沙:国防科学技术大学机电工程与自动化学院,2006.
    [139]王仲生.智能故障诊断与容错控制[M].西安:西北工业大学出版社,2005.
    [140]胡昌华,许化龙.控制系统故障诊断与容错控制的分析和设计[M].北京:国防工业出版社,2000.
    [141]杨鹏,邱静,刘冠军.测试不可靠条件下的诊断策略优化方法[J].仪器仪表学报,2008,29(4):850~854.
    [142]连光耀.基于信息模型的装备测试性设计与分析方法研究[D].石家庄:军械工程学院,2007.
    [143]王宝龙.面向PHM的装备测试性设计与分析关键技术研究[D].石家庄:军械工程学院,2012.
    [144] Bhushan M, Rengaswamy R. Design of Sensor Location Based On VariousFault Diagnostic Observability and Reliability Criteria [J]. Computers&Chemical Engineering,2000,24(2-7):735~741.
    [145] Zhang G. Optimum Sensor Localization/Selection in a Diagnostic/PrognosticArchitecture [D]. Atlanta, GA: Dept. Elect.&Com. Eng., Georgia Institute ofTechnology,2005.
    [146] Azam M, Pattipati K, Patterson-Hine A. Optimal Sensor Allocation for FaultDetection and Isolation [C]//2004IEEE International Conference on Systems,Man and Cybernetics, Hague, Netherlands: IEEE,2004:1309~1314.
    [147] Li F. Dynamic Modeling, Sensor Placement Design, and Fault Diagnosis ofNuclear Desalination Systems [D]. Knoxville, TN: Nuclear Eng., Univ. ofTennessee,2011.
    [148] Pan J, Ye X, Xue Q. An Heuristic Genetic Algorithm Solve Test PointSelecting with Unreliable Test [C]//2009Second International Workshop onComputer Science and Engineering, Qingdao, China: IEEE,2009:227~232.
    [149] Maul W A, Kopasakis G, Santi L M, et al. Sensor Selection and Optimizationfor Health Assessment of Aerospace Systems [C]//Aerospace2007Conferenceand Exhibit, Rohnert Park, CA, USA: Citeseer,2007:1~23.
    [150]杨光,刘冠军,李金国等.基于故障检测和可靠性约束的传感器布局优化[J].电子学报,2006,34(2):348~351.
    [151]叶晓慧,潘佳梁,王红霞等.基于动态贪婪算法的不可靠测试点选择[J].北京理工大学学报,2010,30(11):1350~1354.
    [152] Deng S, Jing B, Yang Z. Test Point Selection Strategy Under Unreliable TestBased On Heuristic Particle Swarm Optimization Algorithm [C]//2012IEEEConference on Prognostics and System Health Management (PHM), Beijing,China: IEEE,2012:1~6.
    [153] Nyberg M, Krysander M. Statistical Properties and Design Criterions forAI-Based Fault Isolation [C]//17th IFAC World Congress, Seoul, Korea,2008:7356~7362.
    [154] Kagami S, Ishikawa M. A Sensor Selection Method ConsideringCommunication Delays [C]//IEEE International Conference on Robotics andAutomation (ICRA '04), New Orleans, LA: IEEE,2004:206~211.
    [155] Erdinc O, Brideau C, Willett P, et al. Fast Diagnosis with Sensors of UncertainQuality [J]. IEEE Transactions on Systems, Man and Cybernetics-Part B:Cybernetics,2008,38(4):1157~1165.
    [156] Erdinc O, Brideau C, Willett P, et al. Real-Time Diagnosis and Prognosis withSensors of Uncertain Quality [C]//2004IEEE Aerospace Conference, Big Sky,Montana, USA: IEEE,2004:3603~3614.
    [157] Yu F, Tu F, Tu H, et al. Multiple Disease (Fault) Diagnosis with Applicationsto the QMR-Dt Problem [C]//IEEE International Conference on Systems, Manand Cybernetics: IEEE,2003:1187~1192.
    [158] Sheppard J W, Kaufman M A. A Bayesian Approach to Diagnosis andPrognosis Using Built-in Test [J]. IEEE Transactions on Instrumentation andMeasurement,2005,54(3):1003~1018.
    [159]张森,于登云,王九龙.大虚警率下的多故障诊断算法[J].中国空间科学技术,2012(02):55~61.
    [160] Singh S. Hidden Markov Models for Anomaly Detection and Fault Diagnosis
    [D]. Storrs: Electrical and Computer Engineering, University of Connecticut,2007.
    [161] Singh S, Tu H, Donat W, et al. Anomaly Detection Via Feature-AidedTracking and Hidden Markov Models [J]. IEEE Transactions on Systems, Man,and Cybernetics-Part A: Systems and Humans,2009,39(1):144~159.
    [162] Singh S, Kihoon C, Kodali A, et al. Dynamic Fusion of Classifiers for FaultDiagnosis [C]//IEEE International Conference on Systems, Man andCybernetics, Montreal, Que., Canada: IEEE,2007:2467~2472.
    [163] Singh S, Kodali A, Pattipati K. A Factorial Hidden Markov Model(FHMM)-Based Reasoner for Diagnosing Multiple Intermittent Faults
    [C]//IEEE International Conference on Automation Science and Engineering(CASE2009), Bangalore, India: IEEE,2009:146~151.
    [164] Singh S, Ruan S, Choi K, et al. An Optimization-Based Method for DynamicMultiple Fault Diagnosis Problem [C]//IEEE Aerospace Conference, Big Sky,Montana, USA: IEEE,2007:1~13.
    [165] Kodali A, Singh S, Pattipati K. Dynamic Set-Covering for Real-Time MultipleFault Diagnosis with Delayed Test Outcomes [J]. IEEE Transactions onSystems, Man, and Cybernetics-Part A: Systems and Humans,2012.
    [166]葛鹏岳,黄考利,刘晓芹等.基于隐半马尔可夫模型的动态多故障诊断方法研究[J].计算机测量与控制,2010,18(6):1280~1282,1286.
    [167]刘晓芹,黄考利,连光耀等.针对动态系统的多故障诊断模型与优化算法[J].计算机测量与控制,2010,18(2):249~251,266.
    [168] Pomeranz I, Reddy S M. Reducing Fault Latency in Concurrent On-LineTesting by Using Checking Functions Over Internal Lines [C]//19th IEEEInternational Symposium on Defect and Fault Tolerance in VLSI Systems,Cannes, France: IEEE,2004:183~190.
    [169] Tu F, Pattipati K R, Deb S. Computationally Efficient Algorithms for MultipleFault Diagnosis in Large Graph-Based Systems [J]. IEEE Transactions onSystems, Man, and Cybernetics-Part A: Systems and Humans,2003,33(1):73~85.
    [170] Kokawa M, Miyazaki S, Shingai S. Fault Location Using Digraph and InverseDirection Search with Application [J]. Automatica,1983,19(6):729~735.
    [171] Kodali A, Pattipati K, Singh S. A Coupled Factorial Hidden Markov Model(CFHMM) for Diagnosing Coupled Faults [C]//IEEE Aerospace Conference,Big Sky, Montana, USA: IEEE,2010:1~11.
    [172] Kodali A, Pattipati K, Singh S. Coupled Factorial Hidden Markov Models(CFHMM) for Diagnosing Multiple and Coupled Faults [J]. IEEE Transactionson Systems Man and Cybernetics: Systems,2013.
    [173] Yang P, Yang S, Qiu J, et al. Sequential Test Strategies with Unreliable Tests[C]//IEEE AUTOTESTCON2008, Salt Lake City, UT: IEEE,2008:587~592.
    [174] Bazzan A L C, Da Silva B C. Distributed Constraint Propagation for Diagnosisof Faults in Physical Processes [C]//6th international joint conference onAutonomous agents and multiagent systems, NY, USA: ACM,2007:774~776.
    [175] de Kleer J, Williams B C. Dianosing Multiple Faults [J]. Artificial Intelligence,1987,32(1):97~130.
    [176] Davis R. Diagnostic Reasoning Based On Structure and Behavior [J]. Artificialintelligence,1984,24(1-3):347~410.
    [177] Tong D W, Jolly C H, Zalondek K C. Multi-Branched Diagnostic Trees[C]//IEEE International Conference on Systems, Man and Cybernetics,Cambridge, MA, USA: IEEE,1989:92~98.
    [178] Cordier M O, Dague P, Lévy F, et al. Conflicts Versus Analytical RedundancyRelations: A Comparative Analysis of the Model Based Diagnosis ApproachFrom the Artificial Intelligence and Automatic Control Perspectives [J]. IEEETransactions on Systems, Man, and Cybernetics-Part B: Cybernetics,2004,34(5):2163~2177.
    [179] Garey M R, Johnson D S. Computers and Intractability: A Guide to the Theoryof NP-Completeness [M]. NY: W. H. Freeman and Company,1979.
    [180] Beasley J E, Chu P C. A Genetic Algorithm for the Set Covering Problem [J].European Journal of Operational Research,1996,94(2):392~404.
    [181] Martello S, Toth P. Knapsack Problems: Algorithms and ComputerImplementations [M]. NY: John Wiley&Sons, Inc.,1990.
    [182] Martello S, Toth P. A New Algorithm for the0-1Knapsack Problem [J].Management Science,1988,34(5):633~644.
    [183] Lofberg J. Yalmip: A Toolbox for Modeling and Optimization in Matlab[C]//IEEE International Symposium on Computer Aided Control SystemsDesign, Taipei, Taiwan: IEEE,2004:284~289.
    [184] Optimization G. Gurobi Optimizer[CP/OL]. http://www.gurobi.com/.
    [185] Mitchell J E. Branch and Cut, Wiley Encyclopedia of Operations Research andManagement Science [M]. NY: John Wiley&Sons, Inc.,2011.
    [186] Bertsekas D P, Hager W W, Mangasarian O L. Nonlinear Programming [M].Belmont, MA: Athena Scientific,1999.
    [187] Jurgelenaite R, Lucas P J F. Exploiting Causal Independence in Large BayesianNetworks [J]. Knowledge-Based Systems,2005,18(4-5):153~162.
    [188] Zhang N L, Poole D. Exploiting Causal Independence in Bayesian NetworkInference [J]. Journal of Artificial Intelligence Research,1996,5(1):301~328.
    [189] Shwe M A, Middleton B, Heckerman D E, et al. Probabilistic Diagnosis Usinga Reformulation of the INTERNIST-1/QMR Knowledge Base: I. TheProbabilistic Model and Inference Algorithms [J]. Methods of Information inMedicine,1991,30(4):241~255.
    [190] Neapolitan R E. Learning Bayesian Networks [M]. Upper Saddle River, NJ:Pearson Prentice Hall,2004.
    [191] Ocak H, Loparo K A. A New Bearing Fault Detection and Diagnosis SchemeBased On Hidden Markov Modeling of Vibration Signals [C]//IEEE AcousticsSpeech and Signal Processing (ICASSP) Conference, Salt Lake City, UT, USA:IEEE,2001:3141~3144.
    [192] Daidone A, Giandomenico F D, Chiaradonna S, et al. Hidden Markov Modelsas a Support for Diagnosis: Formalization of the Problem and Synthesis of theSolution [C]//25th IEEE Symposium on Reliable Distributed Systems, QueensHotel Leeds, United Kingdom: IEEE,2006:245~256.
    [193] Bishop C M. Pattern Recognition and Machine Learning [M]. New York:Springer,2006.
    [194] Yuan C, Lu T, J. Druzdzel M. Annealed MAP [C]//20th Annual Conference onUncertainty in Artificial Intelligence (UAI--04), Arlington, Virginia, USA:AUAI Press,2004:628~635.
    [195] Andrieu C, de Freitas N, Doucet A, et al. An Introduction to MCMC forMachine Learning [J]. Machine Learning,2001,350(1-2):5~43.
    [196] Han X, Wei J. An Improved Markov Chain Monte Carlo Method for MIMOIterative Detection and Decoding [J]. Journal of Electronics (China),2008,25(3):305~310.
    [197] Slosar A, Hobson M. An Improved Markov-Chain Monte Carlo Sampler forthe Estimation of Cosmological Parameters From CMB Data [J].Arxiv:astro-ph/0307219,2003:1~8.
    [198] Zhang N L, Poole D. A Simple Approach to Bayesian Network Computations[C]//The10th Canadian conference on artificial intelligence, Banff, Canada:Citeseer,1994:171~178.
    [199]姜兴渭,宋政吉,王晓晨.可靠性工程技术[M].哈尔滨:哈尔滨工业大学出版社,2005.
    [200] Garey M R. Optimal Binary Identification Procedures [J]. SIAM Journal onApplied Mathematics,1972,23(2):173~186.
    [201] Hyafil L, Rivest R L. Constructing Optimal Binary Decision Trees isNP-Complete [J]. Information Processing Letters,1976,5(1):15~17.
    [202] Tae-Sic Y, Lafortune S. NP-Completeness of Sensor Selection ProblemsArising in Partially Observed Discrete-Event Systems [J]. IEEE Transactionson Automatic Control,2002,47(9):1495~1499.
    [203] Johnson R A. An Information Theory Approach to Diagnosis [J]. IRETransactions on Reliability and Quality Control,1960, RQC-9(1):35.
    [204] Nilsson N J. Principles of Artificial Intelligence [M]. Palo Alto, CA: SpringerVerlag,1982.
    [205] Etcheberry J. The Set-Covering Problem: A New Implicit EnumerationAlgorithm [J]. Operations research,1977,25(5):760~772.
    [206] Chvatal V. A Greedy Heuristic for the Set-Covering Problem [J]. Mathematicsof operations research,1979,4(3):233~235.
    [207] Balas E, Ho A. Set Covering Algorithms Using Cutting Planes, Heuristics, andSubgradient Optimization: A Computational Study [J]. CombinatorialOptimization,1980,12(1980):37~60.
    [208] Beasley J E. An Algorithm for Set Covering Problem [J]. European Journal ofOperational Research,1987,31(1):85~93.
    [209] Beasley J E. A Lagrangian Heuristic for Set‐Covering Problems [J]. NavalResearch Logistics (NRL),1990,37(1):151~164.
    [210] Beasley J E, Jornsten K. Enhancing an Algorithm for Set Covering Problems[J]. European Journal of Operational Research,1992,58(2):293~300.
    [211] Caprara A, Toth P, Fischetti M. Algorithms for the Set Covering Problem [J].Annals of Operations Research,2000,98(1):353~371.
    [212] Bertsekas D P. Rollout Algorithms: An Overview [C]//38th IEEE Conferenceon Decision and Control, Phoenix, Arizona, USA: IEEE,1999:448~449.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700