用户名: 密码: 验证码:
一种两自由度并联机构优化设计及动力学控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以应用于高速混联加工装备中的一种平面两自由度并联机构为研究对象,针对机构动力学性能评价、机构优化设计和动力学控制中的关键问题进行了深入理论研究,旨在提高并联机构高速、高加速运动过程中的动态响应速度。主要内容如下:
     针对并联机构运动学和刚度性能的特点,对现有的运动学性能和刚度性能评价方法进行分析,并选择出可用于并联机构优化设计的运动学和刚度性能评价指标。在上述指标的基础上提出了反映机构性能变化趋势的方差评价指标作为补充,更全面地描述机构相关性能分布情况。
     通过分析并联机构加速度性能方程中各种影响因素对机构加速能力的影响效果,提出了一种适用于并联机构动力学性能评价的新方法。该方法考虑了速度因素、重力因素和外力因素对机构加速能力的影响,可以更准确地描述高速、高加速并联机构的动力学性能分布情况。在该评价方法的基础上,定义了用于机构动力学优化设计的性能评价指标。上述评价方法和评价指标克服了现有的常用指标在分析高速并联机构中的局限性,为后续并联机构动力学性能优化奠定了理论基础。
     为了实现并联机构多性能优化设计,提出了一种适用于并联机构的多指标优化设计方法,并将其成功用于一种平面并联机构的工程设计中。在该优化设计方法中,通过对并联机构主要尺寸参数和结构参数的优化设计,实现了对运动学、刚度和动力学三方面性能的综合改善。设计结果表明,该方法对并联机构动力学优化设计相关研究的发展有着重要的应用价值。
     为改善并联机构高速、高加速运动条件下的动态响应能力,提出了一种具有外力扰动抑制作用的并联机构动力学前馈控制方法。仿真结果表明该方法不但可以有效减小机构高速运动过程中动力学性能对动态响应速度的不良影响,并且可以明显削弱制造加工过程中外力扰动作用对控制精度的影响。最后,通过在并联机构动力学控制实验台上完成相关实验研究,验证了上述动力学控制方法的有效性。
This paper focuses on dynamic performance evaluation, optimization design anddynamic control of planar parallel mechanisms which can be used in high-speed hybridequipments. The purpose of this study is to improve the dynamic response ofhigh-speed parallel mechanisms. Details are as follows:
     Based on the characteristic of the kinematic and stiffness performances of parallelmechanisms, the method of evaluating those performances is investigated. The indiceswhich can evaluate kinematic and dynamic performances and have been used inoptimization design of parallel mechanisms are selected. For the purpose of morecomprehensive description of the performances, the corresponding variance indices areintroduced as supplements to describe the trend of the performances.
     Based on the factors in the acceleration performance function, the effect on theacceleration performance of parallel mechanisms is investigated. Then a new methodfor dynamic performance evaluation of parallel mechanisms is introduced. The effect ofthe speed factor, gravity factor and external force factor on the acceleration performanceis considered in the new method. So it can evaluate the dynamic performance ofhigh-speed parallel mechanisms more exactly. Based on this method, the evaluationindices used in dynamic optimization are introduced. These indices overcome thelimitation of commonly used indices, and lay the foundation for dynamic optimizationof parallel mechanisms.
     A multi-objective optimization method is introduced to the multi-performanceoptimization of parallel mechanisms and successfully applied in the design of the planarparallel mechanism. In the optimization method, the kinematics, stiffness and dynamicperformances of the parallel mechanism are improved by optimizing the key geometricand structural parameters of the parallel mechanism. The design results indicate that theoptimization method is of practical value to improve the development of the dynamicoptimization of parallel mechanisms.
     For the purpose of improving the dynamic response of the high-speed parallelmechanisms, a dynamic feedforward control method which can inhibit the disturbancefrom external force is introduced. The simulation results indicate that not only the blightto the dynamic response of dynamic performance of high-speed parallel mechanisms is decreased but also the effect on the precision of the disturbance of external force in themaking process is impaired. Finally, the relevant experiments on the dynamic control ofthe prototype of2-PRR parallel mechanism are given. The experiment results indicatethat the control method is effective.
引文
[1]王立平,汪劲松.新型并联机床的研究状况及应用前景.航空制造技术,2004,(6):26-30.
    [2]段广洪,李铁民.并联机器的起源和发展.世界制造技术与装备市场,2006,(1):41-48.
    [3] Rehsteiner F, Neugebauer R, Spiewak S, et, al. Putting Parallel Kinematics Machines (PKM)to Productive Work. Annals of the CIRP,1999,48(1):345-350.
    [4] Eastman M. Will Hexapods go from show floor to shop floor? Cutting Tool Engineering,1995,47(40):102-110.
    [5]汪劲松,黄田.并联机床——机床行业面临的机遇与挑战.中国机械工程,1999,10(10):1103-1107.
    [6] Koepfer C. Hexapod-its working. Modern Machine Shop,1997,70(5):82-83.
    [7]杨建新,郁鼎文,王立平,等.并联机床研究现状与展望.机械设计与制造工程,2002,(3):10-12,14.
    [8]言川宣.机床结构的重大创新——VARIAX机床问世.世界制造技术与装备市场,1995,(1):16-17.
    [9] Hexapods: the Russians are coming. Machinery and Production Engineering,1995,153(7):19-20.
    [10] Aronson R B. Hexapods: hot or ho hum. Manufacturing Engineering,1997,119(4):60-67.
    [11]晓林.“六条腿”机床技术在英国机床公司的新发展.世界制造技术与装备市场,1997,(2):87-88.
    [12]中国机床工具工业协会赴EMO97工作组.六条腿机床取得重大进展.世界制造技术与装备市场,1998,(1):17-22.
    [13]黄真,孔令富,方跃法.并联机器人机构学理论及控制.北京:机械工业出版社,1997.
    [14]汪劲松,黄田,杨向东,等.6-THS型并联机床结构参数设计理论与方法.清华大学学报,1999,39(8):25-29.
    [15]黄田,汪劲松, Whitehouse D J. Gough-Stewart平台运动学设计理论与方法.中国科学(E辑),1999,29(4):310-320.
    [16]于靖军,刘辛军,丁希仑,等.机器人机构学的数学基础.北京:机械工业出版社,2008.
    [17]汪劲松,段广洪,杨向东,等. VAMTIY虚拟轴机床.制造技术与机床,1998,(2):42-43.
    [18]汪劲松,段广洪,杨向东.虚拟轴机床的研究进展──兼谈在清华大学研制成功的VAMT1Y型原型样机.科技导报,1998,(10):32-32.
    [19]赵兴玉.3-HSS型并联机床静刚度预估及动力学建模方法研究[博士学位论文].天津:天津大学,2001.
    [20]丁学明.一种空间三自由度平动并联机床研究[硕士学位论文].南京:南京航空航天大学,2002.
    [21]张立新.并联机床动力学前馈控制研究[博士学位论文].北京:清华大学,2004.
    [22]胡晓平,李兵,赵万生.基于3-PRS-PP的并联机床工作空间研究.组合机床与自动化加工技术,2005,(5):12-13.
    [23]梁辉,白志富,陈五一.具有内力的3RPS/UPS冗余并联机床刚度分析.机械设计,2007,24(1):23-25.
    [24]程丽.五自由度并联机床冗余驱动理论与实验研究[博士学位论文].秦皇岛:燕山大学,2010.
    [25] Lee K M, Shah D K. Kinematic analysis of a three degrees of freedom in-parallel actuatedmanipulator. IEEE Journal of Robotics and Automation,1988,4(3):354-360.
    [26] Lee K M, Shah D K. Dynamic analysis of a three-degrees-of-freedom in-parallel actuatedmanipulator. IEEE Journal of Robotics and Automation,1988,4(3):361-367.
    [27] Gregorio R D, Parenti-Castelli V. Position analysis in analytical form of the3-PSPmechanism. Journal of Mechanical Design,2011,123(3):51-57.
    [28] Kong X W, Gosselin C M. Kinematics and singularity analysis of a novel type of3-CRR3-DOF translational parallel manipulator. The International Journal of Robotics Research,2002,21(9):791-798.
    [29] Li Y M, Xu Q S. Kinematic design and dynamic analysis of medical parallel manipulator forchest compression task. Proceedings of the IEEE International Conference on Robotics andBiomimetics,2005:693-698.
    [30]吴军.四自由度冗余混联机床的分析、辨识及控制[博士学位论文].北京:清华大学,2007.
    [31] Xie F G, Liu X J, Zhang H, et, al. Design and experimental study of the SPKM165, afive-axis serial-parallel kinematic milling machine. Science China(Technological Sciences),2011,54(5):1193-1205.
    [32]陈俊,王立平,张华,等.平面2自由度并联构型静刚度分析和设计.机械工程学报,2005,41(7):158-163.
    [33] Wang L P, Wang J S, Chen J. The dynamic analysis of a2-PRR planar parallel mechanism.Proceedings of the Institution of Mechanical Engineers Part C-Journal of MechanicalEngineering Science,2005,219(9):901-909.
    [34]刘光森,王振宇. XNZ2430型重型龙门混联机床获2007工博会金奖.机械制造,2008,46(522):9.
    [35]蔡胜利,白师贤.3-TRS型并联机器人的动力学研究.机械科学与技术,1996,15(1):51-56.
    [36] Khalil W, Guegan S. Inverse and Direct Dynamic Modeling of Gough-Stewart robots. IEEETransaction on Robotics,2004,20(4):754-761.
    [37]刘延斌,韩秀英,薛玉君,等.3-RRRT并联机器人正向动力学仿真.机械科学与技术,2007,26(03):369-372.
    [38] Sugimoto K. Kinematic and dynamic analysis of parallel manipulators by means of motoralgebra. Journal of Mechanisms, Transmissions, and Automation in Design,1987,109(1):3-7.
    [39] Do W, Yang D. Inverse Dynamic Analysis and Simulation of a Platform Type of Robot.Journal of Robotic Systems,1988,5(3):209-227.
    [40] Ji Z. Study of effect of leg inertia in Stewart platforms. Proceedings of IEEE InternationalConference on Robotics and Automation,1993,(1):121-126.
    [41] Ji Z. Dynamics decomposition for Stewart platforms. Journal of Mechanical Design,1994,116(3):67-69.
    [42] Dasgupta B, Mruthyunjaya T S. Closed-form dynamic equations of the general Stewartplatform through the Newton-Euler approach. Mechanism and Machine Theory,1998,33(7):993-1012.
    [43] Dasgupta B, Mruthyunjaya T S. A Newton-Euler Formulation for the inverse dynamics of theStewart platform manipulator. Mechanism and Machine Theory,1998,33(8):1135-1152.
    [44] Dasgupta B, Choudhury P. A general strategy based on the Newton-Euler approach for thedynamic formulation of the parallel manipulators. Mechanism and Machine Theory,1999,34(6):801-824.
    [45] Shiau T N, Tsai Y J, Tsai M S. Nonlinear dynamic analysis of a parallel mechanism withconsideration of joint effects. Mechanism and Machine Theory,2008,43(4):491-505.
    [46]张立新,汪劲松,王立平.加速度运动条件下6-UPS型并联机床刚体动力学模型简化研究.机械工程学报,2003,39(11):117-122.
    [47]杨建新,郁鼎文,汪劲松.平面三自由度并联机构逆动力学的模块化计算方法.清华大学学报(自然科学版),2004,44(8):1043-1046.
    [48] Wu J, Wang J S, Li T M, et al. Dynamic analysis of the2-DOF planar parallel manipulator ofa heavy duty hybrid machine tool. International Journal of Advanced ManufacturingTechnology,2007,34:413-420.
    [49] Wu J, Wang J S, Wang L P, et al. Dynamic analysis and counterweight optimization of the2-DOF parallel manipulator of a hybrid machine tool. ASME Journal of Computational andNonlinear Dynamics,2007,2(4):344-350.
    [50] Lee K M, Shah D K. Dynamic Analysis of a Three-Degrees-of-Freedom In-Parallel ActuatedManipulator. IEEE Journal of Robotics and Automation,1988,4(3):361-367.
    [51] Nguyen C C, Pooran F J. Dynamic analysis of6-DOF CKCM robot end-effector for dual-armtelerobot systems. Journal of Robotics and Autonomous Systems,1989,(5):377-394.
    [52] Pang H, Shahinpoor M. Inverse dynamics of a parallel manipulator. Journal of RoboticSystems,1994,11(8):693-701.
    [53] Lebret G, Liu K, Lewis F L. Dynamic analysis and control of a Stewart platform manipulator.Journal of Robotic System,1993,10(5):629-655.
    [54]王启明,王劲松,刘辛军,等.二移动自由度并联操作臂的动力学建模.清华大学学报(自然科学版),2002,42(11):1469-1472.
    [55] Abdellatif H, Heimann B. Computational efficient inverse dynamics of6-DOF fully parallelmanipulators by using the Lagrangian formalism. Mechanism and Machine Theory,2009,44(1):192-207.
    [56] Huang Z, Wang H B. Dynamic force analysis of n.-d.f. multiloop complex spatialmechanisms. Mechanism and Machine Theory.1992,27(1):97-105.
    [57] Zhang C D, Song S M. An efficient method for inverse dynamics of manipulators based onthe virtual principle. Journal of Robotic Systems,1992,10(5):605-627.
    [58] Li C, Wang T, Chen C C. On the dynamic analysis of general parallel robotic manipulators.Journal of Robotics and Automation,1995,9(2):81-87.
    [59] Wang J G, Gosselin C M. A new approach for the dynamic analysis of parallel manipulators.Multibody System Dynamics.1998,2:317-334.
    [60] Tsai L W, Solving the inverse dynamics of a Stewart-Gough manipulator by the principle ofvirtual work. Journal of Mechanical Design,2000,122(1):3-9.
    [61] Gallardo J, Rico J M, Frisoli A, et al. Dynamic of parallel manipulators by means of screwtheory. Mechanism and Machine Theory,2003,38(11):1113-1131.
    [62] Sokolov A, Xirouchakis P. Dynamics analysis of a3-DOF parallel manipulator with R-P-Sjoint structure. Mechanism and Machine Theory,2007,42(5):541-557.
    [63]李兵,王知行,李建生.基于凯恩方法的新型并联机床动力学研究.机械科学与技术,1999,18(1):41-43.
    [64] Yun Y, Li Y M, Xu Q S. Active vibration control of a3-DOF parallel platform based onKane’s dynamic method. Proceeding of SCIE Annual Conference. Chofu,2008:2667-2672.
    [65] Asada H. A geometrical representation of manipulator dynamics and its application to armdesign. Trans. ASME, Journal of Dynamic Systems, Measurement, and Control,1983,105(3):131-135.
    [66] Asada H. Dynamic analysis and design of robot manipulators using Inertia Ellipsoids.International Conference on Robotics and Automation,1984:94-102.
    [67] Asada H, Granito J A. Kinematics and static characterization of wrist joint and their optimaldesign. Proceeding of the IEEE International Conference on Robotics and Automation,1985:244-250.
    [68] Khatib O. Inertial properties in robotic manipulation: an object-level framework. TheInternational Journal of Robotics Research,1995,13(1):13-36.
    [69] Yoshikawa T. Dynamic manipulability of robot manipulators. Journal of Robotic Systems,1985,2(1):113-124.
    [70] Kosuge K, Furuta K. Kinematic and dynamic analysis of tobot arm. Proceedings of IEEEInternational Conference on Robotics and Automation,1985:1039-1044.
    [71] Yoshikawa T. Translational and rotational manipulability of robotic manipulators. Proceedingof the International Conference on Industrial Electronics, Control, and Instrumentation,1991:1170-1175.
    [72] Chiacchio P, Chiaverini S, Sciavicco L, et al. Reformulation of dynamic manipulabilityellipsoid for robotic manipulators. Proceedings of the IEEE International Conference onRobotics and Automation, Sacramento,1991:2192-2197.
    [73] Chiacchio P. A new dynamic manipulability ellipsoid for redundant manipulators. Robotica,2000,18:381-387.
    [74] Date H, Hoshi Y, Sampei M. Locomotion control of a snake-like robot based on dynamicmanipulability. Proceeding of the IEEE/RSJ International Conference on Intelligent Robotsand Systems,2000:2236-2241.
    [75] Tsuda M, Nakaura S, Sampei M. Dyanmic manipulability of a snake-like robot and its effectfor sinus-lifting motion. Proceedings of SICE Annaul Conference in Sapporo,2004:2202-2207.
    [76] Rosenstein M T, Grupen R A. Velocity-dependent dynamic manipulability. Proceedings ofthe IEEE International Conference on Robotics&Automation, Washington, DC,2002:2424-2429.
    [77] Lee J, Shim H. On the dynamic manipulability of cooperation multiple arm robots systems.Proceedings of2004IEEE/RSJ International Conference on Intelligent Robots and Systems,Sendai,2004:2087-2092.
    [78] Wu J, Wang J S, Li T M, et al. Dynamic Dexterity of a planar2-DOF Parallel Manipulator ina Hybrid Machine Tool. Robotica,2008,26:93-98.
    [79] Yokokohji Y, Martin J S, Fujiwara. M. Dynamic manipulability of multifingered grasping.IEEE Transactions on Robotics,2009,25(4):947-954.
    [80] Tadokoro S, Kimura I, Takamori T. A measure for evaluation of dynamic dexterity based on astochastic interpretation of manipulator motion. Fifth International Conference on AdvancedRobotics,1991:509-514.
    [81] Bowling A, Khatib O. Analysis of acceleration characteristics of non-redundant manipulators.IEEE/RSJ International Conference on Intelligent Robots and Systems,1995,2:323–328.
    [82] Bowling A, Khatib O. Design of marco/mini manipulators for optimal dynamic performance.IEEE, International Conference on Robotics and Automation,1997:449-454.
    [83] Stephen L. Task compatibility of manipulator postures. The International Journal of RoboticsResearch,1988,7(5):13-21.
    [84] Koeppe R, Yoshikawa T. Dynamic manipulability analysis of compliant motion. IntelligentRobots and Systems, Proceedings of IEEE/RSJ International Conference on IROS,1997:1472-1478.
    [85] Bicchi A, Prattichizzo D. Manipulability of cooperation robots with unactuated joints andclosed-chain mechanisms. IEEE Transactions on robotics and automation,2000,16(4):336-346.
    [86] Kurazume R, Hasegawa T. A new index of serial-link manipulator performance combiningdynamic manipulability and manipulating force ellipsoids. IEEE Transactions on Robotics,2006,22(5):1022-1028.
    [87] Timothy J, Bruce H. The acceleration radius: a global performance measure for roboticmanipulators. IEEE Journal of robotics and automation,1988,4(1):60-69.
    [88] Shiller Z, Sundar S. Design of robotic manipulators for optimal dynamic performance.Proceedings of the1991IEEE International Conference on Robotics and Automation,1991,1:334-339.
    [89] Kim Y, Desa S. The definition, determination, and characterization of Acceleration Sets forspatial manipulators. The International Journal of Robotics Research,1993,12(6):572-587.
    [90] Bowling A, Khatib O. The dynamic capability equations: a new toll for analyzing roboticmanipulator performance. IEEE Transactions on Robotics,2005,21(1):115-123.
    [91] Harmeyer S, Bowling A. Dynamic performance as a criterion for redundant manipulatorcontrol. Proceedings of TEEE/RSJ International Conference on Intelligent Robots andSystems,2004:3601-3606.
    [92] Bowling A, Kim C. Dynamic performance analysis for non-redundant robotic manipulators incontact. Pro. of the IEEE International Conference on Robotic and Automation,2003:4048-4053.
    [93]汪琦,王立平,汪劲松,等.6-SPS型并联机构基于动态特性的优化设计.中国机械工程,2003,14(11):908-912.
    [94] Kim H S, Tsai L-W. Design optimization of a Cartesian parallel manipulator. Journal ofMechanical Design,2003,125(1):43-51.
    [95]郭祖华,陈五一,陈鼎昌.基于全局动力学性能的并联机床结构参数优化.中国机械工程,2003,14(10):861-864.
    [96]杜兆才,余跃庆,苏丽颖.动平台惯性参数对柔性并联机构动力学特性的影响及优化设计.光学精密工程,2006,14(6):1009-1016.
    [97] Lou Y J. Optimal design of parallel manipulators [D]. Hong Kong: The Hong KongUniversity of Science and Technology,2006.
    [98] Liu X-J, Wang L P, Pritschow G. On the optimal kinematic design of the2-PRR2-DoFparallel mechanism. Mechanism and Machine Theory,2006,41:1111-1130.
    [99] Liu X-J, Wang J S, Pritschow G. Performance atlases and optimum design of planar5Rsymmetrical parallel mechanisms. Mechanism and Machine Theory,2006,41:119-144.
    [100]何立波.六自由度摇摆台动力学仿真及优化[硕士学位论文].哈尔滨:哈尔滨工业大学,2006.
    [101]贺利乐,肖理,段志善.混合驱动二自由度并联机构的动力学优化设计.西安建筑科技大学学报(自然科学版),2007,39(3):429-432.
    [102] Li H, Yang Z, Huang T, et al. Dynamic and optimization of a2-Dof parallel robot withflexible links.7thWorld Congress on Intelligent Control and Automation,2008:1000-1003.
    [103]陈水赠.6-SPS并联机构人研究及其结构参数优化[硕士学位论文].南京:南京理工大学,2007.
    [104] Shao H, Wang L P, Guan L W, et al. Dynamic manipulability and optimization of a redundantthree DOF planar parallel manipulator. Proceedings of the ASME/IFToMM InternationalConference on Reconfigurable Mechanisms and Robots, London,2009,7:302-308.
    [105] Khatib O, Blowling A. Optimization of the inertial and acceleration characteristics ofmanipulators. Pro. of the IEEE International Conference on Robotics and Automation,1996:2883-2889.
    [106] Cheng H, Yiu Y k, Li Z X. Dynamics and control of redundantly actuated parallelmanipulators. IEEE/ASME Transactions on mechatronics.2003,8(4):483-491.
    [107] Codourey A. Dynamic modeling of parallel robots for computed-torque control implementain.International Journal of robotics research,1998,17(12):1325-1336.
    [108] Yen P L, Lai C C. Dynamic modeling and control of a3-DOF Cartesian parallel manipulator.Mechatronics,2009,19(3):390-398.
    [109] Wu J, Wang J S, Wang L P, et al. Dynamics and control of a planar3-DOF parallelmanipulator with actuation redundancy. Mechainsm and Machine Theory,2009,44(4):835-849.
    [110] Kang J Y, Kim D H, Lee K I. Robust tracking control of Stewart platform. Proceedings of the35th Conference on Decision and Control,1996:3014-3019.
    [111]杨志永,黄田,倪雁冰.3-HSS并联机床动力学建模及鲁棒轨迹跟踪.机械工程学报,2004,40(11):75-81.
    [112] Kim N I, Lee C W, Chang P H. Sliding mode control with perturbation estimation:application to motion control of parallel manipulator. Control Engineering Practice,1998,6(11):1321-1330.
    [113]陈卫东.6-DOF并联机器人动力学建模、非线性变结构控制[硕士学位论文].秦皇岛:燕山大学,2000.
    [114]杨香兰.6-DOF并联机器人动力学建模、模糊变结构控制[硕士学位论文].秦皇岛:燕山大学,2001.
    [115]王跃灵,金振林,李研彪.球面3-RRR并联机构动力学建模与鲁棒-自适应迭代学习控制.机械工程学报,2010,46(1):68-73.
    [116] Sirouspour M R, Salcudean S E. Nonlinear control of hydraulic robots. IEEE Transactions onRobotics and Automation,2001,17(2):173-182.
    [117] Li J S. Dynamic modeling and feedforward control fo TAU parallel robot [D]. Hoboken,Stevens Institute of Thchnology,2004.
    [118] Denkena B, Heimann B, Abdellatif H, et al. Design, modeling and advanced control of theinnovative parallel manipulator PaLiDA. IEEE/ASME International Conference on AdvancedIntelligent Mechatronics,2005,632-637.
    [119] Honegger M, Brega R, Schweitzer G. Application of a nonlinear adaptive controller to a6DOF parallel manipulator. IEEE International Conference on Robotics and Automation,2000,1930-1935.
    [120]汤先荣,王金库,王立平,等.重型龙门式混联机床配重方法研究.工具技术,2006,40(8):7-12.
    [121]孙嘉继,孔啸,袁俊凇,等.6061铝合金球头铣刀铣削力模型的实验研究.工具技术,2011,45(1):22-25.
    [122] Schaffer S. Multiple objective optimization with vector evaluated genetic algorithms.Proceeding of the First International Conference on Genetic Algorithms,1985:93-100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700