用户名: 密码: 验证码:
芳纶纤维布约束混凝土短柱的尺寸效应研究与多尺度分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维增强复合材料(fiber reinforced polymer,简称“FRP”)具有较高的强度质量比、优良的抗拉力学性能以及便捷的施工性能等优点,已被广泛应用于混凝土结构的加固工程中。已有研究表明:外包FRP布的约束作用能够增强混凝土柱的强度、延性及耗能性能等。然而,在现有的相关研究中,绝大多数都是基于小尺寸试件展开,得到的预测模型和规范设计公式(包括强度、变形及应力—应变关系曲线等)均未考虑尺寸效应的影响,这可能造成研究中的偏差和设计实践中的不安全,兹待解决。
     混凝土材料的尺寸效应一般指:混凝土强度随试件尺寸增加而减小的现象。这一现象产生的主要原因是混凝土破坏过程中的断裂能量释放区域化及断裂面分形。因而,用于分析混凝土尺寸效应的合理方法应能够较好地表征破坏过程中的断裂行为。与此同时,混凝土作为一种多相混和材料,其破坏源于内部微观结构的失效,所以有必要采用宏、微观结合的多尺度方法来分析这一破坏过程。目前,混凝土的多尺度分析还很不充分,处于起步阶段,对于FRP约束混凝土柱的多尺度分析仍是空白。
     针对上述情况,本文围绕芳纶纤维布(aramid FRP,简称"AFRP")约束混凝土短柱的尺寸效应,开展了试验研究和理论研究。主要工作和取得的成果如下:
     1)开展了单调轴压荷载下AFRP约束混凝土短柱尺寸效应的试验研究,试件包括99根AFRP约束混凝土短柱和36根未约束混凝土短柱,分为圆形截面柱和方形截面柱两种,主要考虑了试件尺寸和AFRP布的约束比等试验因素。试验结果表明:试件尺寸对AFRP约束混凝土短柱的强度有显著影响,对应力—应变关系曲线有部分影响,对延性和耗能性能无明显影响,而对破坏模式无影响。
     2)采用多因素效应的析因分析方法,对试验数据进行了统计分析,获得了AFRP约束混凝土短柱尺寸效应的特点。根据试验数据和统计分析结果,给出了AFRP约束混凝土短柱的强度、变形及应力—应变关系曲线的预测模型。其中,强度的预测模型中考虑了试件尺寸及其与AFRP布约束比的耦合作用,而变形的预测模型与试件尺寸无关。上述模型的预测结果与试验数据吻合较好。
     3)基于材料破坏的微结构稳定理论,构建了混凝土短柱轴压破坏的失效模式,推演得到了未约束混凝土短柱和AFRP约束混凝土短柱极限强度的多尺度解析模型,并讨论了模型中AFRP约束作用对极限强度的影响机理以及该模型的适用范围。该解析模型能够考虑柱尺寸对其极限强度的影响,模型的计算结果与试验数据符合较好。
     4)提出了混凝土的分形—微平面模型,能够在有限元法中考虑单元尺寸对混凝土性能的影响。通过结合非局部理论,建立了AFRP约束混凝土短柱的多尺度数值模型。该数值模型能较好地预测的AFRP约束混凝土短柱的应力—应变关系曲线,并能合理地模拟其破坏过程。
Fiber reinforced polymer (FRP) composites have been applied widely in civil engineering for strengthening and repairing existing concrete structures, because of their higher strength-to-mass ratio, better tensile mechanical performance, excellent easily constructing function, and other merits. Previous studies have shown that externally wrapped FRP sheets can increase the strength, ductility, and energy dissipation of confined concrete columns. However, most of current studies were based on testing of small scale specimens, and suggested prediction models and design formulas (for strength, deformation, and stress-strain relationship curve) were lack of consideration on the possible size effect of FRP-confined concrete columns. This may cause deviations in research and un-safeties in design.
     Size effect of concrete is generally defined as the phenomena that the strength of concrete decreases as the specimen's size increases. The main cause for the size effect is fracture performances during the failure of concrete. Thus, a rational method for the size effect should be able to describe the fracture behaviors during the failure. As a heterogeneous material, macroscopic failure of concrete is resulted from microscopic damage, so the failure process is necessary to be studied by multi-scale methods. At present, multi-scale methods for concrete are insufficiency and on beginning phase, the multi-scale analysis for FRP-confined concrete columns is still blank.
     In response to these circumstances, in this dissertation, experimental and theoretical studies are carried out on concrete short columns confined with aramid FRP (AFRP) sheets. The main works are as follows:
     1) An experimental investigation, including 99 AFRP-confined concrete short columns and 36 unconfined columns, was implemented. All the specimens could be divided into two types:ones with circular cross-section, and the others with square cross-section. The main experimental parameters were AFRP's confinement ratio and specimens'size. The experimental results show that the specimens'size has significant effect on the strength of columns, partial effect on the stress-strain relationship curves, slight effect on the ductility and energy dissipation, and scarce effect on the failure mode, respectively.
     2) A factor analysis is adopted on the test data, to probe into the characteristics of the size effect of AFRP-confined concrete short columns. Depending on the test data and statistical results, prediction models for the strengths, deformations, and stress-strain relationship curve of columns are presented. The specimens'size is taken into account in the model for strength, as well as the interaction between the specimens'size and AFRP's confinement ratio. However, the specimens'size is not a parameter for the models for deformation. All the prediction models herein can agree well with the test data.
     3) Base on the theory of microstructure failure, failure modes are established and formulated for concrete short columns under monotonic axial compression. Multi-scale analytical models of the ultimate strength for unconfined concrete columns and AFRP-confined concrete columns are deduced. In addition, the influence due to the AFRP confinement is discussed on the ultimate strength of AFRP-confined columns, as well as the applicability of the analytical models. The analytical models can consider the size effect on the ultimate strength of columns, and their results agree well with the test data.
     4) A fractal-microplane model is proposed, it can consider the effect of element's size on properties of concrete material. A multi-scale finite element model is developed for the AFRP-confined concrete short columns, combining the fractal-microplane model and the nonlocal theory. This model can provide good predictions on the stress-strain relationship curves of the columns and rational simulations on the failure propagation.
引文
[1]Federal Housing Administration (FHA). FHA outlook 2007 [R]. Department of Housing and Urban Development, Washington D C,2007.
    [2]Teng J G, and Lam L. FRP-strengthened RC structures [M]. London:John Wiley & Sons,2002.
    [3]岳清瑞,杨勇新.复合材料在建筑加固、修复中的应用[M].北京:化学工业出版社,2006.
    [4]American Concrete Institute (ACI). Report on fiber-reinforced polymer (FRP) reinforcement for concrete structures [R]. ACI-440R-08. Detroit,2008.
    [5]Japan Concrete Institute (JCI). Non-metallic (FRP) reinforcement for concrete structures [S]. Tokyo,1997.
    [6]Canadian Standard Association (CSA). Design and construction of building components with fibre-reinforced polymers [S]. CSA-S806-2002. Toronto,2002.
    [7]American Concrete Institute (ACI). Guide for the design and construction of externally bonded FRP system for strengthening concrete structures [S]. ACI-440. Detroit,2002.
    [8]Research National Council. Instructions for design, execution and control of strengthening interventions by means of fibre-reinforced composites [S]. CNR-DT 200/2004.2004.
    [9]中华人民共和国建设部.混凝土结构加固设计规范[S].GB50367-2006.北京:中国建筑工业出版社,2006.
    [10]Egyptian Ministry of Housing, Utilities, and Urban Development. Egyptian code for the use of fiber reinforced polymers (FRP) in the construction fields [S]. Cairo,2005.
    [11]Γ.Π.切列帕诺夫.黄克智等译.脆性断裂力学[M].北京:科学出版社,1990.
    [12]Bazant Z P. Scaling of structural strength [M]. London:Hermes Penton Science,2002.
    [13]Bazant Z P, and Planas J. Fracture and size effect in concrete and other quasibrittle materials [M]. Boca Raton:CRC Press,1998.
    [14]Mihashi H, Okamura H, and Bazant Z P. Size effect in concrete structures [C]. Boca Raton: CRC Press,1994.
    [15]唐春安,朱万成.混凝土损伤与断裂—数值试验[M].北京:科学出版社,2003.
    [16]范镜泓.材料变形与破坏的多尺度分析[M].北京:科学出版社,2008.
    [17]American Composites Manufacturers Association Market Development Alliance (ACMA-MDA).2006. http://www.mdacomposites.org.
    [18]Triantafillou T C. Strengthening of masonry structures using epoxy-bonded FRP laminates [J]. Journal of Composites for Construction,1998,2 (2):96-104.
    [19]Gilfillan J R, Gilbert S G, and Patrick G R H. The use of FRP composites in enhancing the structural behavior of timber beams [J]. Journal of Reinforced Plastics and Composites,2003, 22(15):1373-1388.
    [20]Sen R, Liby L, and Mullins G. Strengthening steel bridge sections using CFRP laminates [J]. Composites Part B:Engineering,2001,32 (4):309-322.
    [21]石钱华.国外连续玄武岩纤维的发展及其应用[J].玻璃纤维,2003,4:27-31.
    [22]海川工程科技公司.结构抗震与加固(路威(?)2008芳纶纤维)[R].深圳,2009.
    [23]Howie I, and Karbhari V M. Effect of tow sheet composite wrap architecture on strengthening of concrete due to confinement I:experimental studies [J]. Journal of Reinforced Plastics and Composites,1995,14 (9):1008-1030.
    [24]Picher F, Rochette P, and Labossiere P. Confinement of concrete cylinders with CFRP. Proceedings of ICCI'96, Tucson,1996.
    [25]Toutanji H. Stress-strain characteristics of concrete columns externally confined with advanced fiber composite sheets [J]. ACI Materials Journal,1999,96 (3):397-404.
    [26]Berthet J F, Ferrier E, Hamelin P. Compressive behavior of concrete externally confined by composite jackets. Part A:experimental study. Construction and Building Materials,2005,19: 223-232.
    [27]Harries K A, and Kharel G. Experimental investigation of the behavior of variably confined concrete [J]. Cement and Concrete Research,2003,33:873-880.
    [28]Rousakis T C, Karabinis A I, and Kiousis P D. FRP-confined concrete members:Axial compression experiments and plasticity modeling [J]. Engineering Structures,2007,29 (7): 1343-1353.
    [29]Karbhari V M, and Gao Y. Composite jacketed concrete under uniaxial compression verification of simple design equations [J]. Journal of Materials in Civil Engineering,1997,9 (4):185-193.
    [30]Watanable K, Nakamura H, Honda T, Toyoshima M, Iso M, Fujimaki T, Kaneto M, and Shirai N. Confinement effect of FRP sheet on strength and ductility of concrete cylinders under uniaxial compression [C]. Proceedings of 3rd International Symposium on Non-Metallic (FRP) Reinforcement for Concrete Structures, Japan Concrete Institute (JCI), Sapporo,1997.
    [31]Matthys S, Taerwe L, and Audenaert K. Test on axially loaded concrete columns confined by fiber reinforce polymer sheet wrapping [C]. Proceedings of FRPCS-4, Farmington,1999.
    [32]Kshirsagar S, Lopez-Anido R A, and Gupta R K. Environmental aging of fiber-reinforced polymer-wrapped concrete cylinders [J]. ACI Materials Journal,2000,97 (6):703-712.
    [33]Rochette P, and Labossiere P. Axial testing of rectangular column models confined with composites [J]. Journal of Composites for Construction,2000,4 (3):129-136.
    [34]Xiao Y, and Wu H. Compressive behavior of concrete confined by carbon fiber composite jackets [J]. Journal of Materials in Civil Engineering,2000,12 (2):139-146.
    [35]Zhang S, Ye L, and Mai Y W. A study on polymer composites strengthening systems for concrete columns [J]. Applied Composites Materials,2000,7:125-138.
    [36]Mastrapa J C. The effect of construction bond on confinement with FRP composites [D]. MSc thesis, University of Central Florida, Orlando,1997.
    [37]Mirmiran A, and Shahawy M. Behavior of concrete columns confined by fiber composites [J]. Journal of Structural Engineering,1997,123 (5):583-590.
    [38]Tegola L A, and Manni D. Experimental investigation on concrete confined by fiber reinforced polymer and comparison with theoretical monde [C]. Proceedings of FRPRCS-4, Farmington, 1999.
    [39]Ahmad S H, Khaloo A R, and Irshaid A. Behavior of concrete spirally confined by fiberglass filaments [J]. Magazine of Concrete Research,1991,43 (156):143-148.
    [40]Harmon T, and Slattery K T. Advanced composite confinement of concrete [C]. Proceedings of 1st International Conference on Advanced Composite Materails in Bridges and Structures, Sherbrook,1992.
    [41]Demers M, and Neale K W. Strengthening of concrete columns with unidirectional composite sheets [C]. Proceedings of Fourth International Conference on Short and Medium Span Bridges, Nova Scotia,1994.
    [42]Nanni A, and Bradford N M. FRP jacketed concrete under uniaxial compression [J]. Construction and Building Materials,1995,9 (2):115-124.
    [43]Soudki K A, and Green M F. Performance of CFRP retrofitted concrete columns at low temperature [C]. Proceedings of 2nd International Conference on Advanced Composite Materails in Bridges and Structures, Montreal,1996
    [44]Miyaushi K, Nishibayashi S, and Inous S. Estimation of strengthening effects with carbon fiber sheet for concrete column. Proceedings of 3rd International Symposium on Non-Metallic (FRP) Reinforcement for Concrete Structures, Japan Concrete Institute (JCI), Sapporo,1997.
    [45]Toutanji H, and Balaguru P. Durability characteristics of concrete columns wrapped with fiber tow sheets [J]. Journal of Materials in Civil Engineering,1998,10 (1):52-57.
    [46]Miyauchi K, Inoue S, Kuroda T, and Kobayashi A. Strengthening effects of concrete columns with carbon fiber sheet [J]. Transactions of the Japan Concrete Institute,1999,21:143-150.
    [47]Purda B K, and Mufti A A. Investigationi of the behavior of circular concrete columns reinforced with carbon fiber reinforced polymer (CFRP) jackets [J]. Canadian Journal of Civil Engineering,1999,26:590-596.
    [48]Saafi M, Toutanji H A, and Li Z. Behavior of concrete columns confined with fiber reinforced polymer tubes. ACI Materials Journal,1999,96 (4):500-509.
    [49]Lam L, and Teng J G. Ultimate condition of fiber reinforced polymer-confined concrete [J]. Journal of Composites for Construction,2004,8 (6):539-548.
    [50]Chaallal O, Shahawy M, and Hassan M. Performance of axially loaded short rectangular columns strengthened with carbon fiber-reinforced polymer wrapping [J]. Journal of Composites for Construction,2003,7 (3):200-208.
    [51]Harries K A, and Carey S A. Shape and "gap" effects on the behavior of vairiably confined concrete [J]. Cement and Concrete Research,2003,33:881-890.
    [52]Campione G, Miraglia N, and Scibilia N. Comportamento in compressione de elementi in calcestruzzo armato a sezione quadrata e circolare rinforzati con FRP [C]. Ingegneria Sismica, 2002. (in Italian).
    [53]Arduini M, Di Tommaso A, Manfroni O, Ferrari S, and Romagnolo M. Ⅱ confinamento passive di elementi compressi in calcestruzzo con fogli di materiale composito [J]. Industria Italiana del Cemento,1999,11:836-841. (in Italian).
    [54]Jiang T, and Teng J G. Analysis-oriented stress-strain models for FRP-confined concrete [J]. Engineering Structures,2007,29 (1):2968-2986.
    [55]Pantelides C P, and Yan Z. Confinement model of concrete with externally bonded FRP jackets or posttensioned FRP shells [J]. Journal of Structural Engineering,2007,133 (9):1288-1296.
    [56]Sutter R, and Pinzelli R. Confinement of concrete columns with FRP sheets [C]. Proceedings of 5th International Conference on Fiber Reinforced Plastics for Reinforced Concrete Structures, Cambridge,2001.
    [57]Shehata I A E M, Carneiro L A V, and Shehata L C D. Sthrength of short concrete columns confined with CFRP sheets [J]. Materials and Structures Journal,2002,1(35):50-58.
    [58]Wang Yuan-feng, and Wu Han-liang. Experimental investigation on square high-strength concrete short columns confined with AFRP sheets [J]. Journal of Composites for Construction, 2010,14 (3):346-351.
    [59]Monti G, Nistico N, and Isola R. Experimental investigation on square and rectangular concrete columns confined by C-FRP [C]. Proceedings of FRPRCS-8,2002.
    [60]Owen L M. Stress-strain behavior of concrete confined by carbon fiber jacketing [D]. Seattle: University of Washington,1998.
    [61]Lin Chih-Tsung, and Li Yeou-Fong. An effective peak stress formula for concrete confined with carbon with carbon fiber reinforced plastics [J]. Canadian Journal of Civil Engineering,2003, 30:882-889.
    [62]Yousef A A. Effect of the edge sharpness on the compressive strength of FRP-confined square concrete columns [R]. Riyadh:Kind Saud University,2007.
    [63]Theriault M, Neale K W, and Claude S. Fiber-reinforced polymer-confined circular concrete columns:investigation of size and slenderness effects [J]. Journal of Composites for Construction,2004,8 (4):323-331.
    [64]Silva M A G, and Rodrigues C C. Size and relative stiffness effect on compressive failure of concrete columns wrapped with glass FRP [J]. Journal of Materials in Civil Engineering,2006, 18 (3):334-342.
    [65]Masia M J, Gale T N, and Shrive N G. Size effects in axially loaded square-section concrete prisms strengthened using carbon fibre reinforced polymer wrapping [J]. Canadian Journal of Civil Engineering,2004,31:1-13.
    [66]Karabinis A I, and Rousakis T C. Concrete confined by FRP material:a plasticity approach [J]. Engineering Structures,2002,24:923-932.
    [67]Almusallam T H. Behavior of normal and high-strength concrete cylinders confined with E-glass/epoxy composite laminates [J]. Composites Part B:Engineering,2007,38:629-639.
    [68]贾明英,程华.碳纤维布(CFRP)加固混凝土圆柱约束效应的试验研究[J].四川建筑科学研究,2003,29(1):35-36.
    [69]顾祥林,李玉鹏,张伟平,欧阳煜.碳纤维约束混凝土单轴受压时的应力—应变关系[J].结构工程师,2006,22(2):50-56.
    [70]童谷生,刘永胜,吴秋兰.玄武岩纤维约束混凝土方柱的尺寸效应研究[J].混凝土,2009,233:6-8.
    [71]周长东.玻璃纤维聚合物加固混凝土柱的力学性能研究[D].大连:大连理工大学,2003.
    [72]柳丽霞.CFRP约束受损混凝土的试验研究[J].世界地震工程,2007,23(4):134-138.
    [73]孙秀红,徐向东,徐茂波.FRP约束素混凝土短柱轴压性能的试验研究[J].山东建筑工程学院学报,2005,20(5):1-7.
    [74]刘华新,王丹丹,孙荣书.碳纤维布加固量对混凝土棱柱体约束效果的试验研究[J].混凝土与水泥制品,2008,(5):40-43.
    [75]刘涛,冯伟,张智梅,魏高峰.碳纤维布约束混凝土矩形柱的抗压性能研究[J].土木工程学报,2006,39(12):41-47.
    [76]顾辉,姜涛.碳纤维复合材料(CFRP)约束矩形截面混凝土柱应力—应变关系研究[J].四川建筑科学研究,2006,32(5):45-49.
    [77]Wu Han-liang, Wang Yuan-feng, Yu L, and Li X R. Experimental and computational studies on high-strength concrete circular columns confined by aramid fiber-reinforced polymer sheets [J]. Journal of Composites for Construction,2009,13 (2):125-134.
    [78]Parvin A, and Schroeder J M. FRP-confined rectangular concrete columns [C]. Proceedings of FRPRCS-8, Patras,2007.
    [79]吴智敏,郭夏,魏华.纤维增强复合材料加固混凝土柱的研究进展[J].建筑科学与工程学报,2008,25(2):24-35.
    [80]Richart F E, Brantzaeg A, and Brown R L. A study of the failure of concrete under combined compressive stresses [R]. Engineering Experiment Station, University of Illinois, Urbana,1928.
    [81]Samaan M, Mirmiran A, and Shahawy M. Model of concrete confined by fiber composites [J]. Journal of Structural Engineering,1998,124 (9):1025-1031.
    [82]Fardis M N, and Khalili H. Concrete encased in fiberglass-reinforced plastic [J]. ACI Journal, 1981,78 (6):440-446.
    [83]Lam L, and Teng J G. Strength models for fiber-reinforced plastic-confined concrete. Journal of Structural Engineering,2002,128 (5):612-623.
    [84]Spoelstra M R, and Monti G. FRP-confined concrete model. Journal of Composites for Construction,1999,3 (3):143-150.
    [85]Cho Chang-Geun, Kwon M, and Spacone E. Analytical model of concrete-filled fiber-reinforced polymer tubes based on multiaxial constitutive laws [J]. Journal of Structural Engineering,2005,131 (9):1426-1433.
    [86]Fujikake K, Mindess S, and Xu H. Analytical model for concrete confined with fiber reinforced polymer composite [J]. Journal of Composites for Construction,2004,8 (4):341-351.
    [87]Becque J, Patnaik A K, Rizkalla S H. Analytical models for concrete confined with FRP tubes [J]. Journal of Composites for Construction,2003,7 (1):31-38.
    [88]敬登虎.基于混凝土三轴破坏准则下FRP约束矩形柱的应力—应变模型[J].四川建筑科学研究,2008,34(2):62-66.
    [89]王双剑.FRP约束混凝土轴心受压柱性能研究[D].北京:北京交通大学,2004.
    [90]王怀亮,宋玉普.受侧向约束混凝土的内时损伤本构模型[J].工程力学,2007,24(12):120-127.
    [91]Parvin A, and Jamwal A S. Effects of wrap thickness and ply configuration on composite-confined cylinders [J]. Composite Structures,2005,67:437-442.
    [92]Rochette P, and Labossiere P. A plasticity approach for concrete columns confined with composite materials [C]. Proceedings of Advanced Composite Materials in Bridges and Structures, Montreal,1996.
    [93]Mirmiran A, Zagers K, and Yuan W. Nonlinear finite element modeling of concrete confined by fiber composites [J]. Finite Element Analysis and Design,2000,35 (1):79-86.
    [94]Shahawy M, Mirmiran A, and Beitelman T. Tests and modeling of carbon-wrapped concrete columns [J]. Composites Part B:Engineering,2000,31:471-480.
    [95]黄艳,卞路宽.FRP布约束混凝土圆柱轴心受压性能非线性有限元分析[J].中国铁道科学,2008,29(1):46-50.
    [96]Yang Q, Qin Q, and Zheng D. Analytical and numerical investigation of interfacial stress of FRP-concrete hybrid structure [J]. Composite Structures,2002,57:221-226.
    [97]Karam G, and Tabbara M. Confinement effectiveness in rectangular concrete columns with fiber reinforced polymer wraps [J]. Journal of Composites for Construction,2005,9 (5):388-396.
    [98]Wolf A.周昌忠等译.十六、十七世纪科学技术和哲学史.北京:商务印书馆,1985.
    [99]Gonnerman H. F. Effects of size and shape of test specimen on compressive strength of concrete [J]. Proceedings of the American Society for Testing and Materials,1925.
    [100]Weibull W. Phenomenon of rupture in solids. Proceedings of Royal Swedish Institution of Engineering Research, Gothenburg,1939.
    [101]Neville A. M. Properties of concrete (Fourth Edition) [M]. London:Longman Group Limited, 1995.
    [102]Sabnis G. M, Harris H. G, White R. N, Mirza M. S. Structural modeling and experimental techniques [M]. New York:Prentice Hall,1983.
    [103]Mazars J, Perdikaris P, Pijaudier-cabot G. Size effect predictions with damage modeling [M]. Proceedings of Size Effect in Concrete Structures,1994.
    [104]Carpinteri A. Scaling laws and renormalization groups for strength and toughness of disordered materials [J]. International Journal of Solids and Structures,1994,31:291-302.
    [105]Bazant Z. P. Scaling of quasibrittle fracture:the fractal hypothesis, it critique and weibull connection [J]. International Journal of Fracture,1997,83:19~40.
    [106]Zech B, and Wittmann F. H. A complex study on the reliability assessment of the containment of a PWR, part Ⅱ. probabilistic approach to describe the behavior of materials [C]. Proceedings of Trans.4th International Conference on Structural Mechanics in Reactor Technology, Brussels,1977.
    [107]Bazant Z P, and Novak D. Energetic-statistical size effect in quasibrittle failure at crack initiation [J]. ACI Materials Journal,2000,97:381~392.
    [108]Bazant Z P, and Pang S D. Activation energy based extreme value statistics and size effect in brittle and quasibrittle fracture [J]. Journal of the Mechanics and Physics of Solids,2007,55: 91-131.
    [109]Ditlevsen O. Extremes of random fields over arbitrary domains with application to concrete rupture stresses [J]. Probabilistic Engineering Mechanics,2004,19:373~384.
    [110]Bazant Z. P. Size effect in blunt fracture:concrete, rock, metal [J]. Journal of Engineering Mechanics,1984,110:1666-1692.
    [111]Kim J K, and Eo S H. Size effect in concrete specimens with dissimilar initial cracks [J]. Magazine of Concrete Research,1990,42:233-238.
    [112]Bazant Z P, and Oh B H. Microplane model for fracture analysis of concrete structures [C]. Proceedings of the international of non-linear munitions with structures, U. S Air force academy, Colorado,1983.
    [113]Schlangen E, and van Mier J G M. Shear fracture in cementitious composites part Ⅱ: numerical simulations [C]. Proceedings of Fracture Mechanics of Concrete Structures,1992, 671~676.
    [114]朱万成,林天革,唐春安,黄明利,梁正召.混凝土拉伸断裂过程及尺寸效应的数值模拟[J].岩土力学,2002,23:147-151.
    [115]Shayanfar M A, Kheyroddin A, and Mirza M S. Element size effects in nonlinear analysis of reinforced concrete members [J]. Computers & Structures,1997,62:339-352.
    [116]Elkadi A S, and van Mier J G M. Experimental investigation of size effect in concrete fracture under multiaxial compression [J]. International Journal of Fracture,2006,140:55-71.
    [117]Lejano B A, Adachi H, Shirai N, Nakanishi M, Tanaka K, and Yagenji A. Size effect on stress-strain characteristics of high strength reinforced concrete columns confined by lateral reinforcement [C]. Proceedings of Size effect in concrete structures,1994.
    [118]Koike S, Hatanaka S, Mizuno E, and Tanigawa Y. Size effect on compressive behavior of normal and high-strength confined concrete [J]. Journal of Structures and Construction Engineering,2000,538:131-138. (in Japanese)
    [119]Sener S, Barr B I G, and Abusiaf H F. Size effect in axially loaded reinforced concrete columns [J]. Journal of Structural Engineering,2004,130 (4):662-670.
    [120]Bazant Z P, and Kwon Y W. Failure of slender and stocky reinforced concrete columns:tests of size effect [J]. Materials and structures,1994,27 (2):79-90.
    [121]Yamamoto T, Kawaguchi J, and Morino S. Experimental study of the size effect on the behavior of concrete filled circular steel tube columns under axial compression [J]. Journal of Structure and Construction Engineering,2002,561:237-244. (in Japanese).
    [122]吴寒亮,王元丰.钢管混凝土柱的尺寸效应研究[J].哈尔滨工业大学学报,2007,39(Sup.2):22-25.
    [123]Lorenzis L D, Micelli F, and Tegola A L. Influence of specimen size and resin type on the behavior of FRP-confined concrete cylinders [C]. Proceedings of Advanced Composites for Structural Applications in Construction, Southampton,2002.
    [124]Carey S A, and Harries K A. Axial behavior and modeling of confined small-, medium-, and large-scale circular sections with carbon fiber-reinforced polymer jackets [J]. ACI Structural Journal,2005,102 (4):596-604.
    [125]Glimm J, and Sharp D H. Multiscale science:a challenge for the twenty-first century(多尺度科学:面向21世纪的挑战)[J].力学进展,1998,28(4):545-551.
    [126]黄克智,肖纪美.材料的损伤断裂机理和宏微观力学理论[M].北京:清华大学出版社,1999.
    [127]Maekawa K, Ishida T, and Kishi T. Multi-scale modeling of concrete performance intergrated material and structural mechanics [J]. Journal of Advanced Concrete Technology,2003,1 (2): 91-128.
    [128]Bazant Z P, and Prasannan S. Solidification theory for aging creep [J]. Cement and Concrete Research,1988,18 (6):923-932.
    [129]吴佰建,李兆霞,汤可可.大型土木结构多尺度模拟与损伤分析—从材料多尺度力学到结构多尺度力学[J].力学进展,2007,37(3):321-336.
    [130]陆新征,林旭川,叶列平.多尺度有限元建模方法及其应用[J].华中科技大学学报,2008,25(4):76-80.
    [131]中华人民共和国建设部.普通混凝土力学性能试验方法标准[S].GB/T 50081-2002.北京:中国建筑工业出版社,2002.
    [132]Box J F. R A Fisher:the life of a scientist [M]. New York:Wiley,1978.
    [133]Montgomery D C.汪仁官,陈荣昭译.实验设计与分析[M].北京:中国统计出版社,1998.
    [134]Kim J K, Yi S T, Park C K, and Eo S H. Size effect on compressive strength of plain and spirally reinforced concrete cylinders [J]. ACI Structural Journal,1999,96(1):88-94.
    [135]Shackelford F. Introduction to materials science for engineers [M]. New Jersey:Prentice Hall, 2004.
    [136]过镇海.钢筋混凝土原理[M].北京:清华大学出版社,1999.
    [137]Bazant Z P, and Cedolin L. Stability of structures:elastic, inelastic, fracture and damage theories [M]. New York:Oxford University Press,1991.
    [138]Biot M A. Mechanics of incremental deformations [M]. New York:John Wiley & Sons,1965.
    [139]Bazant Z P. Stability of continuum and compression strength [R]. Bulletin RILEM,1967.
    [140]Bazant Z P, Lin F, and Lippmann H. Fracture energy release and size effect in borehole breakout [J]. International Journal for Numerical and Analytical Method in Geomechanics, 1993,17:1-14.
    [141]Bazant Z P, and Xiang Y. Size effect in compression fracture:splitting crack band propagation [J]. Journal of Engineering Mechanics,1997,122 (2):162-172.
    [142]Zaitsev Y V, and Wittmann F H. Simulation of crack propagation and failure of concrete [J]. Materials and Structures,1981,14:357-365.
    [143]Wang E Z, and Shrive N G. Brittle fracture in compression:mechanisms, models and criteria [J]. Engineering Fracture Mechanics,1995,52 (6):1107-1126.
    [144]Kachanov M. A microcrack model of rock inelasticity-part Ⅰ:frictional sliding on microcracks[J]. Mechanics of Materials,1982,1:19-41.
    [145]Ferro G. On dissipated energy density in compression for concrete [J]. Engineering Fracture Mechanics,2006,73:1510-1530
    [146]Bazant Z P, and Oh B H. Crack band theory for fracture of concrete [J]. Materials and Structures,1983,16:155-177.
    [147]吴连元.板壳稳定性理论[M].武汉:华中理工大学出版社,1996.
    [148]范天佑.断裂理论基础[M].北京:科学出版社,2003.
    [149]Hillerborg A, Modeer M, and Petersson P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements [J]. Cement and Concrete Research,1976,6:773-782.
    [150]Yi S, Yang E, and Choi J. Effect of specimen size, specimen shapes, and placement directions on compressive strength of concrete [J]. Nuclear Engineering and Design,2006,236 (2): 115-127.
    [151]Sener S. Size effect tests on high strength concrete [J]. Journal of Materials in Civil Engineering,1997,9 (1):46-48.
    [152]Taylor G I. Plastic strain in metals [J]. Journal Institute of Metals,1938,68:307-324.
    [153]Batdorf S B, and Budianski B. A mathematical theory of plasticity based on the concept of slip [R]. Technical Note No.1871, National Advisory Committee for Aeronautics, Washington D. C.,1949.
    [154]Zienkiewicz O C, and Pande G N. Time-dependent multilaminate model of rocks—a numerical study of deformation and failure of rock masses [J]. International Journal of Numerical and Analytical Methods in Geomechanics,1977,1 (3):219-247.
    [155]Bazant Z P, and Oh B H. Microplane model for fracture analysis of concrete structures [C]. Symposium Proceedings:The International of Non-nuclear Munitions with Structures, U. S. Air Force Academy, Colorado, May 10-13,1983,49-55.
    [156]Bazant Z P, and Oh B H. Microplane model for progressive fracture of concrete and rock [J]. Journal of Engineering Mechanics,1985,111 (4):559-582.
    [157]Bazant Z P, and Oh B H. Efficient numerical integration on the surface of a sphere [J]. Zeitschrift fur Angewandte Mathematik und Mechanic,1986,66 (1):37-49.
    [158]Bazant Z P, and Gambarova P G.. Crack shear in concrete:crack band microplane model [J]. Journal of Structural Engineering,1983,110 (9):2015-2035.
    [159]Bazant Z P, and Prat P C. Microplane model for brittle-plastic material:Ⅰ. theory [J]. Journal of Engineering Mechanics,1988,114(10):1672-1688.
    [160]Bazant Z P, and Prat P C. Microplane model for brittle-plastic material:Ⅱ. Verification [J]. Journal of Engineering Mechanics,1988,114 (10):1689-1702.
    [161]Bazant Z P, Xiang Y, and Prat P C. Microplane model for concrete Ⅰ:stress-strain boundaries and finite strain [J]. Journal of Engineering Mechanics,1996,122 (3):245-254.
    [162]Bazant Z P, Xiang Y, Adley M D, Prat P C, and Akers S A. Microplane model for concrete Ⅱ: data delocalization and verifiecation [J]. Journal of Engineering Mechanics,1996,122 (3): 255-262.
    [163]Bazant Z P, Caner F C, Carol I, Adley M D, and Akers S A. Microplane model M4 for concrete. I:formulation with work-conjugate deviatoric stress [J]. Journal of Engineering Mechanics, 2000,126 (9):944-953.
    [164]Caner F C, and Bazant Z P. Microplane model M4 for concrete. Ⅱ:algorithm and calibration [J]. Journal of Engineering Mechanics,2000,126 (9):954-961.
    [165]Bazant Z P, Caner F C, Adley M D, and Akers S A. Fracturing rate effect and creep in microplane model for dynamics [J]. Journal of Engineering Mechanics,2000,126 (9): 962-970.
    [166]Bazant Z P, Adley M D, Carol I, Jirasek M, Akers S A, Rohani B, Cargile J D, and Caner F C. Large-strain generalization of microplane model for concrete and application [J]. Journal of Engineering Mechanics,2000,126 (9):971-980.
    [167]Cervenka J, Bazant Z P, and Wierer M. Equivalent localization element for crack band approach to mesh-sensitivity in microplane model [J]. International Journal for Numerical and Analytical Methods in Engineering,2005,62:700-726.
    [168]Bazant Z P, and Zi G.. Microplane constitutive model for porous isotropic rocks [J]. International Journal for Numerical and Analytical Methods in Geomechanics,2003,27: 25-47.
    [169]Bazant Z P, and Caner F C. Microplane model M5 with kinematic and static constraints for concrete fracture and anelasticity Ⅰ:Theory [J]. Journal of Engineering Mechanics,2005,131 (1):31-40.
    [170]Bazant Z P, and Caner F C. Microplane model M5 with kinematic and static constraints for concrete fracture and anelasticity Ⅱ:Computation. Journal of Engineering Mechanics,2005, 131(1):41-47.
    [171]Beghini A, Bazant Z P, Zhou Y, Gouirand O, and Caner F C. Microplane model M5f for multiaxial behavior and fracture of fiber-reinforced concrete [J]. Journal of Engineering Mechanics,2007,133 (1):66-75.
    [172]Lee Y, and Kim J K. Numerical analysis of the early age behavior of concrete structures with a hydration based microplane model [J]. Computers and Structures,2009,87:1085-1101.
    [173]LuzioG D. A symmetric over-nonlocal microplane model M4 for fracture in concrete [J]. International Journal of Solids and Structures,2007,44:4418-4441.
    [174]Zi G, and Bazant Z P. Continuous relaxation spectrum for concrete creep and its incorporation into microplane model M4 [J]. Journal of Engineering Mechanics,2002,128 (12):1331-1336.
    [175]Brocca M, and Bazant Z P. Size effect in concrete columns:finite-element analysis with microplane model [J]. Journal of Structural Engineering,2001,127 (12):1382-1390.
    [176]Brocca M. Material modeling and structural analysis with the microplane model constitutive model [D]. Evanston, Illinois:Northwest University,1999.
    [177]李庆勇,郑云,郑建军.基于微平面理论混凝土板的非线性分析[J].工程力学,2000,增刊:378-382.
    [178]郑建军,李庆勇,曾洪波,徐世娘.混凝土微平面模型的参数研究与应用[J].四川建筑科学研究,2004,30(2)92-94.
    [179]陈新,杨强.基于微面有效矢量的各向异性屈服准则[J].力学学报,2006,38(5):692-697.
    [180]张斌,王光纶,方修君,王进廷.基于微平面模型的切口重力坝试验数值模拟[J].水力发电学报,2006,25(4):70-74.
    [181]张斌,王光纶,方修君.动态约束—静态校核微平面模型[J].清华大学学报(自然科学版),2006,46(6):789-792.
    [182]缪志伟,陆新征,李易,叶列平.基于通用有限元程序和微平面模型分析复杂应力混凝土结构[J].沈阳建筑大学学报(自然科学版),2008,24(1):49-53.
    [183]缪志伟,陆新征,王载,黄盛楠,叶列平.某钢框架偏心核心筒弹塑性分析[J].四川建筑科学研究,2008,34(3):5-10.
    [184]缪志伟,陆新征,叶列平,李易.微平面模型在剪力墙结构计算中的应用[J].深圳大学学报理工版,2008,25(2):122-128.
    [185]欧碧峰,王君杰.钢筋混凝土微平面动态本构模型[J].振动与冲击,2007,26(12):74-78.
    [186]D. S. Simulate Co. ABAQUS analysis user's manual [R]. USA:Providence RI,2008.
    [187]Cofer W F. Implementation of the nonlocal microplane concrete model within an explicit dynamic finite element program [J]. Applied Mechanics Review,1992,45 (3):S132-139.
    [188]Cofer W F, and Kohut S W. A general nonlocal microplane concrete material model for dynamic finite element analysis [J]. Computers and Structures,1994,53 (1):189-199.
    [189]van Mier J G M. Multiaxial strain-softening of concrete Ⅰ:fracture:Ⅱ:load histories [J]. Materials and Structures,1986,111(19):179-200.
    [190]Bazant Z P, Bishop F C, and Chang T P. Confined compression tests of cement paste and concrete up to 3000 ksi [C]. ACI Journal Proceedings,1986,83(4):553-560.
    [191]Green C D, and Swanson S R. Static constitutive relations for concrete [R]. Report No. AFWL-TR-72-2, Air Force Weapons Lab., Kirtland Air Force Base, Albuquerque, N.M,1973.
    [192]Sinha B P, Gerstle K H, and Tulin L G. Stress-strain relations for concrete under cyclic loading [C]. ACI Journal Proceedings,1964,62 (2):195-210.
    [193]Balmer G G. Shearing strength of concrete under high triaxial stress-computation of Mohr's envelope as a curve [R]. Structure Research Lab., Report No. SP.23, U.S. Department of the Interior and Bureau of Reclamation, Denver,1949.
    [194]Petersson P E. Crack growth and development of fracture zones in plain concrete and similar materials [R]. Report No. TVBM 1006, Lund Institute of Technology, Lund, Sweden,1981.
    [195]Kupfer H, Hilsdorf H K, and Rusch H. Behavior of concrete under biaxial stresses [J]. ACI Journal,1969,66:656-666.
    [196]Mandelbrot B B. Les objets fractals:forme, hasard et dimension [M]. Paris:Flammarion, 1975.
    [197]Feder J. Fractals [M]. New York:Plenum Press,1988.
    [198]唐明,李晓.混凝土分形特性研究的现状与进展[J].混凝土,2004,(182):8-11.
    [199]严安,吴科如,张东,姚武.混凝土材料断裂表面的多重分形特征研究[J].建筑材料学报,2002,5(1):46-50.
    [200]Khezradeh H, and Mofid M. Tensile fracture behavior of heterogeneous materials based on fractal geometry [J]. Theoretical and Applied Fracture Mechanics,2006,46:46-56.
    [201]吴科如,张东,刘娟育,严安,姚武,李启令.混凝土断面三维重构[J].建筑材料学报,1999,2(3):261-265.
    [202]Issa M A, Issa M A, Islam M S, and Chudnovsky A. Fractal dimension-a measure of fracture roughness and toughness of concrete [J] Engineering Fracture Mechanics,2003,70:125-137..
    [203]Zhao Z, Kwon S H, and Shah S P. Effect of specimen size on fracture energy and softening curve of concrete:part Ⅰ. experiments and fracture energy [J]. Cement and Concrete Research, 2008,38:1049-1060.
    [204]严安,吴科如,姚武,张东.混凝土材料的真实断裂能研究[J].建筑材料学报,2001,4(4):346-350.
    [205]Carpinteri A, Cornetti P, and Puzzi S. Scaling laws and multiscale approach in the mechanics of heterogeneous and disordered materials [J]. Applied Mechanics Reviews,2006,59: 283-305.
    [206]Carpinteri A, and Spagnoli A. A fractal analysis of size effect on fatigue crack growth [J]. International Journal of Fatigue,2004,26:125-133.
    [207]Xu Y. Explanation of scaling phenomenon based on fractal fragmentation [J]. Mechanics Research Communications,2005,32:209-220.
    [208]Saouma V E, and Barton C C. Fractals, fractures, and size effect in concrete [J]. Journal of Engineering Mechanics,1994,120(4):835-854.
    [209]徐定华,徐敏.混凝土材料学概论[M].北京:中国标准出版社,2002.
    [210]Sener S. Size effect tests of high strength concrete [J]. Journal of Materials in Civil Engineering,1997,9(1):46-48.
    [211]Iordache D, Pusca S, Toma G, Paun, Sterian A, and Morarescu C. Analysis of compatibility with experimental data of fractal descriptions of the fracture parameters [C]. Lecture Notes in Computer Science,2006, Berlin:Springer.
    [212]Bazant Z P, Kim I J, and Brocca M. Finite strain tube squash test at high pressures and shear angles up to 70 degrees [J]. ACI Materials Journal,1999,96 (5):580-592.
    [213]Bazant Z P. Nonlocal damage theory based on micromechanics of crack interactions [J]. Journal of Engineering Mechanics,1994,120 (3):593-617.
    [214]Duhem P. Le potentiel thermodynamique et la pression hydrostatique [J]. Ann. Sci. Ec. Normale Super.,1893,10:183-230.
    [215]Eringen A C. A unified theory of thermomechanical materials [J]. International Journal of Engineering Science,1966,4:179-202.
    [216]Bazant Z P, and Lin F B. Nonlocal yield-limit degradation [J]. International Journal for Numerical Methods in Engineering,1988,26:1805-1823.
    [217]Lemaitre J, and Chaboche J L. Mechanics of solid materials [M]. Cambridge:Cambridge University Press,1990.
    [218]Eringen A C. Nonlocal stress field at a Griffith crack [J]. Cryst. Lattice Defects Amorphous Materials,1983,10:33-38.
    [219]Eringen A C. On nonlocal microfluid mechanincs [J]. International Journal of Engineering Science,1973,11 (2):291-306.
    [220]Bazant Z P, and Jirasek M. Nonlocal integral formulations of plasticity and damage:survey of progress [J]. Journal of Engineering Mechanics,2002,128 (1):1119-1149.
    [221]Bazant Z P, and Cabot G P. Measurement of characteristic length of nonlocal continuum [J]. Journal of Engineering Mechanics,1989,115 (4):755-767.
    [222]矫桂琼,贾普荣.复合材料力学[M].西安:西北工业大学出版社,2008.
    [223]Hashin Z. Failure criteria for unidirectional fiber composites [J]. Journal of Applied Mechanics, 1980,47 (2):329-334.
    [224]Malva L J, Morrill K B, and Crawford J E. Numerical modeling of concrete confined by fiber-reinforced composites [J]. Journal of Composites for Construction,2004,8 (4):315-322.
    [225]庄茁,张帆,岑松,由小川,于旭光,牟全臣,徐明,白锐ABAQUS非线性有限元分析与实例[M].北京:科学出版社,2005.
    [226]Harewood F J, and McHugh P E. Comparison of the implicit and explicit finite element methods using crystal plasticity [J]. Computational Materials Science,2007,39 (2):481-494

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700