用户名: 密码: 验证码:
非均质饱和多孔介质准静态行为分析的耦合多尺度及耦合升尺度有限元法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在科学研究和实际工程当中,我们遇到的许多问题都具有非均质以及多尺度的性质,如地下水在非均质地层介质中的渗流、复合材料中的热传导、非均质材料在外部载荷作用下的变形等。使用常规数值算法在解析介质非均质性的细网格模型上求解这些问题时,常常会由于自由度数太大导致计算量过大而遇到困难。因此,人们发展了许多种多尺度和升尺度算法,用以在适合进行数值分析的粗网格模型上求解这些问题,如多尺度有限元法(MSFEM)以及各种升尺度算法等。如今对这类算法的研究已经形成了一个广泛的研究领域。与此同时,在常见的实际工程问题当中,多种物理现象常常是耦合在一起的。以地下水、石油、天然气等资源的开采和地面高大建筑物的压力等因素造成的地面沉降为例,岩土介质的变形通常伴随着孔隙流体的流动、热量和物质的传输、污染物的传输以及各种物理与化学反应等现象。此类问题的控制方程往往具有多相多场耦合特征,使用传统数值算法求解时,由于非均质及多尺度特性的存在,为了获得有意义的解,需要在反映非均质性质的细尺度模型上求解,这将导致此类耦合问题求解的计算量和存储需求过大,乃至无法求解。多尺度分析方法是解决此类问题的一种有效方法,到目前为止,国内外已发展了多种求解单一物理场问题十分有效的多尺度或升尺度算法;然而,对于多相与多物理场耦合作用问题,由于问题的复杂性,其多尺度计算方法方面的成果还相对较少,发展求解大规模非均质多相多物理场耦合问题的多尺度或升尺度计算方法仍是需要深入研究的课题,相关研究工作具有重要的理论意义与工程应用价值。
     为了实现这一目的,本文发展了耦合多尺度、扩展多尺度以及耦合升尺度有限元法求解框架,在便于进行数值模拟的粗网格模型上求解工程中常见的大规模非均质流固耦合问题。与常规数值算法相比,应用这三种数值算法求解非均质耦合问题时,可以较大程度地降低计算量,减少存储需求。
     首先,本文发展了耦合多尺度有限元法(CMSFEM)用于在粗网格模型上求解非均质饱和多孔介质在外载荷作用下的变形与固结问题。在CMSFEM中,基于多尺度有限元法(MSFEM)的基本思想,构建了饱和多孔介质流体相多尺度基函数,与MSFEM不同,CMSFEM还构建了在粗网格单元上用于固相位移场插值的多尺度基函数;在此基础上,采用超样本技术来提高多尺度基函数的计算精度。在所构造的基函数的基础上,非均质多相耦合问题细网格有限元模型就可以转化为粗网格模型进行求解,在这一方法中,非均质饱和多孔介质各非均匀参数场如渗透率、弹性模量、密度、孔隙率等,均得到了考虑。本文给出了多个数值算例,并与传统有限元法在细网格模型上求得的结果进行了比较,结果显示,耦合多尺度有限元法可以被成功地用来求解非均质流固耦合问题,与传统有限元法相比,极大地降低了存储需求和计算量。
     其次,本文发展了扩展多尺度有限元法(EMSFEM)作为在粗尺度模型上求解非均质问题的一般性多尺度算法。算法中构建了新型的固相位移场多尺度基函数,使用超样本技术为多尺度基函数建立振荡边界条件,对处于模型边界上的粗网格单元,采用修正的超样本技术形成超样本单元;在多尺度基函数中,通过引入不同方向位移之间的耦合作用项,使得多尺度单元成为混合插值型单元,提高了多尺度基函数对材料非均质特性.的模拟能力,大大提高了传统多尺度有限元法的计算精度。文中给出多个算例,并与传统有限元法进行比较,结果显示,作为求解非均质问题的一般性多尺度算法,扩展多尺度有限元法可以被成功地用来求解单相非均质介质以及非均质饱和多孔介质固结问题,与传统有限元法相比,在保证一定计算精度的同时,降低了计算量和存储需求。
     最后,本文发展了耦合升尺度有限元法(CUFEM)用于在粗网格模型上求解非均质饱和多孔介质在外载荷作用下的变形与固结问题。它同样也是一个求解多场耦合问题的的有效算法,本文使用CUFEM求解非均质饱和多孔介质的固结问题以说明其基本求解过程。在CUFEM中,首先求解非均质饱和多孔介质粗网格模型上的每个粗网格单元计算的等效渗透率张量和等效弹性模量张量,并进一步利用超样本技术提升等效参数的计算精度。在粗网格单元宏观矩阵的计算过程中,使用常规有限元形函数在粗网格单元上进行数值积分的方法来考虑非均质标量参数场所带来的非均质性,如密度、压缩系数等。文中给出了具体数值算例以验证算法的有效性。算例分析表明,由耦合升尺度有限元法在粗网格模型上求得的结果与常规有限元法在细网格模型上求解所得结果吻合较好,与耦合多尺度有限元法以及扩展多尺度有限元法一样,耦合升尺度有限元法在粗网格模型上求解非均质问题时,较大程度地减少了计算量和存储需求。
Almost all problems that usually encountered in science and engineering are multiscale in nature. These problems may include the groundwater flow in heterogeneous subsurface formations, the heat transfer in composite materials, the deformation of non-homogeneous materials under certain loading conditions, etc. Traditional numerical methods will encounter difficulties when applied for solving these problems on the resolved fine-scale numerical models due to its large computational requirements. Then many kinds of multiscale and upscaling methods are developed for solving these problems on manageable coarse-scale models such as the multiscale finite element method (MSFEM), the upscaling methods, etc. It has become a huge research field now. At the same time, many natural phenomena are usually coupled with each other in the problems usually encountered in practical engineering. Take the ground subsidence as an example, the deformation of the soil and rocks is usually accompanied by the fluid flow, the heat and mass transfer, the pollutant diffusion, the chemical and physical reaction, etc. These phenomena cannot be decoupled reasonably and solved independently in most cases. Since the heterogeneities and multiscale properties are widespread, direct solution of these coupling problems on resolved fine-scale models with traditional numerical methods are almost impossible. Multiscale methods are effective algorithms for sovling this kinds of problems. So far many kinds of multiscale and upscaling numerical methods have been developed for solving single physical field problems. However, for the complicate multi-phase and multi-physics coupling problems, corresponding multiscale methods are extremely rare. So, to develop new multiscale or upscaling numerical strategies for solving the heterogeneous multi-phase and multi-physics coupling problems has become a great challenge to the researchers. Related investigations will be of great importance for theoretical progress and engineering applications.
     For this purpose, the coupling multiscale finite element numerical strategy, the extended multiscale finite element numerical strategy and the coupling upscaling finite element numerical strategy are developed in this dissertation for solving the heterogeneous coupling problems usually encountered in practical engineering on manageable coarse-scale models. The applications of these numerical methods for solving the coupling problems can greatly reduce the computing efforts in both computational cost and memory in comparison with traditional numerical methods.
     Firstly, the coupling multiscale finite element method (CMSFEM) is developed for solving the coupling problems of deformation and consolidation of the heterogeneous saturated porous media under external loading conditions on coarse-scale models. In CMSFEM, based on the basic idea of MSFEM, the multiscale base functions are constructed for the fluid phase. Furthermore, the multiscale base functions are also constructed for the displacement fields of the solid phase. The oversampling technique is adopted to improve the accuracy. In this way, the heterogeneous problems can be solved on coarse-scale models with a multiscale numerical procedure. The heterogeneities induced by non-homogeneous properties of the saturated porous media, such as permeability, elastic modulus, density, porosity, etc, can be all taken into account. Numerical experiments are carried out for several cases in comparison with the traditional finite element method which is applied on the resolved fine-scale models. The numerical results show that CMSFEM can be successfully used for solving this kind of coupling problems. Most impotantly, it reduces the computing effort in both memory and CPU time.
     Secondly, the extended multiscale finite element method is developed and treated as a general multiscale numerical procedure for solving the heterogeneous problems. In this method, a set of new multiscale base functions for the displacent field of the solid phase is constructed. The oversampling technique is used to generate the oscillatoty boundary conditions for these multiscale base functions. The modified oversampling technique is used to form the oversampling regions for the coarse grid elements on the boundaries of the model. Moreover, additional coupled terms between the displacement fields of different directions are introduced into the multiscale base functions. The multiscale elements then become mixed-interpolation type. The small scale features within the coarse grid elements induced by non-homogeneous materials can be effectively captured by these multiscale base functions. Then the accuracy of the extended multiscale finite element method is improved. Several numerical examples for EMSFEM are carried out in this dissertation in comparision with the traditional finite element method. The numerical results show that EMSFEM can be successfully used for solving the heterogeneous problems which include both the simple one-phase problems and the complex multi-phase problems. Most importantly, it reduces the computing efforts in comparison with traditional finite element method.
     Finally, the coupling upscaling finite element method (CUFEM) is developed for solving the coupling problems of deformation and consolidation of the heterogeneous saturated porous media under external loading conditions. It is essentially also a numerical framework for solving many kinds of complicated coupling problems. Its application to the consolidation analysis of heterogeneous saturated porous media is presented here to illustrate its numerical procedure. In this method, equivalent permeability tensors and equivalent elastic modulus tensors are calculated for every coarse grid block in the coarse-scale models of the heterogeneous saturated porous media. The oversampling technique is introduced to improve the calculation accuracy of the equivalent parameters. Instead of simple spatial average, a numerical integration process is performed over the fine-scale mesh within every coarse grid element to capture the small scale information induced by non-uniform scalar field properties such as density, compressibility, etc, with traditional shape functions of the standard finite element method. Numerical experiments are carried out to examine the accuracy of the developed method. It shows that the numerical results obtained by CUFEM on the coarse-scale models fit fairly well with the reference solutions obtained by traditional finite element method on the resolved fine-scale models. It reduces dramatically the computing effort in both CPU time and memory for solving the transient coupling problems in comparison with the traditional FEM just as CMSFEM and EMSFEM.
引文
[1]郭莹,郭承侃,陆尚谟.土力学[M].大连:大连理工大学出版社,2003.
    [2]Coulomb CAL. Application des regles maximis et minimis a quelquesproblems de statique [C]. Paris:Relatifs a 1'architecture. Mem. de 1'Acad Des Sc,1773.
    [3]Darcy H. Determination des lois d'ecoulement de l'eau a travers le sable [C]//Les Fontaines Publiques de la Ville de Dijon. Paris:Victor Dalmont.1856:590-594.
    [4]Rankine WJM. On the stability of loose earth[M]. London:Tran Royal Soc,1857.
    [5]Terzaghi K. Die berechnung der durchleessigkeitszifter des tones aus dem verlauf derhydro dynamishen spannungeserscheinungen[J]. Sitsber Akad Wiss Vienna Abt 1923;Ⅱ:132.
    [6]Terzaghi K. Principles of soil mechanics[J]. Eng Naws Record 1925;17.
    [7]Biot MA. General theory of three-dimensional consolidation[J]. J Appl Phys 1941;12:155-164.
    [8]Biot MA. Theory of propagation of elastic waves in fluid saturated porous solid[J]. J Acoust Soc America 1956;28:168-191.
    [9]Turesdell C. Sulle basi della termomeccanica[J]. Rend 1957;22:33-38.
    [10]Turesdell C. The classical field theories. Handbuch derphysic bd Ⅲ/Ⅰ[M]. Verlag:Springer,1960.
    [11]Bowen RM. Theory of mixtures in Eringen. Continuum Physics Vol Ⅲ[M]. NY:Academic Press, 1976.
    [12]Bowen RM. Compressible Porous media models by use of the theory of mixtures[J]. Int J Eng Sci 1982;20:697-735.
    [13]Derski W. Thermomechanique Lineaire des Milieux Poreux[M]. Nantes:ENSM,1982.
    [14]Zienkiewicz OC, Humpheson C, Lewis RW. A unified approach to soil mechanics problems(including plasticity and viscoplasticity)[M]//Finite Elements in Geomechanics. Wiley, 1977;Ch.4:151-178.
    [15]Zienkiewicz OC. Basic formulation of static and dynamic behaviour of soil and other porous media[J]. Numer Meth Geomech 1982.
    [16]Zienkiewicz OC, Bettess P. soil and other porous media under transient dynamic conditions [J]. Scientific paoers Inst Geotechnical Eng 1980;32:243-254.
    [17]Prevost JH. Mechanics of continuous porous media[J]. Int J Eng Sci 1980;18:787-800.
    [18]Zienkiewicz OC, Shomi T. Dynamic behaviour of saturated porous media:the generalized Biot formulation and its numerical solution[J]. Int J Numer Anal Meth Geo 1984;8:71-96.
    [19]Zienkiewicz OC, Chan AHC, Pastor M et al. Static and dynamic behaviour of soils:a rational approach to quantitative solutions. Ⅰ:fully saturated Problems [C]//Proc Roy Soe Lond A.1990, 429:285-309.
    [20]Zienkiewicz OC, Xie YM, Sehrefler BA et al. Static and dynamic behaviour of soils:a rational approach to quantitative solutions. Ⅱ:semi-saturated Problems [C]//Proc Roy Soc Lond A.1990, 429:311-321.
    [21]Fredlund DG, Rahardjo H. soil mechanics for unsaturated soils[M]. NewYork:John Wiley,1993.
    [22]Li Xikui. Finite element analysis for immiscible two-phase fluid flow in deforming porous media and unconditionally stable, staggered solution[J]. Communications appl numer methods 1990;6(2):125-135.
    [23]Li Xikui, Zienkiewiez OC, Xie YM. A numerical model for immiscible two-phase fluid flow in a porous medium and its time domain solution[J]. Int J Numer Methods Eng 1990;30(6):1195-1212.
    [24]Li Xikui, Zienkiowicz OC. Multiphase flow in deforming porous media and finite element solutions[J]. Comput Struct 1992;45(2):211-227.
    [25]Alonao EE, Gens A, Josa A. A constitutive model for partially saturated soils [J]. Geotechnique 1990;40:405-430.
    [26]Schrefler BA, Zhan X. Multiphase flow in deforming for water flow and air flow in deformable porous media[J]. Water Resour Res 1993;29:155-167.
    [27]Yang DQ, Shen ZJ. Two-dimensional numerical simulation of generalized consolidation problem of unsaturated soils [C]//7th Int Conf computer methods and advances in geomech Cairns 1992, 11:1261-1266.
    [28]Thomas HR, King SD. Coupled temperature/capillary potential variations in unsaturated soil[J]. Eng Mech ASCE 1991;11:2475-2491.
    [29]Thomas HR, He Y, Sansom MR et al. On the development of a model of the thermo-mechanical-hydraulic behaviour of unsaturated soils[J]. Eng Geol 1996;41:197-218.
    [30]Thomas HR, He Y, Onofrei C. An examination of the validation of a model of the hydro/thermo/meehanical behaviour of engineered clay barriers [J]. Int J Numer Ana Meth Geomech 1998;22:49-71.
    [31]Thomas HR, Li CLW. Modelling transient heat and moisture transfer in unsaturated soils using a Parallel computing approach[J]. Int J Numer analy Meth Geomech 1995;19:345-366.
    [32]Dakshanamurthy V, Fredlund DG. A mathematical model for predicting moisture flow in an unsaturated soil under hydraulic and temperature gradients[J]. Water Resour Res 1981; 17:714-722.
    [33]Simoni L, Schrefler BA. A staggered finite-element solution for water and gas flow in deforming porous media[J]. Communications appl numer methods 1991;7:213-223.
    [34]Schrefler BA, Zhan XY. A fully coupled model for water flow and air flow in deformable porous media[J]. Water Resour Res 1993;29(1):155-167.
    [35]Meroi EA, Schrefler BA. Large strain static and dynamic semi saturated soil behaviour[J]. Int J Numer Analy Meth Geomech 1996;19:81-106.
    [36]Schrefler BA, Seotta R. A fully coupled dynamic model for two-phase fluid flow in deformable porous media[J]. Comput Methods Appl Mech Engrg 2001; 190:3223-3246.
    [37]Schrefler BA. FE in environmental engineering:Coupled thermo-hydro-mechanical processes in porous media including pollutant transport[J]. Arch Comput Method E 1995;2&3:1-54.
    [38]Hueckel T, Borsetto M. Thermoplasticity of saturated soils and shals:constitutive equations[J]. J Geotech Eng ASCE 1990;116(12):1765-1777.
    [39]Hueckel T, Baldi G. Thermoplasticity of saturated clays:experimental constitutive study[J]. J Geotech Eng ASCE 1990;116(12):1778-1796.
    [40]Baldi G, Hueckel T, Pellegrini R. Thermal volume changes of the mineral-water system in low porosity clay soils[J]. Can Geotech J 1988;25:807-825.
    [41]Chenmin M, Hueckel T. Stress and pore pressure in saturated clay subjected to heat from radioaetive waste:a numerical simulation[J]. Can Geotech J 1992;29:1087-1094.
    [42]Hueckel T, Pellegrini R. Effective stress and water pressure insaturated clays during heating-cooling circles[J]. Can Geotech J 1992;29:1095-1101.
    [43]Wu WH, LI XK, Charlier R, Collin F. A thermo-hydro-mechanical constitutive model for unsaturated soils[J]. Comput Geotech 2004;31:155-167.
    [44]Liu Z, Boukpeti N, Li X, Collin F, Radu J-P, Hueekel T, Charlier R. Modelling chemo-hydro-mechanical behavior of unsaturated clays:a feasibility study [J]. Int J Numer Anal Met 2005;29:919-940.
    [45]Zhang HW, Schrefler BA. Gradient-dependent plasticity model and dynamic strain localisation analysis of saturated and partially saturated porous media:one dimensional model[J]. Eur J Mech A-Solid 2000;19(3)503-524.
    [46]Zhang HW, Schrefler BA. Uniqueness and localisation analysis of elastic-plastic saturated porous media[J]. Int J Numer Anal Meth Geomech 2001;25:29-48.
    [47]Zhang HW, Sanavia L, Schrefler BA. Numerical analysis of dynamic strain localisation in initially water saturated dense sand with a modified generalised plasticity model[J]. Comput Struct 2001;79:441-459.
    [48]Zhang HW, Zhou L. Numerical manifold method for dynamic nonlinear analysis of saturated porous media[J]. Int J Numer Anal Met 2006;30 (9):927-951.
    [49]Zhang HW, Schrefler BA. Particular aspects of internal length scales in strain localization analysis of multiphase porous materials [J]. Comput Methods Appl Mech Engrg 2004;193:2867-2884.
    [50]沈珠江.土体应力应变分析的一种新模型.第五届土力学及基础工程学术会议论文选集[C].北京:北京建筑工业出版社,1990,101-105.
    [51]沈珠江.广义吸力和非饱和土的统一变形理论[J].岩土工程学报,1996,18:1-8.
    [52]沈珠江.理论土力学[M].北京:中国水利水电出版社,2000.
    [53]陈正汉,王永胜,谢定义.非饱和土的有效应力探讨[J].岩土工程学报,1994,16:63-69.
    [54]陈正汉,谢定义.非饱和土固结的混和理论(Ⅰ),(Ⅱ)[J].应用数学与力学,1993,2:127-136.
    [55]刘占芳,李德源,严波.饱和多孔介质的非均匀平面波[J].岩土力学,1999,20(4):31-35.
    [56]刘占芳,黄民战,李德源.液饱和多孔介质中瑞利型波的弥散和衰减[J].重庆大学学报(自然科学版),2000,23:6-10.
    [57]徐曾和,徐小荷,沈连山.可变形多孔介质中的一维非定常祸合渗流[J].应用力学学报,1999,16(4):46-52.
    [58]宋颖韬,徐曾和,姜元勇.一维多孔介质中气体渗流与多相气固反应分析[J].水动力研究与进展,2004,19(6):766-773.
    [59]赵成刚,李伟华,王进廷,李亮.三种介质祸联系统动力反应分析的显示有限元及其应用[J].地震学报,2003,25(3):262-271.
    [60]赵成刚,闰华林,李伟华,李亮.考虑藕合质量影响的饱和多孔介质动力影响分析的显示有限元[J].计算力学学报,2005,22(5):555-561.
    [61]黄茂松,魏星.循环荷载饱和土动力学问题稳定有限元解[J].岩土工程学报,2005,27(2):173-177.
    [62]Babuska I, Szymczak WG. An error analysis for the finite element method applied to convection-diffusion problems[J]. Computer Methods in Applied Mechanics and Engineering 1982;31:19-42.
    [63]Babuska I, Osborn E. Generalized finite element methods:Their performance and their relation to mixed methods[J]. SIAM J Numer Anal 1983;20:510-536.
    [64]Babuska I, Caloz G, Osborn E. Special finite element methods for a class of second order elliptic problems with rough coefficients [J]. SIAM J Numer Anal 1994;31:945-981.
    [65]Hou TY, Wu XH. A multiscale finite element method for elliptic problems in composite materials and porous media[J]. J Comp Phy 1997;134:169-189.
    [66]Hou TY, Wu XH, Cai ZQ. Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients [J]. Math Comp 1999;68:913-943.
    [67]Efendiev YR, Hou TY, Wu XH. Convergence of a nonconforming multiscale finite element method[J]. SIAM J Numer Anal 2000;37(3):888-910.
    [68]Hou TY, Wu XH, Zhang Y. Removing the cell resonance error in the multiscale finite element method via a Petrov-Galerkin formulation[J]. Commun Math Sci 2004;2(2):185-205.
    [69]Efendiev Y, Ginting V, Hou TY, Ewing R. Accurate multiscale finite element methods for two-phase flow simulations [J]. J Comp Phys 2006;220:155-174.
    [70]He XG, Ren L. A modified multiscale finite element method for well-driven flow problems in heterogeneous porous media[J]. J Hydro 2006;329:674-684.
    [71]Hou TY. Multiscale modelling and computation of fluid flow[J]. Int J Meth Fluids 2005;47:707-719.
    [72]Efendiev Y, Hou TY. Multiscale finite element methods for porous media flows and their applications[J]. Appl Numer Math 2007;57:577-596.
    [73]Jenny P, Lee SH, Tchelepi HA. Multi-scale finite-volume method for elliptic problems in subsurface flow simulation[J]. J Comp Phys 2003;187:47-67.
    [74]Chen Z, Hou TY. A mixed multiscale finite element method for elliptic problems with oscillating coefficients[J]. Math Comput 2003;72:541-576.
    [75]Jenny P, Lee SH, Tchelepi HA. Adaptive multiscale finite-volume method for multiphase flow and transport in porous media[J]. Multiscale Model Simul 2004;3:50-64.
    [76]Ruben J. A Variational Multiscale Finite element method for multiphase flow in porous media[J]. Finite Elements Anal Des 2005;41:763-777.
    [77]Aarnes JE, Kippe V, Lie KA. Mixed multiscale finite elements and streamline methods for reservoir simulation of large geomodels[J]. Adv Water Resour 2005;28:257-271.
    [78]Ivan L, Patrick J. Multiscale finite-volume method for compressible multiphase flow in porous media[J]. J Comp Phys 2006;216:616-636.
    [79]Badrinarayanan VA, Nicholas Z. A stochastic variational multiscale method for diffusion in heterogeneous random media[J]. J Comp Phys 2006;218:654-676.
    [80]Jenny P, Lee SH, Tchelepi HA. Adaptive fully implicit multi-scale finite-volume method for multi-phase flow and transport in heterogeneous porous media[J]. J Comp Phys 2006;217:627-641.
    [81]Ming PB, Yue XY. Numerical methods for multiscale elliptic problems[J]. J Comp Phys 2006;214:412-445.
    [82]Weinan E, Engquist B, Huang ZY. Heterogeneous multiscale method:a general methodology for multiscale modeling[J]. Phys Rev B 2003;67:092101.
    [83]Weinan E, Engquist B, Li X, Ren W, Vanden-Eijnden E. The heterogeneous multiscale method:A Review[J]. Comm Comput Phys 2007;2:367-450.
    [84]Durlofsky LJ, Efendiev Y, Ginting V. An adaptive local-global multiscale finite volume element method for two-phase flow simulations[J]. Adv Water Resour 2007;30:576-588.
    [85]Arbogast T, Pencheva G, Wheeler MF, Yotov I. A multiscale mortar mixed finite element method[J]. SIAM J. Multiscale Model Simul 2007;6(1):319-346.
    [86]Chu J, Efendiev Y, Ginting V, Hou TY. Flow based oversampling technique for multiscale finite element methods[J]. Adv Water Resour 2008;31:599-608.
    [87]Dostert P, Efendiev Y, Hou TY. Multiscale finite element methods for stochastic porous media flow equations and application to uncertainty quantification[J]. Comput Methods Appl Mech Engrg 2008;197:3445-3455.
    [88]Aarnes JE, Stein K, Lie KA. A hierarchical multiscale method for two-phase flow based upon mixed finite elements and nonuniform grids[J]. Multiscale Model Simul 2006;5(2):337-363.
    [89]Ganis B, Yotov I. Implementation of mortar mixed finite element method using a Multiscale Flux Basis[J]. Comput Methods Appl Mech Engrg 2009;198:3989-3998.
    [90]Zhang HW, Zhang S, Guo X, Bi JY. Multiple spatial and temporal scales method for numerical simulation of non-classical heat conduction problems:one dimensional case. Int J Solids Struct 2005;42:877-899.
    [91]Zhang HW, Zhang S, Bi JY, Schrefler BA. Thermo-mechanical analysis of periodic multiphase materials by a multiscale asymptotic homogenization approach. Int J Numer Meth Eng 2007;69:87-113.
    [92]Wen XH, Gomez-Hernandez JJ. Upscaling hydraulic conductivities in heterogeneous media:an overview[J]. J Hydrol 1996;183:ⅸ-ⅹⅹⅹⅱ.
    [93]Renard P, de Marsily G. Calculating equivalent permeability:a review[J]. Adv Water Resour 1997;20:253-278.
    [94]Farmer CL. Upscaling:a review[J]. Int J Numer Meth Fluids 2002;40:63-78.
    [95]Christie MA, Blunt MJ. Tenth SPE comparative solution project:A comparison of upscaling techniques[J]. SPE Reservoir Eval Eng 2001;4(4):308-317.
    [96]Gautier Y, Blunt MJ, Christie MA. Nested griding and streamline-based simulation for fast reservoir performance prediction[J]. Comp Geosci 1999;3:295-320.
    [97]Chang YC, Mohanty KK. Scale-up of two-phase flow in heterogeneous porous media[J]. J. Petro Sci Eng 1997;18:21-34.
    [98]Arbogast T. Implementation of a locally conservative numerical subgrid upscaling scheme for two-phase Darcy flow[J]. Comput Geosci 2002;6:453-481.
    [99]Hastings JJ, Muggeridge AH. Upscaling uncertain permeability using small cell renormalization[J]. Math Geol 2001;33(4):491-505.
    [100]Efendiev Y, Durlofsky LJ, Lee SH. Modeling of subgrid effects in coarse-scale simulations of transport in heterogeneous porous media[J]. Water Resour Res 2000;36(8):2031-2041.
    [101]Christie MA. Flow in porous media-scale up of multiphase flow[J]. Curr Opin Colloid In 2001;6:236-241.
    [102]Wallstrom TC, Christie MA, Durlofsky LJ, Sharp DH. Effective flux boundary conditions for upscaling porous media equations[J]. Transp Porous Med 2002,46:139-153.
    [103]Wallstrom TC, Hou S, Christie MA, Durlofsky LJ, Sharp DH, Zou Q.. Application of effective flux boundary conditions to two-phase upscaling in porous media[J]. Transp Porous Med 2002,46:155-178.
    [104]Wen XH, Durlofsky LJ, Edwards MG. Use of border regions for improved permeability upscaling[J]. Math Geol 2003;35(5):521-547.
    [105]Chen Y, Durlofsky LJ, Gerritsen M, Wen XH. A coupled local-global upscaling approach for simulating flow in highly heterogeneous formations [J]. Adv Water Resour 2003;26:1041-1060.
    [106]Wen XH, Durlofsky LJ, Edwards MG. Upscaleing of channel systems in two dimensions using flow-based grids[J]. Transp Porous Med 2003;51:343-366.
    [107]Durlofsky LJ, Jones RC, Milliken WJ. A nonuniform coarsening approach for the scale-up of displacement processes in heterogeneous porous media[J]. Adv Water Resour 2005;20:335-347.
    [108]Wallstrom TC, Hou SL, Christie MA, Durlofsky LJ, Sharp DH. Accurate scale up of two phase flow using renormalization and nonuniform coarsening[J]. Computat Geosci 1999;3:69-87.
    [109]He C, Durlofsky LJ. Structured flow-based gridding and upscaling for modeling subsurface flow[J]. Adv Water Resour 2006;29:1876-1892.
    [110]Audigane P, Blunt MJ. Dual mesh method for upscaling in waterflood simulation[J]. Transp Porous Med 2004;55:71-89.
    [111]Virnovsky GA, Friis HA, Lohne A. A steady-state upscaling approach for immiscible two-phase flow[J]. Transp Porous Med 2004;54:167-192.
    [112]Gasda SE, Celia MA. Upscaling relative permeabilities in a structured porous medium[J]. Adv Water Resour 2005;28:493-506.
    [113]Chen YG, Durlofsky LJ. Adaptive local-global upscaling for general flow scenarios in heterogeneous formations [J]. Transp Porous Med 2006;62:157-185.
    [114]Pancaldi V, Christensen K, King PR. Permeability up-scaling using Haar Wavelets [J]. Transp Porous Med 2007;67:395-412.
    [115]Fleckenstein JH, Fogg GE. Efficient upscaling of hydraulic conductivity in heterogeneous alluvial aquifers[J]. Hydrogeol J 2008;16:1239-1250.
    [116]Chen YG, Wu XH. Upscaled modeling of well singularity for simulating flow in heterogeneous formations[J]. Comput Geosci 2008; 12:29-45.
    [117]Deng WB, Gu J, Huang JM. Upscaling methods for a class of convection-diffusion equations with highly oscillating coefficients[J]. J Comput Phys 2008;227:7621-7642.
    [118]Gerritsen M, Lambers JV. Integration of local-global upscaling and grid adaptivity for simulation of subsurface flow in heterogeneous formations[J]. Comput Geosci 2008;12:193-208.
    [119]Lambers JV, Gerritsen MG, Mallison BT. Accurate local upscaling with variable compact multipoint transmissibility calculations [J]. Comput Geosci 2008;12:399-416.
    [120]Evazi M, Mahani. Generation of Voronoi grid based on vorticity for coarse-scale modeling of flow in heterogeneous formations[J]. Transp Porous Med DOI 10.1007/s11242-009-9458-2.
    [121]Firoozabadi B, Mahani H, Ashjari MA, Audigane P. Improved upscaling of reservoir flow using combination of dual mesh method and vorticity-based gridding[J]. Comput Geosci 2009;13:57-78.
    [122]Branets LV, Ghai SS, Lyons SL, Wu XH. Challenges and technologies in reservoir modeling[J]. Commun Comput Phys 2009;6(1):1-23.
    [123]Hashin Z, Shtrikman S. A variational approach to the theory of the elastic behavior of polycrystals[J]. J Mech Phys Solids 1962;10:335-342.
    [124]Hashin Z, Shtrikman S. A variational approach to the theory of the elastic behavior of multiphase materials[J]. J Mech Phys Solids 1963;11:127-140.
    [125]Hill R. Elastic properties of reinforced solids:some theoretical principles[J]. J Mech Phys Solids 1963;11:357-372.
    [126]Huet C. Application of variational concepts to size effects in elastic heterogeneous bodies[J]. J Mech Phys Solids 1990;38:813-841.
    [127]Hazanov S, Huet C. Order relationships for boundary conditions effect in heterogeneous bodies smaller than the representative volume[J]. J Mech Phys Solids 1994;42:1995-2011.
    [128]Garboczi EJ, Day AR. An algorithm for computing the effective linear elastic properties of heterogeneous materials:three-dimensional results for composites with equal phase Poisson ratios [J]. J Mech Phys Solids 1995;43(9):1349-1362.
    [129]Drugan WJ, Willis JR. A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites [J]. J Mech Phys Solids 1995;44(4):497-542.
    [130]Hazanov S, Amieur M. On overall properties of elastic heterogeneous bodies smaller than the representative volume[J]. Int J Engng Sci 1995;33(9):1289-1301.
    [131]Hazanov S. Hill condition and overall properties of composites [J]. Arch Appl Mech 1998;68:3853-3894.
    [132]Pecullan S, Gibiansky LV, Torquato S. Scale, effects on the elastic behavior of periodic and hierarchical two-dimensional composites [J]. J Mech Phys Solids 1999;47:1509-1542.
    [133]Huet C. Coupled size and boundary-condition effects in viscoelastic heterogeneous and composite bodies[J]. Mech Mater 1999;31:787-829.
    [134]Hazanov S. On apparent properties of nonlinear heterogeneous bodies smaller than the representative volume[J]. Acta Mech 1999;134:123-134.
    [135]Ostoja-Starzewski M. Scale effects in materials with random distributions of needles and cracks[J]. Mech Mater 1999;31:883-893.
    [136]Ven der Sluis O, Schreurs PJG, Brekelmans WAM, Meijer HEH. Overall behaviour of heterogeneous elastoviscoplastic materials:effect of microstructural modeling[J]. Mech Mater 2000;32:449-462.
    [137]Terada K, Hori M, Kyoya T, Kikuchi N. Simulation of the multi-scale convergence in computational homogenization approaches [J]. Int J Solids Struct 2000;37:2285-2311.
    [138]Jiang M, Ostoja-Starzewski M, Jasiuk I. Scale-dependent bounds on effective elastoplastic response of random composites[J]. J Mech Phys Solids 2001;49:655-673.
    [139]Zeman J, Sejnoha M. Numerical evaluation of effective elastic properties of graphite fiber tow impregnated by polymer matrix[J]. J Mech Phys Solids 2001;49:69-79.
    [140]Jiang M, Alzebdeh K, Jasiuk I, Ostoja-Starzewski M. Scale and boundary conditions effects in elastic properties of random composites[J]. Acta Mech 2001;148:63-78.
    [141]Jiang M, Jasiuk I, Ostoja-Starzewski M. Apparent elastic and elastoplastic behavior of periodic composites[J]. Int J Solids Struct 2002;39:199-212.
    [142]Shan ZH, Gokhale AM. Representative volume element for non-uniform micro-structure[J]. Comp Mater Sci 2002;24:361-379.
    [143]Marcin K. Homogenization of transient heat transfer problems for some composite materials[J]. Int J Eng Sci 2003;41:1-29.
    [144]Kanit T, Forest S, Galliet I, Mounoury V, Jeulin D. Determination of the size of the representative volume element for random composites:statistical and numerical approach[J]. Int J Solids Struct 2003;40:3647-3679.
    [145]Stroeven M, Askes H, Sluys LJ. Numerical determination of representative volumes for granular materials[J]. Comput Methods Appl Engrg 2004;193:3221-3238.
    [146]Khisaeva ZF, Ostoja-Starzewski M. On the size of RVE in finite elasticity of random composites[J]. J Elasticity 2006;85:153-173.
    [147]Kanit T, N'Guyen F, Forest S, Jeulin S, Reed M, Singleton S. Apparent and effective properties of heterogeneous materials:Representativity of samples of two materials from food industry[J]. Comput Methods Appl Mech Engrg 2006;195:3960-3982.
    [148]Shen H, Brinson LC. A numerical investigation of the effect of boundary conditions and representative volume element size for porous titanium[J]. J Mech Mater Struct 2006;1(7):1179-1204.
    [149]Drago A, Pindera MJ. Micro-macromechanical analysis of heterogeneous materials: Macroscopically homogeneous vs periodic microstructures[J]. Compos Sci Technol 2007;67:1243-1263.
    [150]Temizer I, Zohdi TI. A numerical method for homogenization in non-linear elasticity[J]. Comput Mech 2007;40:281-298.
    [151]Kari S, Berger H, Rodriguez-Ramos R, Gabbert. Computational evaluation of effective material properties of composites reinforced by randomly distributed spherical particles [J]. Compos Struct 2007;77:223-231.
    [152]Gitman IM, Askes H, Sluys LJ. Representative volume:Existence and size determination[J]. Eng Fracture Mechanics 2007;74(16):2518-2534.
    [153]Pan Y, Iorga L, Pelegri AA. Numerical generation of a random chopped fiber composite RVE and its elastic properties[J]. Compos Sci Technol 2008;68:2792-2798.
    [154]Pindera MJ, Khatam H, Drago AS, Bansal Y. Micromechanics of spatially uniform heterogeneous media:A critical review and emerging approaches[J]. Compos Part B-Eng 2009;40:349-378.
    [155]Pelissou C, Baccou J, Monerie Y, Perales F. Determination of the size of the representative volume element for random quasi-brittle composites [J]. Int J Solids Struct 2009;46:2842-2855.
    [156]吴林志,杜善义,石志飞.含夹杂复合材料宏观性能研究[J].力学进展,1995,25(3):410-423.
    [157]胡更开,郑泉水,黄筑平.复合材料有效弹性性质分析方法[J].力学进展,2001,31(3):361-393.
    [158]阎军,程耿东,刘书田,刘岭.周期性点阵类桁架材料等效弹性性能预测及尺度效应[J].固体力学学报,2005,26(4):421-428.
    [159]刘岭,阎军,程耿东.考虑内部胞元能量等效的代表体元法[J].固体力学学报,2007,28(3):275-280.
    [160]苏文政,刘书田,张永存.桁架板等效刚度分析[J].计算力学学报,2007,24(6):763-767.
    [161]张洪武,王鲲鹏.弹塑性复合材料多尺度计算的模型与算法研究[J].复合材料学报,2003,20(1):60-66.
    [162]张洪武,余志兵,王鲲鹏.复合材料弹塑性多尺度分析模型与算法[J].固体力学学报,2007,28(1):7-12.
    [163]张洪武.弹性接触颗粒状周期性结构材料力学分析的均匀化方法(Ⅰ)——局部RVE分析,(Ⅱ)——宏观均匀化分析[J].复合材料学报,2001,18(4):93-102.
    [1]孔祥言.高等渗流力学[M].合肥:中国科学技术大学出版社,1999.
    [2]Lewis RW, Schrefler BA. The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media[M]. Chichester:John Wiley & Sons Ltd,1998.
    [3]郭莹,郭承侃,陆尚谟.土力学(第二版)[M].大连:大连理工大学出版社,2003.
    [4]Hough BK. Basic soils engineering[M]. New York:Ronald Press,1969.
    [5]Terzaghi K. Die berechnung der durchleessigkeitszifter des tones aus dem verlauf derhydro dynamishen spannungeserscheinungen[J]. Sitsber Akad Wiss Vienna Abt 1923;Ⅱ:132.
    [6]Darcy H. Determination des lois d'ecoulement de l'eau a travers le sable [C]//Les Fontaines Publiques de la Ville de Dijon. Paris:Victor Dalmont.1856:590-594.
    [7]邱大洪,孙昭晨.波浪渗流力学[M].北京:国防工业出版社,2006.
    [1]Hou TY, Wu XH. A multiscale finite element method for elliptic problems in composite materials and porous media[J]. J Comp Phy 1997;134:169-189.
    [2]Hou TY, Wu XH, Cai ZQ. Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients[J]. Math Comp 1999;68:913-943.
    [3]Babuska I, Szymczak WG. An error analysis for the finite element method applied to convection-diffusion problems[J]. Comput Methods Appl Math Engrg 1982;31:19-42.
    [4]Babuska I, Osborn E. Generalized finite element methods:Their performance and their relation to mixed methods[J]. SIAM J Numer Anal 1983;20:510-536.
    [5]Babuska I, Caloz G, Osborn E. Special finite element methods for a class of second order elliptic problems with rough coefficients[J]. SIAM J Numer Anal 1994;31:945-891.
    [6]Efendiev YR, Hou TY, Wu XH. Convergence of a nonconforming multiscale finite element method[J]. SIAM J Numer Anal 2000;37(3):888-910.
    [7]Wen XH, Durlofsky LJ, Edwards MG. Use of border regions for improved permeability upscaling[J]. Math Geol 2003;35(5):521-547.
    [8]Hill R. Elastic properties of reinforced solids:some theoretical principles [J]. J Mech Phys Solids 1963;11:357-372.
    [9]Huet C. Application of variational concepts to size effects in elastic heterogeneous bodies [J]. J Mech Phys Solids 1990;38:813-841.
    [10]Hazanov S. Hill condition and overall properties of composites[J]. Arch Appl Mech 1998;68:3853-3894.
    [1]Hou TY, Wu XH. A multiscale finite element method for elliptic problems in composite materials and porous media[J]. J Comp Phy 1997;134:169-189.
    [2]Hou TY, Wu XH, Cai ZQ. Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients [J]. Math Comp 1999;68:913-943.
    [3]Efendiev YR, Hou TY, Wu XH. Convergence of a nonconforming multiscale finite element method[J]. SIAM J Numer Anal 2000;37(3):888-910.
    [4]Lewis RW, Schrefler BA. The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media[M]. Chichester:John Wiley & Sons Ltd,1998.
    [5]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1995.
    [1]Hou TY, Wu XH. A multiscale finite element method for elliptic problems in composite materials and porous media[J]. J Comp Phy 1997; 134:169-189.
    [2]Lewis RW, Schrefler BA. The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media[M]. Chichester:John Wiley & Sons Ltd,1998.
    [3]Deutsch CV, Journel AG. Geostatistical software library and user's guide[M]. New York:Oxford University Press,1992.
    [4]He XG, Ren L. Finite volume multiscale finite element method for solving the groundwater flow problems in heterogeneous porous media[J]. Water Resour Res 2005;41, W10417, doi:10.1029/2004WR003934.
    [1]Renard P, de Marsily G. Calculating equivalent permeability:a review[J]. Adv Water Resour 1997;20:253-278.
    [2]Wen XH, Gomez-Hernandez JJ. Upscaling hydraulic conductivities in heterogeneous media:an overview[J]. J Hydrol 1996;183:ⅸ-ⅹⅹⅹⅱ.
    [3]Farmer CL. Upscaling:a review[J]. Int J Numer Meth Fluids 2002;40:63-78.
    [4]Chen Y, Durlofsky LJ, Gerritsen M, Wen XH. A coupled local-global upscaling approach for simulating flow in highly heterogeneous formations[J]. Adv Water Resour 2003;26:1041-1060.
    [5]Wen XH, Durlofsky LJ, Edwards MG. Use of border regions for improved permeability upscaling[J]. Math Geol 2003;35(5):521-547.
    [6]Fleckenstein JH, Fogg GE. Efficient upscaling of hydraulic conductivity in heterogeneous alluvial aquifers[J]. Hydrogeol J 2008;16:1239-1250.
    [7]Chen YG, Durlofsky LJ. Adaptive local-global upscaling for general flow scenarios in heterogeneous formations [J]. Transp Porous Med 2006;62:157-185.
    [8]Chen YG, Wu XH. Upscaled modeling of well singularity for simulating flow in heterogeneous formations[J]. Comput Geosci 2008;12:29-45.
    [9]Deng WB, Gu J, Huang JM. Upscaling methods for a class of convection-diffusion equations with highly oscillating coefficients[J]. J Comput Phys 2008;227:7621-42.
    [10]Gerritsen M, Lambers JV. Integration of local-global upscaling and grid adaptivity for simulation of subsurface flow in heterogeneous formations[J]. Comput Geosci 2008; 12:193-208.
    [11]James VL, Margot GG, Bradley TM. Accurate local upscaling with variable compact multipoint transmissibility calculations[J]. Comput Geosci 2008;12:399-416.
    [12]Christie MA, Blunt MJ. Tenth SPE comparative solution project:A comparison of upscaling techniques[J]. SPE Reservoir Eval Eng 2001;4(4):308-317.
    [13]Hashin Z, Shtrikman S. A variational approach to the theory of the elastic behavior of polycrystals[J]. J Mech Phys Solids 1962;10:335-342.
    [14]Hashin Z, Shtrikman S. A variational approach to the theory of the elastic behavior of multiphase materials[J]. J Mech Phys Solids 1963;11:127-140.
    [15]Hill R. Elastic properties of reinforced solids:some theoretical principles[J]. J Mech Phys Solids 1963;11:357-372.
    [16]Huet C. Application of variational concepts to size effects in elastic heterogeneous bodies[J]. J Mech Phys Solids 1990;38:813-841.
    [17]Poutet J, Manzoni D, Hage-Chehade F, Jacquin CJ, Bouteca MJ, Thovert JF, Adler PM. The effective mechanical properties of random porous media[J]. J Mech Phys Solids 1996;44(10):1587-1620.
    [18]Hazanov S. Hill condition and overall properties of composites [J]. Arch Appl Mech 1998;68:385-394.
    [19]Hazanov S. On apparent properties of nonlinear heterogeneous bodies smaller than the representative volume[J]. Acta Mech 1999; 134:123-134.
    [20]Hazanov S, Huet C. Order relationships for boundary conditions effect in heterogeneous bodies smaller than the representative volume[J]. J Mech Phys Solids 1994;42:1995-2011.
    [21]Hazanov S, Amieur M. On overall properties of elastic heterogeneous bodies smaller than the representative volume [J]. Int J Engng Sci 1995;33(9):1289-1301.
    [22]Kanit T, Forest S, Galliet I, Mounoury V, Jeulin D. Determination of the size of the representative volume element for random composites:statistical and numerical approach[J]. Int J Solids Struct 2003;40:3647-3679.
    [23]Khisaeva ZF, Ostoja-Starzewski M. On the size of RVE in finite elasticity of random composites[J]. J Elasticity 2006;85:153-173.
    [24]刘岭,阎军,程耿东.考虑内部胞元能量等效的代表体元法[M].固体力学学报,2007,28(3):275-280.
    [25]Lewis RW, Schrefler BA. The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media[M]. Chichester:John Wiley & Sons Ltd,1998.
    [26]Deutsch CV, Journel AG. Geostatistical software library and user's guide[M]. New York:Oxford University Press,1992.
    [27]Hou TY, Wu XH. A multiscale finite element method for elliptic problems in composite materials and porous media[J]. J Comp Phy 1997;134:169-189.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700