用户名: 密码: 验证码:
膜催化氧化反应体系的构建及其对烟气中零价汞的转化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前我国因燃煤所造成的汞排放问题十分突出,已成为环保领域亟待解决的问题之一。零价汞(Hg~0)是燃煤烟气中汞的主要存在形式之一,对其治理也最为困难。利用催化氧化的方法将烟气中Hg~0转化为易去除的二价汞(Hg~(2+)),被认为是治理Hg~0的有效途径之一。然而,由于Hg~0在燃煤烟气中为痕量级,采用传统的催化氧化方法(TCO)存在Hg~0转化效率不高、氧化剂或其前体物易流失且用量大、二次污染大等不足。为了克服传统方法的上述问题,本研究针对烟气中痕量级Hg~0的去除,通过研究构建了一种集氧化剂的释放、吸附富集以及Hg~0的催化氧化于一体的反应体系,并以多孔陶瓷膜为主体将二者有机结合起来,形成独特的膜催化-氧化剂输送-汞催化氧化的反应体系(MDCOs)。
     论文首先采用过渡金属锰氧化物(MnO_x)为主要活性组分,以多孔陶瓷膜为主体,通过浸渍法形成Mn/Al_2O_3膜催化反应体系,并以氯化氢HCl为氧化剂前体物,研究了Mn/Al_2O_3膜催化体系对模拟烟气中痕量级Hg~0向Hg~(2+)转化的规律,以及烟气中其它组分包括SO_2、NO及O_2等对Hg~0转化的影响,并与TCO模式进行了对比。同时利用该膜催化体系对HCl的活化过程(如HCl在有氧的条件下转化成Cl_2的Deacon反应)也进行了系统研究,探讨了HCl在膜催化体系中传输、转化、吸附与富集的规律。
     为增强Mn/Al_2O_3膜催化体系对痕量级Hg~0的催化氧化效率,进一步降低氧化剂用量,研究采用过渡金属Ti对陶瓷管进行改性后再附以过渡金属Ru氧化物,形成了以Ru-Ti/Al_2O_3为主体催化剂的MDCOs体系。研究了不同条件下的Deacon过程,以及Ru-Ti/Al_2O_3膜催化体系在300℃下对Hg~0的转化规律。为适应除尘后低温烟气中Hg~0转化的需求,研究采用过渡金属Mo与Ru对Mn/Al_2O_3膜催化剂进行了掺杂,形成了Mn-Mo-Ru膜催化体系,研究了在低温150℃条件下,Mn-Mo-Ru膜催化体系对HCl的Deacon转化效果,以及对Hg~0的转化规律。论文还对Hg~0转化的动力学方程,以及Hg~0转化的规律进行了讨论,得出了以下主要结论:
     (1)在高温300℃下,1ppmv及5ppmv的HCl存在时,Mn/Al_2O_3膜催化体系能分别实现81.8%与93.6%的Hg~0转化率,而Ru-Ti/Al_2O_3膜催化体系能在3ppmv HCl存在的条件下,实现97.4%的Hg~0转化率;在低温150℃和8ppmv的HCl存在的条件下,Mn-Mo-Ru膜催化体系对Hg~0的去除效率能保持在95%以上。与TCO模式相比,三种不同的MDCO_s膜催化体系不但具有较高的Hg~0去除率,而且具有明显的经济优势。与TCO模式相比,三种膜催化体系均表现出了较好的抗硫效果。低浓度SO_2对汞转化的抑制作用几乎可以忽略。然而高浓度如1500ppmv的SO_2对汞的转化仍具有一定的抑制作用。
     (2)由于HCl向Cl_2的转化效率对痕量级Hg~0的转化起着非常关键的作用,因此,论文还对HCl在MDCO_s膜催化系统中的活化过程进行了研究。结果显示,在高温300℃下,以Mn/Al_2O_3为膜催化剂的MDCO_s体系,其Deacon反应产率较低,只有32.6%。相比之下,Ru-Ti/Al_2O_3膜催化体系对HCl的Deacon产量与转化率显著提高,HCl的转化率达到了60.3%。与Mn/Al_2O_3膜催化体系在300℃下对HCl的转化率相比,提高了近90%。在低温150℃下,尽管上述两种膜催化体系的Deacon效率较低,然而,Mn-Mo-Ru膜催化体系却能实现23.0%的HCl转化率。另外,在Deacon过程中,HCl的逃逸量非常低,只有0.5mg/m3左右。HCl在MDCO_s膜催化体系中的高Deacon效率有力地验证了MDCO_s膜催化体系对Hg~0的高转化率。
     (3) Hg~0在Mn/Al_2O_3膜催化体系中的转化过程,在没有氧化剂前体物的条件下,主要是通过吸附后被催化剂表面上的晶格氧所氧化,并主要以HgO的形式存在;在HCl存在的条件下,则主要以汞与Deacon过程产生的活性氯结合后的HgCl_2形式存在。在Ru-Ti/Al_2O_3及Mn-Mo-Ru膜催化体系对Hg~0的转化产物中,90%以上都是通过Hg~0与活性氯结合生成了HgCl_2,而HgO的形成在MDCO_s体系中并不占主导地位。
     (4)催化剂的XPS结果分析显示,新鲜催化剂表面上Mn、Mo、Ru及Ti的存在形态主要为Mn(IV)与Mn(III)、Mo(Ⅵ)与Mo(IV)以及Ru(Ⅳ)与Ti(Ⅳ)。在Hg~0向Hg~(2+)转化的过程中以及在Deacon反应的过程中,上述各过渡金属的形态并没有发生明显变化。其中部分Mn(IV)离子会转化为Mn(III)、Mo(Ⅵ)离子会转化为Mo(Ⅳ)。然后在有氧存在的情况下,这些被转化的金属离子能够完全得到再生,即Mn(III)离子与Mo(Ⅳ)离子会重新还原为Mn (IV)离子与Mo(Ⅵ)离子,从而在保持催化剂稳定性的同时,极大地提高了催化剂的使用寿命与催化活性。
     (5)汞的表征分析及动力学方程表明:汞在MDCO_s体系中的转化过程,符合Mars–Maessen机理。膜催化剂体系中产生的Hg~(2+)的量,与烟气中Hg~0的浓度、HCl在体系中的平衡浓度、烟气温度、烟气中氧含量、催化剂BET大小以及过渡金属在膜催化剂表面的形态与含量有关。这些过渡金属离子主要包括Mn(IV)离子、Mo(Ⅵ)离子及不饱和cus-Ru原子。其中影响较大的主要是反应温度以及制备的过渡金属在催化剂表面的形态与含量。影响汞转化率的因素除上述表述外,HCl在陶瓷膜内向外扩散的传质过程也是汞转化的速率限制性因素。
     本研究的创新及特色之处主要体现为以下几点:1)针对烟气中痕量级Hg~0的氧化,构建出了以多孔陶瓷管为载体,以过渡金属Mn、Mo、Ru及Ti所形成的不同氧化物为主体的膜催化材料,该膜催化材料将氧化剂的释放、吸附富集以及Hg~0的催化氧化集中于一体形成了MDCO_s膜反应体系,该体系在功能结构上具有明显的创新性。2)论文构造的Mn/Al_2O_3与Mn-Mo-Ru的MDCO_s膜催化体系,能分别在高温300℃与低温150℃下,实现对Hg~0到Hg~(2+)的高效转化,并具有很好的抗硫能力。同时,MDCO_s体系还能显著降低氧化剂的流失,节约氧化剂的用量,有效克服了传统TCO模式在高温下大量灰尘对催化剂的毒害作用,以及低温下催化剂活性不高的问题。3)论文制备的Ru-Ti/Al_2O_3膜催化体系,在300℃下,以HCl与O_2为气体组分,成功实现了HCl的高效活化。
The pollution by atmospheric mercury emitted from coal combustion has beenbecoming more serious, and the development of mercury emission control technology hasbeen paid more and more attention in the environmental field. Elemental mercury (Hg~0) isone of the main forms in coal combustion flue gas, which is difficult to be captured withthe existing air pollution control devices. At present, the favored method for Hg~0removalis to oxidize it to its oxidized form (Hg~(2+)) by means of some proper catalysts. However,the traditional catalytic oxidation mode (TCO) has encountered some obviousdisadvantages on the oxidation of trace level Hg~0in flue gas, including the low removalefficiencies of Hg~0, high operating cost of oxidants and potential secondary pollutionproblems and so on.
     In order to overcome the above disadvantages, a novel MDCO_s technology was putforward for the oxidation of the trace level Hg~0in flue gas. The MDCO_s system employeda porous ceramic membrane as principal body, and the catalytic material of MnO_xwasimpregnated on it. By means of the MDCO_s system, the adjustable delivery of thereagents for Hg~0oxidation (e.g. HCl), adsorption-enrichmen and catalytic oxidation ofHg~0can be well integrated.
     Firstly, the Mn/Al_2O_3membrane catalytic system was built with MnO_xas maincatalyst/adsorbent and HCl as oxidant precursor respectively. And then the conversionprocess of Hg~0to Hg~(2+)in the presence/absence of SO_2, NO and O_2were studied.Simultaneously, the Deacon process of HCl (the conversion of HCl to Cl_2)was discussedin detailed by studying its delivery, conversion, adsorption and adsorption-enrichment.Moreover, the above results were compared to that in the TCO mode.
     Further, to improve the conversion efficiency of trace level Hg~0in the Mn/Al_2O_3membrane catalytic system, and decrease the consumption of HCl, the Ru-Ti/Al_2O_3membrane catalytic system was built by means of loading RuOxon the ceramic pipe after doping it with TiOx. The Deacon process and conversion of Hg~0were studied under thetemperature of300℃and various flue gasambiences. To obtain higher sufficient activityfor Hg~0conversion under the temperature as low as150℃, the multi-metal oxide catalystswere employed to form the Mn-Mo-Ru membrane catalytic system. And then, theconversion of Hg~0and the Deacon process of HCl were all discussed. Finally, theactivation reactions of HCl by Deacon process were discussed over the catalysts with Ru.The kinetic equations were setup and the key factors that influenced the conversion of Hg~0were also determined. The main conclusions were summarized as follows:
     (1) The Hg~0removal efficiency of81.8%and93.6%were achieved with1ppmv and5ppmv of HCl under300℃in the Mn/Al_2O_3membrane catalytic system, respectively. TheHg~0removal efficiency of97.4%was achieved with only3ppmv of HCl in theRu-Ti/Al_2O_3membrane catalytic system. And under low temperature of150℃, over90%of Hg~0removal efficiency could be achieved with only8ppmv of HCl in the Mn-Mo-Rumembrane catalytic system.
     Compared with the TCO mode, the MDCO_s system had not only more high removalefficiency of trace level Hg~0, but also significant economic superiority. Moreover, theMDCO_s system exhibited excellent sulfur-tolerance to low concentration SO_2withinsignificant effect for the conversion of Hg~0. However, over1000ppmv of SO_2, forexample,1500ppmv of SO_2, had obvious inhabitation for the conversion of Hg~0.
     (2) Because the Deacon process of HCl had a crucial effect on the conversion of Hg~0,the activation of HCl in the MDCO_s system was detailedly studied. The results of theDeacon process of HCl show that low conversion efficiency of HCl of only32.6%wasachieved in the Mn/Al_2O_3membrane catalytic system under300℃. The performance ofRu-Ti/Al_2O_3membrane catalytic system was better than that of Mn/Al_2O_3catalyst, withthe Deacon efficiency of60.3%under300℃. Under low temperature of150℃, the abovetwo membrane catalytic system had lower Deacon efficiency of less than10%. However,the efficiency of23.0%could be reached with the Mn-Mo-Ru membrane catalytic system.Moreover, the amount of escaped HCl was low with only0.5mg/m3. The high Deaconefficiency of HCl effectively validated the high conversion of Hg~0in the MDCO_s system.
     (3) The conversion mechanism of Hg~0over the Mn/Al_2O_3membrane catalytic systemshowed that Hg~0was oxidized by the lattice oxygen on the surface of the catalysts, andthen converted to HgO in the absence of oxidants. The speciation of HgCl_2was dominant,which resulted from the combination of Hg~0with activated chlorine under the ambience of HCl. Among the production of Ru-Ti/Al_2O_3and Mn-Mo-Ru membrane catalytic systems,over90%were converted to HgCl_2through the combination of Hg~0with activatedchlorine. However, the speciation of HgO was not dominant in the presence of oxidants.
     (4) The XPS results show that the speciation of Mn, Mo, Ru and Ti on the freshcatalysts were mainly Mn(IV) and Mn(III), Mo(Ⅵ) and Mo(IV), Ru(Ⅳ) and Ti(Ⅳ),respectively. The above speciation had no obvious change during the process of theconversion of Hg~0to Hg~(2+)and the process of the Deacon reaction. During the processabove, part of Mn(IV) and Mo(Ⅵ) could be regenerated by the oxidation of Mn(III) toMn(IV) and the oxidation of Mo(Ⅳ) to Mo(Ⅵ) under the ambience of oxygen,respectively. And the regeneration process of Mn(IV) and Mo(Ⅵ) kept the stability of thecatalysts, and meanwhile, improved the life and catalytic activity of the catalysts.
     (5) The characterizations and kinetic analysis showed that the conversion of Hg~0mainly occurred via a Mars-Maessen mechanism. The produced amount of Hg~(2+)in theMDCO_s system would be affected by the concentration of Hg~0, balance concentration ofHCl in the flue gas, content of oxygen, BET of the catalysts, especially reactiontemperature and the speciation and content of transition metals. In addition, the masstransfer process of HCl in the MDCO_s system was also determined to be the rate limitingstep for the conversion of Hg~0.
     In a word, the innovations and characteristics of the article included mainly:1) toimprove the removal efficiency of trace level Hg~0in flue gas, a MDCO_s technology wasput forward, which employed ceramic membrane as catalytic carrier, and the transitionmetals of Mn, Mo, Ru and Ti as catalytic materials. The MDCO_s system had obviousinnovation over the system structure by integrating the release and adsorption-enrichmentof oxidants, and catalytic oxidation for Hg~0.2) The MDCO_s not only could achieved theexcellent conversion of Hg~0, but also had better resistance ability against SO_2under thetemperature of300℃and150℃. Moreover, compared with the TCO mode, the MDCO_ssystem could significantly decrease the dosage and escaped amount of oxidants, inhibit thepoison for catalysts resulted from the lots of dusts in the flue gas, and improve theactivation of catalysts under the low temperature.3) The high Deacon efficiencies wereachieved with the Mn-Mo-Ru membrane catalytic system under the ambience of HCl andO_2and the temperature of300℃.
引文
[1] Kwon S., Borguet E., Vidic R.D. Impact of surface heterogeneity on mercury uptakeby carbonaceous sorbents under UHV and atmospheric pressure. Environ. Sci. Technol.2002,36(9):4162-4169.
    [2] Zhang A.C., Xiang J., Sun L.S., et al. Preparation, characterization, and application ofmodified chitosan sorbents for elemental mercury removal. Ind. Eng. Chem. Res.2009,48(10):4980-4989.
    [3] Yang S. J., Yan N. Q., Guo Y. F., et al. Gaseous elemental mercury capture from fluegas using magnetic nanosized (Fe3-xMnx)(1-delta)O-4. Environ. Sci. Technol.2011,45(4):1540-1546.
    [4] Jiang G. B., Shi J. B., Feng X. B. Mercury pollution in China. Environ. Sci. Technol.2006,40(12):3672-3678.
    [5]李增学.煤地质学.北京:地质出版社2009.
    [6]王立刚,刘柏谦.燃煤汞污染及其控制.北京:冶金工业出版社2008.
    [7]孙瑛,程学丰.煤中汞及其对环境的危害.矿业科学技术2006,34(3):4-12.
    [8]黎海妮,黄锁义.汞的污染及其对动植物和人的危害.世界元素医学2007,14(3):19-22.
    [9] Pavlish J. H., Sondreal E. A., Mann M. D., et al. Status review of mercury controloptions for coal-fired power plants. Fuel Process. Technol.2003,82(2-3):89-165.
    [10]瞿丽雅.贵州省汞污染防治与生态恢复.贵州师范大学学报(自然科学版2002,20(3):56-59.
    [11] Horvat M., Nolde N., Fajon V., et al. Total mercury, methylmercury, and selenium inmercury polluted areas in the province Gui-zhou. China Science Total Environmental2003,304(1-3):231-256.
    [12] Ministry of Health of the People's Republic of China. Maximum levels ofcontaminants in foods (GB2762-2005).2005.
    [13] Presto A., Granite E. Survey of catalysts for oxidation of mercury in flue gas.Environ. Sci. Technol.2006,40(18):5601-5609.
    [14] Galbreath K. C., Zygarlicke, C. J. Mercury transformations in coal combustion fluegas. Fuel Process. Technol.2000,65:289-310.
    [15] Sandhya E., Harvey G. S. Understanding mercury conversion in selective catalyticreduction (SCR) catalysts. Energy&Fuels2005,19:2328-2334.
    [16] Golightly D. W., Cheng C. M., Sun P., et al. Gaseous mercury release during steamcuring of aerated concretes that contain fly ash and activated carbon sorbent. Energy Fuel.2008,22:3089-3095.
    [17] Ghorishi S. B., Lee C. W., Jozewicz W. S., et al. Effects of fly ash transition metalcontent and flue gas HCl/SO2ratio on mercury speciation in waste combustion. Environ.Eng. Sci.2005,22(2):221-231.
    [18]任建莉,周劲松,骆仲泱,等.钙基类吸附剂脱除烟气中气态汞的试验研究.燃料化学学报2006,34(5):557-561.
    [19] Li Y., Murphy P., Wu C. Y. Removal of elemental mercury from simulatedcoal-combustion flue gas using a SiO2-TiO2nanocomposite. Fuel Process. Technol.2008,89(6):567-573.
    [20] Presto A. A., Granite E. J. Impact of sulfur oxides on mercury capture by activatedcarbon. Environ. Sci. Technol.2007,41(18):6579-6584.
    [21] Liu W., Vidic R. D., Brown T. D. Impact of flue gas conditions on mercury uptakeby sulfur-impregnated activated carbon. Environ. Sci. Technol.2000,34(1):154-159.
    [22] Jones A.P., Hoffmann J.W., Smith D.N., et al. DOE/NETL's phase II mercury controltechnology field testing program: preliminary economic analysis of activated carboninjection. Environ. Sci. Technol.2007,41:1365-1371.
    [23] Podak B., Brunetti M., Lewis A., et al. Mercury binding on activated carbon. Environ.Prog.2006,25(4):319-326.
    [24] Granite E., Pennline H., Hargis R. Novel sorbents for mercury removal from flue gas.Ind. Eng. Chem. Res.2000,39(4):1020-1029.
    [25]魏国强,何伯述,王丽俐,等.燃煤电厂低成本活性炭除汞技术.电力环境保护2008,24(2):50-53.
    [26] Feng W., Borguet E., Vidic R.D. Sulfurization of Carbon Surface for Vapor PhaseMercury Removal-I: Effect of Temperature and Sulfurization Protocol. Carbon2006,44:2990-2997.
    [27] Feng W., Borguet E., Vidic R.D. Sulfurization of carbon surface for vapor phasemercury removal-II: effect of temperature and sulfurization protocol. Carbon2006,44:2998-3004.
    [28] Korpiel J. A., Vidic R. D. Effect of sulfur impregnation method on activated carbonuptake of gas-phase mercury. Environ. Sci. Technol.1997,31(8):2319-2325.
    [29] Uddin M. A., Yamada T., Ochiai R., et al. Role of SO2for elemental mercuryremoval from coal combustion flue gas by activated carbon. Energy Fuel.2008,22(4):2284-2289.
    [30] Hwang J. Y., Sun X., Li Z. Unburned carbon from fly ash for mercury adsorption: I.separation and characterization of unburned carbon Journal of Minerals&MaterialsCharacterization&Engineering2002,1(1):39-60.
    [31] Li Z., Sun X., Luo J., et al. Unburned carbon from fly ash for mercury adsorption: II.adsorption isotherms and mechanisms Journal of Minerals&Materials Characterization&Engineering2002,1(2):79-96.
    [32] Ghorishi S.B., Jozewicz S.C., Sedman W.S., et al. Simultaneous control of Hg, SO2,and NOxby novel oxidized calcium-based sorbents. J. Air Waste Manage. Assoc.2002,52(3):273-277.
    [33] Ghorish B., Gullett B. K. Sorption of mercury species by activated carbons andcalcium-based sorbents: effect of temperature, mercury concentration and acid gases.Waste Manage. Res.1998,16(6):582-593.
    [34] Hocquel M., Unterberger S., Hein K. R. G. Influence of temperature and HClconcentration on mercury speciation in the presence of calcium oxide (CaO). Chem. Eng.Technol.2001,24(12):1267-1272.
    [35]高洪亮.模拟燃煤烟气中汞形态转化及脱除技术的实验及机理研究[博士论文].浙江大学博士2004.
    [36] Morency J.R., Panagiotou T., Senior C.L. Zeolite sorbent that effectively removesmercury from flue gases. Filtr. Separat.2002,39(7):24-26.
    [37]任建莉,周劲松,骆仲泱,等.新型吸附剂脱除烟气中气态汞的试验研究.中国电机工程学报2007,27(2):48-53.
    [38] Pitoniak E., Wu C. Y., Londeree D., et al. Nanostructured silica-gel doped with TiO2for mercury vapor control. J. Nanopart. Res.2003,(5):281-292.
    [39] Liu Y., Kelly D. J. A., Yang H. Q., et al. Novel regenerable sorbent for mercurycapture from flue gases of coal-fired power plant. Environ. Sci. Technol.2008,42(16):6205-6210.
    [40]方平,岑超平,陈定盛,等. ZnCl2法污泥含炭吸附剂对模拟烟气中气态汞的吸附.环境工程学报2009,3(2):311-316.
    [41] Mei Z. J., Shen Z. M., Wang W. H., et al. Novel sorbents of non-metal-doped spinelCo3O4for the removal of gas-phase elemental mercury. Environ. Sci. Technol.2008,42(2):590-595.
    [42] Diaz-Somoano M., Unterberger S., Hein K. R. G. Using Wet-FGD systems formercury removal. J. Environ. Monitor.2005,7(9):906-909.
    [43] Nolan P. S., Redinger K. E., Amrhein G. T., et al. Demonstration of additive use forenhanced mercury emissions control in Wet FGD systems. Fuel Process. Technol.2004,85(6-7):587-600.
    [44] Renninger S. A., Farthing G. A., Ghorishi S. B., et al. Using Wet FGD systems toabsorb mercury. Power2004,148(8):44-44.
    [45] Felsvang K., Brown B. High SO2and mercury removal by Dry FGD systems.Proceedings of the American Power Conference1992,(54):383-391.
    [46]赵毅,陈周燕,汪黎东,等.湿式烟气脱硫系统同时脱汞研究.环境工程学报2008,2(1):64-69.
    [47] Norton G. A., Yang H. Q., Brown R. C., et al. Heterogeneous oxidation of mercury insimulated post combustion conditions. Fuel2003,82(2):107-116.
    [48] Qiao Y., Xu M. H. The Oxidation kinetics of mercury in Hg/O/H/Cl system. Dev.Chem. Eng. Mineral Process.2005,13(3-4):483-494.
    [49] Jennifer W. A. Kinetic Investigation of high-temperature mercury oxidation bychlorine. J. Phys. Chem. A2009,113(24):6633-6639.
    [50] Hrdlicka J. A., Seames W. S., Mann M. D., et al. Mercury oxidation in flue gas usinggold and palladium catalysts on fabric filters. Environ. Sci. Technol.2008,42(17):6677-6682.
    [51] Qiao S. H., Chen J., Li J. F., et al. Adsorption and catalytic oxidation of gaseouselemental mercury in flue gas over MnOx/alumina. Ind. Eng. Chem. Res.2009,48(7):3317-3322.
    [52] Ji L., Sreekanth P. M., Smirniotis P. G., et al. Manganese oxide/titania materials forremoval of NOxand elemental mercury from flue gas. Energy Fuel.2008,22(4):2299-2306.
    [53] Guo Y. F., Yan N. Q., Yang S. J., et al. Conversion of elemental mercury with a novelmembrane catalytic system at low temperature. Journal of Hazardous Materials2012,213-214:62-70.
    [54] Hall B., Sehager P., Lindqvist O. Chemical reactions of mercury on combustion fluegases. Water, Air, Soil Pollut.1991,56:3-14.
    [55] Fang P., Cen C. P., Chen D. S., et al. Carbonaceous adsorbents prepared from sewagesludge and its application for Hg0adsorption in simulated flue gas. Chin. J. Chem. Eng.2010,18(2):231-238.
    [56] Senior C. L., Sarofim A. F., Zeng T. F., et al. Gas-phase transformations of mercuryin coal-fired power plants. Fuel Process. Technol.2000,63(2-3):197-213.
    [57] Guo Y. F., Yan N. Q., Yang S. J., et al. Conversion of elemental mercury with a novelmembrane delivery catalytic oxidation system (MDCOs). Environ. Sci. Technol.2011,45(2):706-711.
    [58] Zhao Y. X., Mann M. D., Pavlish J. H., et al. Application of gold catalyst formercury oxidation by chlorine. Environ. Sci. Technol.2006,40(5):1603-1608.
    [59] He S., Zhou J. S., Zhu Y. Q., et al. Mercury oxidation over a vanadia-based selectivecatalytic reduction catalyst. Energy Fuel.2009,23(1):253-259.
    [60] Cao Y., Chen B., Wu J., et al. Study of mercury oxidation by a selective catalyticreduction catalyst in a pilot-scale slipstream reactor at a utility boiler burning bituminouscoal. Energy Fuel.2007,21(1):145-156.
    [61] Krishnakumar B., Helble J. J. Determination of transition state theory rate constantsto describe mercury oxidation in combustion systems mediated by Cl, Cl2, HCl and HOCl.Fuel Process. Technol.2012,94(1):1-9.
    [62] Sliger R. N., Kramlich J. C., Marinov N. M. Towards the development of a chemicalkinetic model for the homogeneous oxidation of mercury by chlorine species. FuelProcess. Technol.2000,65:423-438.
    [63] Li J. F., Yan N. Q., Qu Z., et al. Catalytic oxidation of elemental mercury over themodified catalyst Mn/alpha-Al2O3at lower temperatures. Environ. Sci. Technol.2010,44(1):426-431.
    [64] Wilcox J., Rupp E., Ying S. C., et al. Mercury adsorption and oxidation in coalcombustion and gasification processes. International Journal of Coal Geology2012,90:4-20.
    [65] Murakami A., Uddin M. A., Ochiai R., et al. Study of the mercury sorptionmechanism on activated carbon in coal combustion flue gas by thetemperature-programmed decomposition desorption technique. Energy Fuel.2010,24:4241-4249.
    [66] Li H. L., Wu C. Y., Li Y., et al. Superior activity of MnOx-CeO2/TiO2catalyst forcatalytic oxidation of elemental mercury at low flue gas temperatures. Appl. Catal. B-Environ.2012,111:381-388.
    [67] Niksa S., Fujiwara N. A predictive mechanism for mercury oxidation on selectivecatalytic reduction catalysts under coal-derived flue gas. J. Air Waste Manage. Assoc.2005,55(12):1866-1875.
    [68] Lee W. J., Bae G. N. Removal of elemental mercury (Hg(O)) by nanosizedV2O5/TiO2catalysts. Environ. Sci. Technol.2009,43(5):1522-1527.
    [69] Liu Y., Wang Y. J., Wang H. Q., et al. Catalytic oxidation of gas-phase mercury overCo/TiO2catalysts prepared by sol-gel method. Catal. Commun.2011,12(14):1291-1294.
    [70] Niksa S., Fujiwara N. The impact of wet flue gas desulfurization scrubbing onmercury emissions from coal-fired power stations. J. Air&Waste Manage. Assoc.2005,55:970–977.
    [71] Seneviratne H. R., Charpenteau C., George A., et al. Ranking low cost sorbents formercury capture from simulated flue gases. Energy Fuel.2007,21:3249–3258.
    [72] Wang Z., Zhou J., Zhu Y., et al. Simultaneous removal of NOx,SO2and Hg innitrogen flow in a narrow reactor by ozone injection: experimental results. Fuel Process.Technol.2007,88:817–823.
    [73] Qu Z., Yan N. Q., Liu P., et al. Bromine chloride as an oxidant to improve elementalmercury removal from coal-fired flue gas. Environ. Sci. Technol.2009,43(22):8610-8615.
    [74] Presto A. A., Granite E. J. Noble metal catalysts for mercury oxidation in utility fluegas gold, palladium and platinum formulations. Platinum Metals Rev.2008,52(3):144-154.
    [75] Kamata H., Ueno S., Naito T., et al. Mercury oxidation over the V2O5(WO3)/TiO2commercial SCR catalyst. Ind. Eng. Chem. Res.2008,47(21):8136-8141.
    [76]田立辉,李彩亭,曾光明,等.燃煤烟气汞污染控制技术.环境工程2008,26(5):48-53.
    [77] Yang H. M., Pan W. P. Transformation of mercury speciation through the SCRsystem in power plants. J. Environ. Sci-China2007,19(2):181-184.
    [78] Li Y., Murphy P. D., Wu C. Y., et al. Development of silica/vanadia/titania catalystsfor removal of elemental mercury from coal-combustion flue gas. Environ. Sci. Technol.2008,42(14):5304-5309.
    [79] Weckhuysen B. M., Keller D. E. Chemistry, Spectroscopy and the role of supportedvanadium oxides in heterogeneous catalysis. Catal. Today2003,(78):25-46.
    [80] Eswaran, S., Stenger, H. G. Effect of halogens on mercury conversion in SCRcatalysts. Fuel Process. Technol.2008,89(11):1153-1159.
    [81] Cao Y., Gao Z., Zhu J., et al. Impacts of halogen additions on mercury oxidation, in aslipstream selective catalyst reduction (SCR), reactor when burning sub-bituminous coal.Environ. Sci. Technol.2008,42(1):256-261.
    [82] Zhuang Y., Laumb J., Liggett R. Impacts of acid gases on mercury oxidation acrossscr catalyst. Fuel Process. Technol.2007,88(10):929-934.
    [83] Lee T., Biswas P., Hedrick E. Overall kinetics of heterogeneous elementalmercuryreactions on TiO2sorbent particles with UV irradiation. Ind. Eng. Chem. Res.2004,43:1411-1417.
    [84] Lee T. G., Hyun J. E. Structural effect of the in situ generated titania on its ability tooxidize and capture the gas-phase elemental mercury. Chemosphere2006,62(1):26-33.
    [85]黄仲涛,曾昭槐,钟邦克,等.无机膜技术及其应用.北京:中国石化出版社1999.
    [86]张兵,于智学,吴永红,等无机膜反应器的研究进展.材料导报:纳米与新材料专辑2011,25(2):450-453.
    [87]贺俊,王跃超.无机膜制备方法与应用发展趋势.江苏陶瓷2009,42(5):1-3.
    [88]许培援,吴山东,戚俊清,等.无机膜及无机膜反应器的发展和应用.江苏陶瓷2006,16(2):22-25.
    [89] Li H. L., Wu C. Y., Li Y., et al. CeO2-TiO2catalysts for catalytic oxidation ofelemental mercury in low-rank coal combustion flue gas. Environ. Sci. Technol.2011,45(17):7394-7400.
    [90] Zhao Y. C., Zhang J. Y., Liu J., et al. Study on mechanism of mercury oxidation byfly ash from coal combustion. Chin. Sci. Bull.2010,55(2):163-167.
    [91] Fan X. P., Li C. T., Zeng G. M., et al. Removal of gas-phase element mercury byactivated carbon fiber impregnated with CeO2. Energy Fuel.2010,24:4250-4254.
    [92] Hall B., Lindqvist O., Ljungstrom E. Mercury chemistry in simulated flue gasesrelated to waste incineration conditions Environ. Sci. Technol.1990,24:108-111.
    [93] Kyung B. K., ByunY. C., Cho M. Y., et al. Influence of HCl on oxidation of gaseouselemental mercury by dielectric barrier discharge process. Chemosphere2008,(71):1674-1682.
    [94] NIST XPS Database. http://srdata.nist.gov/xps/(accessed Aug.2007).
    [95] Li H. L., Li Y., Wu C. Y. et al. Oxidation and capture of elemental mercury overSiO2-TiO2-V2O5catalysts in simulated low-rank coal combustion flue gas. Chem. Eng. J.2011,169(1-3):186-193.
    [96]赵毅郝荣杰.燃煤电厂汞的形态转化及其影响因素研究进展.热力发电2010,39(1):6-10.
    [97]李剑峰乔少华,晏乃强,等.用于气态零价汞转化的催化剂研究.环境工程学报2010,4(5):1143-1146.
    [98] Ghorishi S. B., Keeney R. M., Serre S. D., et al. Development of a Cl-impregnatedactivated carbon for entrained-flow capture of elemental mercury. Environ. Sci. Technol.2002,36(20):4454-4459.
    [99]万奇,段雷,贺克斌,等. Ce掺杂低钒V2O5-WO3/TiO2催化剂脱除烟气元素汞的研究.环境科学2011,32(9):2800-2804.
    [100] Zhao Y. X., Mann M. D., Olson E. S., et al. Effects of sulfur dioxide and nitric oxideon mercury oxidation and reduction under homogeneous conditions. J. Air Waste Manage.Assoc.2006,56(5):628-635.
    [101] Krishnakumar B., Helble J. J. Understanding mercury transformations in coal-firedpower plants: Evaluation of homogeneous Hg oxidation mechanisms. Environ. Sci.Technol.2007,41(22):7870-7875.
    [102] Niksa S., Helble J. J., Fujiwara N. Kinetic modeling of homogeneous mercuryoxidation: The importance of NO and H2O in predicting oxidation in coal-derived systems.Environ. Sci. Technol.2001,35(18):3701-3706.
    [103] Agarwal H., Stenger H. G., Wu S., et al. Effects of H2O, SO2, and NO onhomogeneous Hg oxidation by Cl2. Energy Fuel.2006,20(3):1068-1075.
    [104]陶叶,禚玉群,张亮,等. HCl与NO对汞氧化反应影响的实验研究.工程热物理学报2010,31(2):355-359.
    [105] Ma Q. X., Liu Y. C., He H. Synergistic effect between NO2and SO2in theiradsorption and reaction on gamma-alumina. J. Phys. Chem. A2008,112(29):6630-6635.
    [106] Jin R. B., Liu Y., Wu Z. B., et al. Low-temperature selective catalytic reduction ofNO with NH3over Mn-Ce oxides supported on TiO2and Al2O3: A comparative study.Chemosphere2010,78(9):1160-1166.
    [107] Hussain A., Seidel-Morgenstern A., Tsotsas E. Heat and mass transfer in tubularceramic membranes for membrane reactors. Int. J. Heat Mass Transf.2006,49(13-14):2239-2253.
    [108] Yan N., Chen W., Chen J., et al. Significance of RuO2modified SCR catalyst forelemental mercury oxidation in coal-fired flue gas. Environ. Sci. Technol.2011,45(13):5725-5730.
    [109] Seki K. Development of RuO2/Rutile-TiO2catalyst for industrial HCl oxidationprocess. Catalysis Surveys from Asia2010,14(3-4):168-175.
    [110] Seitsonen A. P., Over H. Oxidation of HCl over TiO2-Supported RuO2: A densityfunctional theory study. J. Phys. Chem. C2010,114(51):22624-22629.
    [111] Ryu Y. B., Lee M. S., Jeong E. D., et al. Hydrothermal synthesis of titaniumdioxides from peroxotitanate solution using different amine group-containing organics andtheir photocatalytic activity. Catal. Today2007,124(3-4):88-93.
    [112] Lopez N., Gomez-Segura J., Marin R. P., et al. Mechanism of HCl oxidation(Deacon process) over RuO2. J. Catal.2008,255(1):29-39.
    [113] Mazzieri V., Coloma-Pascual F., Arcoya A., et al. XPS, FTIR and TPRcharacterization of Ru/Al2O3catalysts. Appl. Surf. Sci.2003,210(3-4):222-230.
    [114] Bianchi C. L. TPR and XPS investigations of Co/Al2O3catalysts promoted with Ru,Ir and Pt. Catal. Lett.2001,76(3-4):155-159.
    [115] Gu T. T., Liu Y., Weng X. L., et al. The enhanced performance of ceria with surfacesulfation for selective catalytic reduction of NO by NH3. Catal. Commun.2010,12(4):310-313.
    [116] Elmasides C., Kondarides D. I., Grunert W., et al. XPS and FTIR study of Ru/Al2O3and Ru/TiO2catalysts: reduction characteristics and interaction with a methane oxygenmixture. J. Phys. Chem. B1999,103(25):52275239.
    [117]杨少霞,冯玉杰,万家峰,等. CeO2掺杂RuO2/γ-Al2O3催化剂结构与湿式氧化降解苯酚的活性研究化工技术与开发2005,26(5):897-901.
    [118] Galbreath K. C., Zygarlicke C. J., Tibbetts J. E., et al. Effects of NOx, alpha-Fe2O3,gamma-Fe2O3, and HCl on mercury transformations in a7-kW coal combustion system.Fuel Process. Technol.2005,86(4):429-448.
    [119] Richardson C., Machalek T., Miller S., et al. Effect of NOxcontrol processes onmercury speciation in utility flue gas. J. Air Waste Manage. Assoc.2002,52(8):941-947.
    [120] Kamata H., Ueno S., Sato N., et al. Mercury oxidation by hydrochloric acid overTiO2supported metal oxide catalysts in coal combustion flue gas. Fuel Process. Technol.2009,90(7-8):947-951.
    [121] Liu H. M., Xu Y. D., H2-TPR study on Mo/HZSM-5catalyst for CH4dehydroaromatization. Chin. J. Catal.2006,27(4):319-323.
    [122] Pan H. Y., Minet R. G., Benson S. W., et al. Process for converting hydrogenchloride to chlorine Ind. Eng. Chem. Res.1994,33(12):2996-3003.
    [123] Hofmann J. P., Zweidinger S., Knapp M., et al. Hydrogen-promoted chlorination ofRuO2(110). J. Phys. Chem. C2010,114(24):10901-10909.
    [124] Zweidinger S., Hofmann J. P., Balmes O., et al. In situ studies of the oxidation ofHCl over RuO2model catalysts: Stability and reactivity. J. Catal.2010,272(1):169-175.
    [125] Over H. Atomic-scale understanding of the HCl oxidation over RuO2, A noveldeacon process. J. Phys. Chem. C2012,116(12):6779-6792.
    [126] Crihan D., Knapp M., Zweidingey S., et al. Stable Deacon process for HCloxidation over RuO2. Angew. Chem. Int. Ed.2008,47(11):2131-2134.
    [127] Zweidinger S., Crihan D., Knapp M., et al. Reaction mechanism of the oxidation ofHCl over RuO2(110). J. Phys. Chem. C2008,112(27):9966-9969.
    [128] Hevia M. A. G., Amrute A. P., Schmidt T., et al. Transient mechanistic study of thegas-phase HCl oxidation to Cl2on bulk and supported RuO2catalysts. J. Catal.2010,276(1):141-151.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700