用户名: 密码: 验证码:
湍流促进器强化错流微滤膜过程的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膜污染现象引起微滤膜通量随时间急剧衰减,导致系统能耗显著增加,严重制约了微滤膜技术的应用。湍流促进器可以改善膜组件内的流体动力学条件,显著提高壁面流速或剪切速率,有助于抑制料液中的颗粒在膜表面的沉积,减轻微滤过程的膜污染现象,从而有效提高微滤膜通量。湍流促进器强化传质效果主要依赖于膜表面的流体动力学效应。然而,扰流挡板和螺旋式湍流促进器强化传质的流体动力学机制尚不明确,在微滤过程的强化传质机理尚未完善。本论文使用扰流挡板强化错流微滤碳酸钙悬浮液过程,考察挡板结构参数对强化传质效率的影响,设计了一种新型的具有矩形螺旋截面的螺旋式湍流促进器,CFD (Computational fluid dynamics)模拟管内附加不同湍流促进器的流场,数值分析两种湍流促进器强化传质的流体动力学机制,并以新设计的螺旋式湍流促进器为例,考察了湍流促进器对滤饼参数的影响,完善了湍流促进器在微滤过程的强化传质机理,最后建立可预测湍流促进器强化传质效率的神经网络模型,优化湍流促进器强化微滤过程的操作条件,从而为湍流促进器的应用提供指导。
     首先,使用扰流挡板强化错流微滤碳酸钙悬浮液过程,考察扰流挡板的类型、结构参数(挡板收缩率和挡板间距)以及挡板排列方式对强化传质效率的影响。研究表明,挡板收缩率(β)对强化传质效率有显著的影响,β值大的扰流挡板可获得较高的强化传质效率。圆形挡板间距的优化依赖于β值,并且要满足旋涡的充分发展,环形挡板间距的优化与β值无关。基于相同的结构参数,圆形挡板可以获得比环形挡板更高的强化传质效率。与单独使用一种类型扰流挡板相比,混合使用两种类型扰流挡板可获得更好的强化传质效果。为了揭示扰流挡板强化传质的流体动力学机制,CFD模拟管内附加扰流挡板的流场。流场数值分析表明,扰流挡板诱发管内流体形成旋涡,引起壁面流速剧烈波动,显著提高流体的湍动强度,可以破坏边界层的发展,抑制料液中的颗粒在膜表面沉积,从而有效提高微滤膜通量。
     其次,设计了一种新型的矩形截面螺旋式湍流促进器,CFD模拟管内附加新型湍流促进器的流场,分析强化传质的流体动力学机制,并考察湍流促进器结构参数对流场特性的影响。流场分析表明,矩形截面螺旋式湍流促进器引发螺旋流与轴向流的剧烈混合,可显著提高流体的湍动强度和壁面剪切力,壁面附近无滞流区或流动死区,螺旋槽内未形成旋涡或二次流,与文献报道的半圆形截面螺旋式湍流促进器相比,在相同条件下,膜组件轴向压力降减小了25%,壁面剪切力增大了6.7%,可显著降低能耗并获得较高的强化传质效率。螺旋式湍流促进器的结构参数对流场特性有显著的影响:壁面剪切力和膜组件轴向压力降均随着螺纹外径(Dh)和中心杆直径(Dr)的增大而提高,随着螺纹间距(λ)的增大而降低。基于临界剪切力的优化设计依据,确定了矩形截面螺旋式湍流促进器的优化结构参数:Dh=11mm,λ=12mm, Dr=4或5mm。
     以新设计的矩形截面螺旋式湍流促进器为例,考察了湍流促进器对滤饼参数的影响,通过滤饼阻力理论分析,完善了湍流促进器在微滤膜过程的强化传质机理。研究结果表明,在相同操作条件下(跨膜压力50kPa、入口流速0.5m/s和料液浓度1.0g/L),湍流促进器使滤饼层厚度从0.59mm显著减薄到0.1mm,滤饼孔隙率从0.55增大到0.65,滤饼平均粒径从5.15μm显著减小到1.99μm;滤饼阻力分析表明,滤饼平均粒径的显著减小导致滤饼比阻增大了2.45倍,说明湍流促进器对微滤过程产生了负面效应。由于滤饼层厚度减薄和孔隙率增大的正面效应远大于滤饼比阻增大的负面效应,因此整体滤饼阻力显著降低。微滤过程的操作条件对滤饼参数有显著的影响:随着跨膜压力的升高,滤饼层厚度增大,滤饼孔隙率减小,滤饼平均粒径增大;随时入口流速的升高,滤饼层厚度减小,滤饼孔隙率增大,滤饼平均粒径减小;随着料液浓度的升高,滤饼层厚度增加,滤饼平均粒径减小,滤饼孔隙率在无湍流促进器时增大,在有湍流促进器时保持不变。湍流促进器可以减弱跨膜压力和料液浓度对滤饼参数的影响,增强入口流速对滤饼参数的影响。
     最后,建立了可预测湍流促进器强化传质效率的神经网络模型,优化了神经网络模型的结构:隐含层神经元数为12,输入层与隐含层之间的传递函数为logsig,隐含层与输出层之间的传递函数为tansig。利用该模型分析了微滤过程的操作条件对湍流促进器强化传质效率的影响:强化传质效率随着跨膜压力的增大先升高后降低,随着入口流速或料液浓度的增大而升高;跨膜压力对强化传质效率的影响最大,料液浓度的影响次之,入口流速的影响最小。利用该模型优化了湍流促进器强化微滤过程的操作条件,从而为湍流促进器的应用提供指导:在较低的料液浓度时,采用较高的入口流速和较低的跨膜压力,湍流促进器可获得较高的强化传质效率;在较高的料液浓度时,采用较高的入口流速和较高的跨膜压力,湍流促进器可获得较高的强化传质效率。
The permeate flux of microfiltration sharply declines with filtration time owing to the phenomenon of membrane fouling, which seriously hinders the wide applications of MF due to the increased energy consumption. The use of turbulence promoters can significantly increase the crossflow velocity or wall shear stress under the same operation condition, which can effectively prevent particle deposition on the membrane surface, thereby improving the permeate flux of MF. The flux improvement by turbulence promoter depends on the improved hydrodynamics of fluid flow. However, the hydrodynamics effects and the mechanism of flux enhancement by turbulence promoter have still not been clearly understood. In this thesis, central baffle and wall baffle were used as turbulence promoter to enhance the permeate flux during the crossflow MF of particulate suspension. A novel helical screw insert with a rectangular section was designed. Computational fluid dynamics (CFD) simulations of fluid flow in the tube filled with turbulence promoters were conducted to investigate the hydrodynamics effects responsible for the flux improvement. In order to explore the intrinsic mechanism of flux enhancement, the effects of turbulence promoter on the cake properties were investigated. The turbulence promoter-assisted MF process was successfully modeled by the artificial neural network (ANN) to predict the efficiency of flux enhancement. The operation variables in MF process were optimized by ANN to achieve high flux enhancement efficiency, which provides a useful guide for the applications of turbulence promoter.
     Firstly, both central baffle and the wall baffle were used to enhance the permeate flux during crossflow MF of calcium carbonate suspension. The effects of baffle configuration, baffle geometric parameters including baffle constriction ratio (β), baffle spacing (L/D) and baffle arrangement on the flux enhancement efficiency were experimentally investigated. It reveals that both β value and (L/D) value of baffle play an important role in the flux enhancement efficiency. The baffle with a larger β value can obtain higher flux improvement efficiency. The optimum (L/D) value of central baffle strongly depends on the β value. While the optimum (L/D) value of central baffle is independent of the β value. The central baffle can achieve higher flux improvement efficiency than wall baffle in terms of same geometric parameters. The combination use of central baffle and wall baffle achieves higher flux enhancement efficiency than the use of central baffle or wall baffle alone. In order to explore the hydrodynamics effects responsible for flux improvement by the baffles, CFD simulations of fluid flow in the baffle-filled tube were conducted. It reveals that the vortex formation due to the presence of baffles induces the intense velocity fluctuation, thereby increasing the turbulence intensity of fluid flow, which greatly disrupts the development of the boundary layer and effectively prevents the particle deposition on the membrane surfaces. Therefore, the permeate flux of MF membrane is significantly improved by the baffles.
     Then, a novel helical screw insert with a rectangular section was designed. CFD simulations of fluid flow in the tube with the newly designed helical screw insert were conducted to investigate the hydrodynamics effects responsible for flux improvement. The effects of geometric parameters of helical screw insert on the flow hydrodynamics were theoretically studied. Due to the presence of helical screw insert, the fluid flow in the tube is mainly divided into two parts, that is, helical flow within the helical groove and axial flow through the radial clearance gap. The turbulence intensity of flow and wall shear stress is significantly increased owing to the intense mixing of helical flow and axial flow, which is responsible for the flux enhancement. There is no stagnant region or dead zone at the neighborhood of tube wall and no secondary flow or vortex formation within the helical groove. Compared to the helical screw insert with semi-circular section reported in the literature, the pressure drop along the tube can be reduced by25%and wall shear stress is increased by6.7%when using the newly designed turbulence promoter. Simulative results indicate the geometric parameters of helical screw insert have a significant influence on the flow hydrodynamics. Both wall shear stress and pressure drop along the tube increase with the increase in either the helical diameter (Dh) or the central rod diameter (Dr), and decrease with the increase in the width of helical groove (λ). In terms of the critical value of wall shear stress, the geometric parameters of helical screw insert was optimized as following:Dh=11mm, λ=12mm, Dr=4or5mm. The helical screw insert without a central rod produces a smaller pressure drop and a lower wall shear stress.
     In order to explore the intrinsic mechanism of flux enhancement, the effects of newly designed turbulence promoter on the cake properties were experimentally investigated during the crossflow MF of particulate suspension. And the effects of operation conditions on the cake properties were studied. It reveals that the cake thickness diminishes from0.59to0.1mm, the cake porosity increases from0.55to0.65and the average particle size decreases from5.15to1.99μm due to the presence of helical screw insert under the same operation condition. The specific resistance of cake increases2.45times due to the dimished average particle size, indicating the negative effect of turbulence promoter on the permeate flux. The positive effect of turbulence promoter on the permeate flux due to the remarkable reduction in cake thickness overwhelms its negative effect due to the increased specific resistance. Therefore, the cake resistance is significantly reduced by turbulence promoter. The operation conditions of MF have significant influences on the cake parameters. The cake thickness increases, the cake porosity decreases and the average particle size increases with an increase in transmembrane pressure (TMP). The cake thickness decreases, the cake porosity increases and the average particle size decreases with an increase in the inlet velocity. The cake thickness increases and the average particle size decreases with an increases in the feed concentration. The cake porosity increases with an increase in the feed concentration when without helical screw insert, and almost keeps stable when using a helical screw insert. The effects of both TMP and feed concentration on the cake properties can be weakened to some extent, and the effects of inlet velocity on the cake properties can be strengthened by helical screw insert.
     At last, the turbulence promoter-assisted MF process was successfully modeled by ANN, which can predict the flux improvement efficiency under various operation conditions. The optimal ANN model architecture is that neuron numbers in the hidden layer is12and transfer functions in the hidden layer and output layer are logsig and tansig, respectively. The effects of operation conditions on the flux enhancement efficiency were analysized using ANN model. It reveals that the flux enhancement efficiency first increases and then decreases with an increase in TMP, and increases with an increase in both the inlet velocity and feed concentration. TMP has more important influence on the flux enhancement efficiency than the feed concentration or the inlet velocity. The optimal operation conditions were optimized to achieve the highest flux improvement efficiency, which provides a useful guide for the applications of turbulence promoter. It suggests that the highest flux enhancement efficiency can be obtained by applying both a high inlet velocity and a low TMP at low feed concentration, and by applying both a high inlet velocity and a high TMP at high feed concentration.
引文
[1]AJMANI G S, GOODWIN D, MARSH K, et al. Modification of low pressure membranes with carbon nanotube layers for fouling control [J]. Water Research,2012,46(17):5645-5654.
    [2]SHRESTHA A, PELLEGRINO J, HUSSON S M, et al. A modified porometry approach towards characterization of MF membranes [J]. J. Membr. Sci.,2012,421:145-153.
    [3]ULLAH A, HOLDICH R G, NAEEM M, et al. Shear enhanced microfiltration and rejection of crude oil drops through a slotted pore membrane including migration velocities [J]. J. Membr. Sci.,2012,421:69-74.
    [4]LIU Y J, SUN D D. Particles size-associated membrane fouling in microfiltration of denitrifying granules supernatant [J]. Chem. Eng. J.,2012,181(1):494-500.
    [5]NAKAMURA K, ORIME T, MATSUMOTO K. Response of zeta potential to cake formation and pore blocking during the microfiltration of latex particles [J]. J. Membr. Sci.,2012,401: 274-281.
    [6]柏斌,潘艳秋.错流微滤制备动态膜过程中细微颗粒沉积机理[J].化工学报,2012,63(11):3553-3559.
    [7]熊伟,崔鹏,印美娟,等.声强对板式陶瓷膜微滤超细Ti02悬浆液过程的影响[J].高校化学工程学报,2012,26(4):593-598.
    [8]TOMASULA P M, MUKHOPADHYAY S, DATTA N, et al. Pilot-scale crossflow-microfiltration and pasteurization to remove spores of Bacillus anthracis (Sterne) from milk [J]. J. Dairy Sci.,2011,94(9):4277-4291.
    [9]CHANG M, ZHOU S G, SUN Q H, et al. Recovery of Bacillus thuringiensis based biopesticides from fermented sludge by cross-flow microfiltration [J]. Desalin. Water Treat.-Sci. Eng.,2012, 43(1-3):17-28.
    [10]CUTLER H E, HUSSON S M, WICKRAMASINGHE S R. Prefiltration to suppress protein fouling of microfiltration membranes [J]. Sep. Purif. Technol.,2012,89:329-336.
    [11]PIRY A, HEINO A, KUHNL W, et al. Effect of membrane length, membrane resistance, and filtration conditions on the fractionation of milk proteins by microfiltration [J]. J. Dairy Sci., 2012,95(4):1590-1602.
    [12]LIU Y J, SUN D D. Membrane fouling mechanism in dead-end microfiltration of denitrifying granular sludge mixed liquors developed in SBRs at different calcium concentrations [J]. J. Membr. Sci.,2012,396:74-82.
    [13]QU P, GESAN-GUIZIOU G, BOUCHOUX A. Dead-end filtration of sponge-like colloids:The case of casein micelle [J]. J. Membr. Sci.,2012,417:10-19.
    [14]姚金苗,王湛,孙光民,等.死端微滤酵母悬浮液比阻的预测[J].化工学报,2008,59(6):1430-1435.
    [15]王湛,张新妙,武文娟.操作条件对死端微滤膜通量的影响——温度、压力、浓度的影响[J].膜科学与技术,2006,26(1):26-30.
    [16]熊伟,崔鹏,印美娟,等.声强对板式陶瓷膜微滤超细TiO2悬浆液过程的影响[J].高校化学工程学报,2012,26(4):593-598.
    [17]王捷,何玉倩,张宏伟.混凝-膜过滤中滤饼层对双酚A的去除强化作用研究[J].中国环境科学,2012,32(3):454-460.
    [18]KIM A S, LIU Y. Critical flux of hard sphere suspensions in crossflow filtration:Hydrodynamic force bias Monte Carlo simulations [J]. J. Membr. Sci.,2008,323(1):67-76.
    [19]KIM M M, ZYDNEY A L. Theoretical analysis of particle trajectories and sieving in a two-dimensional cross-flow filtration system [J]. J. Membr. Sci.,2006,281(1-2):666-675.
    [20]ZHANG Y P, FANE A G, LAW A W K. Critical flux and particle deposition of bidisperse suspensions during crossflow microfiltration [J]. J. Membr. Sci.,2006,282(1-2):189-197.
    [21]KROMKAMP J, FABER F, SCHROEN K, et al. Effects of particle size segregation on crossflow microfiltration performance:Control mechanism for concentration polarisation and particle fractionation [J]. J. Membr. Sci.,2006,268(2):189-197.
    [22]WISNIEWSKI C, GRASMICK A, CRUZ A L. Critical particle size in membrane bioreactors-Case of a denitrifying bacterial suspension [J]. J. Membr. Sci.,2000,178(1-2):141-150.
    [23]CARROLL T, BOOKER N A. Axial features in the fouling of hollow-fibre membranes [J]. J. Membr. Sci.,2000,168(1-2):203-212.
    [24]BELFORT G, DAVIS R H, ZYDNEY A L. The behavior of suspensions and macromolecular solutions in cross-flow microfiltration [J]. J. Membr. Sci.,1994,96(1-2):1-58.
    [25]朱洪涛,孙鹏程,文湘华,等.预臭氧化对二级出水微滤过程中膜有机物污染的影响[J].环境科学学报,2011,31(8):1633-1639.
    [26]张进,孟广耀.混凝对微滤膜处理阴极电泳漆废水的影响[J].工业水处理,2011,31(1):30-32.
    [27]刘洋,上宇,丁忠伟,等.鼓泡条件对浸没式中空纤维膜微滤过程膜污染的影响[J].北京化工大学学报(自然科学版),2012,39(6):6-10.
    [28]LIHONG S, YUNAN Z, MAHENDRAN B, et al. Membrane fouling in a fermentative hydrogen producing membrane bioreactor at different organic loading rates [J]. J. Membr. Sci.,2010, 360(1-2):226-233.
    [29]AIMAR P, BACCHIN P. Slow colloidal aggregation and membrane fouling [J]. J. Membr. Sci., 2010,360(1-2):70-76.
    [30]LEE S, LEE E, EL1MELECH M, et al. Membrane characterization by dynamic hysteresis: Measurements, mechanisms, and implications for membrane fouling [J]. J. Membr. Sci.,2011, 366(1-2):17-24.
    [31]LEBERKNIGHT J, WIELENGA B, LEE-JEWETT A, et al. Recovery of high value protein from a corn ethanol process by ultrafiltration and an exploration of the associated membrane fouling [J]. J. Membr. Sci.,2011,366(1-2):405-412.
    [32]ARABI S, NAKHLA G. Impact of molecular weight distribution of soluble microbial products on fouling in membrane bioreactors [J]. Sep. Purif. Technol.,2010,73(3):391-396.
    [33]WANG J, GUAN J, SANTIWONG S R, et al. Effect of aggregate characteristics under different coagulation mechanisms on microfiltration membrane fouling [J]. Desalination,2010,258(1-3): 19-27.
    [34]NANDA D, TUNG K L, LI Y L, et al. Effect of pH on membrane morphology, fouling potential, and filtration performance of nanofiltration membrane for water softening [J]. J. Membr. Sci., 2010,349(1-2):411-420.
    [35]TARLETON E S, WAKEMAN R J. Understanding flux decline in cross-flow microfiltration.1. effects of particle and pore-size [J]. Chem. Eng. Res. Des.,1993,71(A4):399-410.
    [36]CONNELL H, ZHU J, BASSI A. Effect of particle shape on crossflow filtration flux [J]. J. Membr. Sci.,1999,153(1):121-139.
    [37]XU P, BELLONA C, DREWES J E. Fouling of nanofiltration and reverse osmosis membranes during municipal wastewater reclamation:Membrane autopsy results from pilot-scale investigations [J]. J. Membr. Sci.,2010,353(1-2):111-121.
    [38]BABEL S, TAK1ZAWA S. Microfiltration membrane fouling and cake behavior during algal filtration [J]. Desalination,2010,261(1-2):46-51.
    [39]LI M S, ZHAO Y J, ZHOU S Y, et al. Clarification of raw rice wine by ceramic microfiltration membranes and membrane fouling analysis [J]. Desalination,2010,256(1-3):166-173.
    [40]LIU Y J, SUN D D. Comparison of membrane fouling in dead-end microfiltration of denitrifying granular sludge suspension and its supernatant [J]. J. Membr. Sci.,2010,352(1-2):100-106.
    [41]孙文鹏,李星,杨艳玲,等.膜污染程度的评价指标一膜孔堵塞率[J].膜科学与技术,2009,29(5):62-65.
    [42]MONDAL S, DE S. A fouling model for steady state crossflow membrane filtration considering sequential intermediate pore blocking and cake formation [J]. Sep. Purif. Technol.,2010,75(2): 222-228.
    [43]KIM J, DIGIANO F A. Fouling models for low-pressure membrane systems [J]. Sep. Purif. Technol.,2009,68(3):293-304.
    [44]郑博,唐晓津,张占柱,等.用于浆态床费托合成的错流过滤数学模型的研究进展[J].过程工程学报,2011(05):894-900.
    [45]MINGU K, NAKHLA G. Membrane fouling propensity of denitrifying organisms [J]. J. Membr. Sci.,2010,348(1-2):197-203.
    [46]HWANG K J, SZ P Y. Filtration characteristics and membrane fouling in cross-flow microfiltration of BSA/dextran binary suspension [J]. J. Membr. Sci.,2010,347(1-2):75-82.
    [47]WANG X M, LI X Y, HUANG X. Membrane fouling in a submerged membrane bioreactor (SMBR):Characterisation of the sludge cake and its high filtration resistance [J]. Sep. Purif. Technol.,2007,52(3):439-445.
    [48]OULD-DRIS A, JAFFRIN M Y, SI-HASSEN D, et al. Effect of cake thickness and particle polydispersity on prediction of permeate flux in microfiltration of particulate suspensions by a hydrodynamic diffusion model [J]. J. Membr. Sci.,2000,164(1-2):211-227.
    [49]CHOI S W, PARK J M, CHANG Y, et al. Effect of electrostatic repulsive force on the permeate flux and flux modeling in the microfiltration of negatively charged microspheres [J]. Sep. Purif. Technol.,2003,30(1):69-77.
    [50]TUNG K L, WANG S J, LU W M, et al. In situ measurement of cake thickness distribution by a photointerrupt sensor [J]. J. Membr. Sci.,2001,190(1):57-67.
    [51]TAKAHASHI K, KOBAYASHI Y, YOKOTA T, et al. Measurement of cake thickness on membrane for microfiltration of yeast using ultrasonic polymer concave transducer [J]. J. Chem. Eng. Jpn.,1991,24(5):599-603.
    [52]TILLER F M, HSYUNG N B, CONG D Z. Role of porosity in filtration.12. filtration with sedimentation [J]. AIchEJ.,1995,41(5):1153-1164.
    [53]ALTMANN J, RIPPERGER S. Particle deposition and layer formation at the crossflow microfiltration [J]. J. Membr. Sci.,1997,124(1):119-128.
    [54]DITTLER A, GUTMANN B, LICHTENBERGER R, et al. Optical in situ measurement of dust cake thickness distributions on rigid filter media for gas cleaning [J]. Powder Technol.,1998, 99(2):177-184.
    [55]HAMACHI M, MIETTON-PEUCHOT M. Experimental investigations of cake characteristics in crossflow microfiltration [J]. Chem. Eng. Sci.,1999,54(18):4023-4030.
    [56]HWANG B K, LEE W N, PARK P K, et al. Effect of membrane fouling reducer on cake structure and membrane permeability in membrane bioreactor [J]. J. Membr. Sci.,2007,288(1-2): 149-156.
    [57]PARK P K, LEE C H, LEE S. Determination of cake porosity using image analysis in a coagulation-microfiltration system [J]. J. Membr. Sci.,2007,293(1-2):66-72.
    [58]LEE W N, CHEONG W S, YEON K M, et al. Correlation between local TMP distribution and bio-cake porosity on the membrane in a submerged MBR [J]. J. Membr. Sci.,2009,332(1-2): 50-55.
    [59]VYAS H K, BENNETT R J, MARSHALL A D. Cake resistance and force balance mechanism in the crossflow microfiltration of lactalbumin particles [J]. J. Membr. Sci.,2001,192(1-2): 165-176.
    [60]VYAS H K, MAWSON A J, BENNETT R J, et al. A new method for estimating cake height and porosity during crossflow filtration of particulate suspensions [J]. J. Membr. Sci.,2000,176(1): 113-119.
    [61]VYAS H K, BENNETT R J, MARSHALL A D. Influence of operating conditions on membrane fouling in crossflow microfiltration of particulate suspensions [J]. Int. Dairy J.,2000,10(7): 477-487.
    [62]JOKIC A, ZAVARGO Z, SERES Z, et al. The effect of turbulence promoter on cross-flow microfiltration of yeast suspensions:A response surface methodology approach [J]. J. Membr. Sci.,2010,350(1-2):269-278.
    [63]WU Y, HUA C, LI W L, et al. Intensification of micromixing efficiency in a ceramic membrane reactor with turbulence promoter [J]. J. Membr. Sci.,2009,328(1-2):219-227.
    [64]OLAYIWOLA B, WALZEL P. Effects of in-phase oscillation of retentate and filtrate in crossflow filtration at low Reynolds number [J]. J. Membr. Sci.,2009,345(1-2):36-46.
    [65]LIM K M, PARK J Y, LEE J C, et al. Quantitative Analysis of Pulsatile Flow Contribution to Ultrafiltration [J]. Artif. Organs,2009,33(1):69-73.
    [66]WILLEMS P, DEEN N G, KEMPERMAN A J B, et al. Use of Particle Imaging Velocimetry to measure liquid velocity profiles in liquid and liquid/gas flows through spacer filled channels [J]. J. Membr. Sci.,2010,362(1-2):143-153.
    [67]SOBOLIK V, JIROUT T, HAVLICA J, et al. Wall Shear Rates in Taylor Vortex Flow [J]. J. Appl. Fluid Mech.,2011,4(3):25-31.
    [68]MOULIN P, MOLL R, VEYRET D, et al. Dean vortices applied to membrane process [J]. J. Membr. Sci.,2007,288(1-2):321-335.
    [69]SARKAR P, GHOSH S, DUTTA S, et al. Effect of different operating parameters on the recovery of proteins from casein whey using a rotating disc membrane ultrafiltration cell [J]. Desalination,2009,249(1):5-11.
    [70]SEN D, ROY W, DAS L, et al. Ultrafiltration of macromolecules using rotating disc membrane module (RDMM) equipped with vanes:Effects of turbulence promoter [J]. J. Membr. Sci.,2010, 360(1-2):40-47.
    [71]VATAI G N, KRSTIC D M, HOFLINGER W, et al. Combining air sparging and the use of a static mixer in cross-flow ultrafiltratioin of oil/water emulsion [J]. Desalination,2007,204(1-3): 255-264.
    [72]KRSTIC D A, HOFLINGER W, KORIS A K, et al. Energy-saving potential of cross-flow ultrafiltration with inserted static mixer:Application to an oil-in-water emulsion [J]. Sep. Purif. Technol.,2007,57(1):134-139.
    [73]BRUNOLD C R, HUNNS J C B, MACKLEY M R, et al. Experimental-observations on flow patterns and energy-losses for oscillatory flow in ducts containing sharp edges [J]. Chem. Eng. Sci.,1989,44(5):1227-1244.
    [74]MACKAY M E, MACKLEY M R, WANG Y. Oscillatory flow within tubes containing wall or central baffles [J]. Chem. Eng. Res. Des.,1991,69(A6):506-513.
    [75]YEH H M, CHEN H Y, CHEN K T. Membrane ultrafiltration in a tubular module with a steel rod inserted concentrically for improved performance [J]. J. Membr. Sci.,2000,168(1-2): 121-133.
    [76]YEH H M, CHEN Y F. Modified analysis of permeate flux for ultrafiltration in a solid-rod tubular membrane [J]. J. Membr. Sci.,2005,251(1-2):255-261.
    [77]GHAFFOUR N, JASSIM R, KHIR T. Flux enhancement by using helical baffles in ultrafiltration of suspended solids [J]. Desalination,2004,167(1-3):201-207.
    [78]YEH H M, LIU T C, HUANG P C. Effect of varying incidental angles of a wire-rod insert on the performance of tubular ultrafiltration membranes [J]. Desalination,2004,170(1):15-25.
    [79]CHIU T Y, JAMES A E. Effects of axial baffles in non-circular multi-channel ceramic membranes using organic feed [J]. Sep. Purif. Technol.,2006,51(3):233-239.
    [80]YEH H M, CHEN Y. Momentum balance analysis of permeate flux for ultrafiltration in tubular membranes with gradually increasing incidental angles of a wired-rod insert [J]. J. Membr. Sci., 2006,278(1-2):205-211.
    [81]MILL WARD H R, BELLHOUSE B J, WALKER G. Screw-thread flow promoter—An experimental study of ultrafiltration and microfiltration performance [J]. J. Membr. Sci.,1995, 106(3):269-279.
    [82]NAJARIAN S, BELLHOUSE B J. Enhanced microfiltration of bovine blood using a tubular membrane with a screw-threaded insert and oscillatory flow [J]. J. Membr. Sci.,1996,112(2): 249-261.
    [83]BELLHOUSE B J, COSTIGAN G, ABHINAVA K, et al. The performance of helical screw-thread inserts in tubular membranes [J]. Sep. Purif. Technol.,2001,22-3(1-3):89-113.
    [84]COSTIGAN G, BELLHOUSE B J, PICARD C. Flux enhancement in microfiltration by corkscrew vortices formed in helical flow passages [J]. J. Membr. Sci.,2002,206(1-2):179-188.
    [85]PITERA E W, MIDDLEMA.S. Convection promotion in tubular desalination membranes [J]. Ind. Eng. Chem. Pro. Des. Dev.,1973,12(1):52-56.
    [86]COPAS A L, MIDDLEMA.S. Use of convection promotion in ultrafiltration of a gel-forming solute [J]. Ind. Eng. Chem. Pro. Des. Dev.,1974,13(2):143-145.
    [87]VATAI G N, TEKIC M N. Convection promotion and gel formation in an ultrafiltration process [J]. Chem. Eng. Commun.,1995,132:141-149.
    [88]SUGIMOTO T, KOBAYASI H, ISHIKAWA T, et al. Ultrafiltration performance of tubular membrane modules fitted with turbulent promoter:Twisted tape and static mixer [J]. Kagaku Kogaku Ronbunshu,1996,22(1):42-48.
    [89]KRSTIC D M, TEKIC M N, CARIC M D, et al. The effect of turbulence promoter on cross-flow microfiltration of skim milk [J]. J. Membr. Sci.,2002,208(1-2):303-314.
    [90]KRSTIC D M, TEKIC M N, CARIC M D, et al. Kenics static mixer as turbulence promoter in cross-flow microfiltration of skim milk [J]. Sep. Sci. Technol.,2003,38(7):1549-1560.
    [91]KRSTIC D M, TEKIC M N, CARIC M D, et al. Static turbulence promoter in cross-flow microfiltration of skim milk [J]. Desalination,2004,163(1-3):297-309.
    [92]HOWES T, On dispersion of unsteady flow in baffled tubes [D]. Cambridge University,1988.
    [93]HOWELL J A, FIELD R W, WU D X. Yeast-cell microfiltration—flux enhancement in baffled and pulsatile flow systems [J]. J. Membr. Sci.,1993,80(1-3):59-71.
    [94]FINNIGAN S M, HOWELL J A. The effect of pulsatile flow on ultrafiltration fluxes in a baffled tubular membrane system [J]. Chem. Eng. Res. Des.,1989,67(3):278-282.
    [95]GUPTA B B, HOWELL J A, WU D, et al. A helical baffle for cross-flow microfiltration [J]. J. Membr. Sci.,1995,102:31-42.
    [96]XU N, XING W H, XU N P, et al. Application of turbulence promoters in ceramic membrane bioreactor used for municipal wastewater reclamation [J]. J. Membr. Sci.,2002,210(2):307-313.
    [97]ZHEN X H, YU S L, WANG B F, et al. Flux enhancement during ultrafiltration of produced water using turbulence promoter [J]. J. Environ. Sci.,2006,18(6):1077-1081.
    [98]AHMAD A L, MAR1ADAS A. Baffled microfiltration membrane and its fouling control for feed water of desalination [J]. Desalination,2004,168:223-230.
    [99]YEH H M, CHEN K T. Improvement of ultrafiltration performance in tubular membranes using a twisted wire-rod assembly [J]. J. Membr. Sci.,2000,178(1-2):43-53.
    [100]赵先治,路绪旺,刁家喜,等.陶瓷膜分离CaCO3悬浆液强化过程的研究[J].过滤与分离,2006,16(1):4-7.
    [101]HOWES T, MACKLEY M R, ROBERTS E P L. The simulation of chaotic mixing and dispersion for periodic flows in baffled channels [J]. Chem. Eng. Sci.,1991,46(7):1669-1677.
    [102]WANG Y Y. HOWELL J A, FIELD R W, et al. Simulation of cross-flow filtration for baffled tubular channels and pulsatile flow [J]. J. Membr. Sci.,1994,95(3):243-258.
    [103]PAL S, AMBASTHA S, GHOSH T B, et al. Optical evaluation of deposition thickness and measurement of permeate flux enhancement of simulated fruit juice in presence of turbulence promoters [J]. J. Membr. Sci.,2008,315(1-2):58-66.
    [104]PAL S, BHARIHOKE R, CHAKRABORTY S, et al. An experimental and theoretical analysis of turbulence promoter assisted ultrafiltration of synthetic fruit juice [J]. Sep. Purif. Technol.,2008, 62(3):659-667.
    [105]王福军.计算流体动力学分析——CFD软件原理与应用[M].北京:清华大学出版社,2004:114-125.
    [106]BIAVA M, KHIER W, VIGEVANO L. CFD prediction of air flow past a full helicopter configuration [J]. Aerosp. Sci. Technol.,2012,19(1):3-18.
    [107]朱子川,孙婧元,黄正梁,等.外加电场下气固流化床的数值模拟[J].化工学报,2013,64(2):490-497.
    [108]王维,洪坤,鲁波娜,等.流态化模拟:基于介尺度结构的多尺度CFD[J].化工学报,2013,64(1):95-106.
    [109]GIMBUN J, RIELLY C D, NAGY Z K, et al. Detached eddy simulation on the turbulent flow in a stirred tank [J]. Aiche J.,2012,58(10):3224-3241.
    [110]谭蔚,刘潇,刘玉金.危险液化气体瞬时泄漏扩散数值模拟研究进展[J].化学工程,2012,40(5):46-49.
    [111]郭雪岩,晁东海,柴辉生,等.小直径比固定床壁效应的CFD分析[J].化工学报,2012,63(1):103-108.
    [112]李永乐,安伟胜,蔡宪棠,等.倒梯形板桁主梁CFD简化模型及气动特性研究[J].工程力学,2011,28(S1):103-109.
    [113]REHMAN H, CHUNG H, JOUNG T, et al. CFD analysis of sound pressure in tank gun muzzle silencer [J]. J. Cent. South Univ. Technol.,2011,18(6):2015-2020.
    [114]QIUHONG S, XIN T, YAMEI L, et al. Design of Ocean Data Buoys Based on CFD [J]. Adv. Mater. Res.,2011,163-167:2441-2444.
    [115]KANEKO A, KATSUTA M, MESAKI Y, et al. Air-side Heat Transfer Characteristic Evaluation of Automobile Heat Exchanger-1st Report:Parameter Study based on CFD and Experimental Design Method [J]. Trans. Jpn. Soc. Refrig. Air Cond. Eng.,2012,29(2):255-262.
    [116]郑拯宇,李人宪.汽车气动噪声外辐射声场的数值仿真[J].汽车工程,2013,35(1):88-92.
    [117]高勇,加万里,甄彩虹,等.基于CFD的轴流血泵内部流场的数值分析[J].科学技术与工程,2012,12(11):2598-2601.
    [118]戴建华,丁光宏,龚剑秋,等.颅内动脉瘤的血液动力学二维数值模拟[J].复旦学报(自然科学版),2004,43(3):392-396.
    [119]AHMED S, SERAJI M T, JAHEDI J, et al. Application of CFD for simulation of a baffled tubular membrane [J]. Chem. Eng. Res. Des.,2012,90(5):600-608.
    [120]SARKAR D, SARKAR A, ROY A, et al. Performance characterization and design evaluation of spinning basket membrane (SBM) module using computational fluid dynamics (CFD) [J]. Sep. Purif. Technol.,2012,94:23-33.
    [121]YANG X, YU H, WANG R, et al. Optimization of microstructured hollow fiber design for membrane distillation applications using CFD modeling [J]. J. Membr. Sci.,2012,421:258-270.
    [122]RAHIMI M, MADAENI S S, ABBASI K. CFD modeling of permeate flux in cross-flow microfiltration membrane [J]. J. Membr. Sci.,2005,255(1-2):23-31.
    [123]DOLECEK P, CAKL J. Permeate flow in hexagonal 19-channel inorganic membrane under filtration and backflush operating modes [J]. J. Membr. Sci.,1998,149(2):171-179.
    [124]杨德武,赵国平,王艳红,等.陶瓷膜渗流数值模拟[J].过滤与分离,2005,15(4):24-27.
    [125]彭文博,漆虹,陈纲领,等.19通道多孔陶瓷膜渗透过程的CFD模拟[J].化工学报,2007,58(8):2021-2026.
    [126]AHMAD A L, LAU K K, ABU BAKAR M Z, et al. Integrated CFD simulation of concentration polarization in narrow membrane channel [J]. Comput. Chem. Eng.,2005,29(10):2087-2095.
    [127]PAK A, MOHAMMADI T, HOSSEINALIPOUR S M, et al. CFD modeling of porous membranes [J]. Desalination,2008,222(1-3):482-488.
    [128]CAO Z, WILEY D E, FANE A G. CFD simulations of net-type turbulence promoters in a narrow channel [J]. J. Membr. Sci.,2001,185(2):157-176.
    [129]LI F, MEINDERSMA W, DE HAAN A B, et al. Optimization of commercial net spacers in spiral wound membrane modules [J]. J. Membr. Sci.,2002,208(1-2):289-302.
    [130]SCHWINGE J, WILEY D E, FLETCHER D F. A CFD study of unsteady flow in narrow spacer-filled channels for spiral-wound membrane modules [J]. Desalination,2002,146(1-3): 195-201.
    [131]胡伍生.神经网络理论及其工程应用[M].北京:测绘出版社,2006:15-16.
    [132]韩力群.人工神经网络教程[M].北京:北京邮电大学出版社,2006:134-138.
    [133]王湛,席雪洁,姚金苗.死端微滤牛血清白蛋白溶液膜通量的预测[J].北京工业大学学报,2010,36(2):235-239.
    [134]SARKAR B, SENGUPTA A, DE S, et al. Prediction of permeate flux during electric field enhanced cross-flow ultrafiltration-A neural network, approach [J]. Sep. Purif. Technol.,2009, 65(3):260-268.
    [135]孙光民,张灿辉,王湛,等.基于遗传神经网络的微滤膜通量的预测[J].化工学报,2009,60(9):2237-2242.
    [136]HILAL N, OGUNBIYI O O, AL-ABRI M. Neural network modeling for separation of bentonite in tubular ceramic membranes [J]. Desalination,2008,228(1-3):175-182.
    [137]冯晓,任南琪,陈兆波.超滤膜分离工艺处理大豆乳清蛋白废水的效能[J].化工学报,2009,60(6):1477-1486.
    [138]CHENG L H, CHENG Y F, CHEN J H. Predicting effect of interparticle interactions on permeate flux decline in CMF of colloidal suspensions:An overlapped type of local neural network [J]. J. Membr. Sci.,2008,308(1-2):54-65.
    [139]NI MHURCHU J, FOLEY G. Dead-end filtration of yeast suspensions:Correlating specific resistance and flux data using artificial neural networks [J]. J. Membr. Sci.,2006,281(1-2): 325-333.
    [140]LIU Q F, KIM S H, LEE S. Prediction of microfiltration membrane fouling using artificial neural network models [J]. Sep. Purif. Technol.,2009,70(1):96-102.
    [141]LIU Q F, KIM S H. Evaluation of membrane fouling models based on bench-scale experiments: A comparison between constant flowrate blocking laws and artificial neural network (ANNs) model [J]. J. Membr. Sci.,2008,310(1-2):393-401.
    [142]FU R Q, XU T W, PAN Z X. Modelling of the adsorption of bovine serum albumin on porous polyethylene membrane by back-propagation artificial [J]. J. Membr. Sci.,2005,251(1-2): 137-144.
    [143]刘志峰,潘丹,王建华,等.PSO-BP神经网络在MBR工艺中的膜污染预测[J].北京工业大学学报,2012,38(1):126-131.
    [144]SHETTY G R, CHELLAM S. Predicting membrane fouling during municipal drinking water nanofiltration using artificial neural networks [J]. J. Membr. Sci.,2003,217(1-2):69-86.
    [145]SHETTY G R, MALKI H, CHELLAM S. Predicting contaminant removal during municipal drinking water nanofiltration using artificial neural networks [J]. J. Membr. Sci.,2003,212(1-2): 99-112.
    [146]KHAYET M, COJOCARU C, ESSALHI M. Artificial neural network modeling and response surface methodology of desalination by reverse osmosis [J]. J. Membr. Sci.,2011,368(1-2): 202-214.
    [147]LEE Y G, LEE Y S, JEON J J, et al. Artificial neural network model for optimizing operation of a seawater reverse osmosis desalination plant [J]. Desalination,2009,247(1-3):180-189.
    [148]LIBOTEAN D, GIRALT J, GIRALT F, et al. Neural network approach for modeling the performance of reverse osmosis membrane desalting [J]. J. Membr. Sci.,2009,326(2):408-419.
    [149]ZHAO Y, TAYLOR J S, CHELLAM S. Predicting RO/NF water quality by modified solution diffusion model and artificial neural networks [J]. J. Membr. Sci.,2005,263(1-2):38-46.
    [150]BOWEN W R, JONES M G, WELFOOT J S, et al. Predicting salt rejections at nanofiltration membranes using artificial neural networks [J]. Desalination,2000,129(2):147-162.
    [151]TAN M, HE G H, LI X C, et al. Prediction of the effects of preparation conditions on pervaporation performances of polydimethylsiloxane(PDMS)/ceramic composite membranes by backpropagation neural network and genetic algorithm [J]. Sep. Purif. Technol.,2012,89: 142-146.
    [152]BAROUT1AN S, AROUA M K, RAMAN A A A, et al. Methanol recovery during transesterification of palm oil in a TiO2/A12O3 membrane reactor:Experimental study and neural network modeling [J]. Sep. Purif. Technol.,2010,76(1):58-63.
    [153]SHOKRIAN M, SADRZADEH M, MOHAMMADI T. C3H8 separation from CH4 and H-2 using a synthesized PDMS membrane:Experimental and neural network modeling [J]. J. Membr. Sci.,2010,346(1):59-70.
    [154]MADAENI S S, HASANKIADEH N T, KURDIAN A R, et al. Modeling and optimization of membrane fabrication using artificial neural network and genetic algorithm [J]. Sep. Purif. Technol.,2010,76(1):33-43.
    [155]WANG L, SHAO C, WANG H, et al. Radial Basis Function Neural Networks-Based Modeling of the Membrane Separation Process:Hydrogen Recovery from Refinery Gases [J]. J. Nat. Gas Chem.,2006,15(3):230-234.
    [156]FLUENT6.2 User's Guide [M]. Canonsburg:Fluent Inc.,2005:2417-2422.
    [157]BLAKE N J, CUMMING I W, STREAT M. PREDICTION OF STEADY-STATE CROSS-FLOW FILTRATION USING A FORCE BALANCE MODEL [J]. J. Membr. Sci.,1992, 68(3):205-216.
    [158]POSPISIL P, WAKEMAN R J, HODGSON I O A, et al. Shear stress-based modelling of steady state permeate flux in microfiltration enhanced by two-phase flows [J]. Chem. Eng. J.,2004, 97(2-3):257-263.
    [159]LEBERRE O, DAUFIN G. Skimmilk crossflow microfiltration performance versus permeation flux to wall shear stress ratio [J]. J. Membr. Sci.,1996,117(1-2):261-270.
    [160]DUCOM G, PUECH F P, CABASSUD C. Air sparging with flat sheet nanofiltration:a link between wall shear stresses and flux enhancement [J]. Desalination,2002,145(1-3):97-102.
    [161]CABASSUD C, LABORIE S, DURAND-BOURLIER L, et al. Air sparging in ultrafiltration hollow fibers:relationship between flux enhancement, cake characteristics and hydrodynamic parameters [J]. J. Membr. Sci.,2001,181(1):57-69.
    [162]GHIA K N, GHIA U, SHIN C T. Study of fully developed incompressible flow in curved ducts, using a multi-grid technique [J]. Trans. ASME, J. Fluids Eng.,1987,109(3):226-235.
    [163]UJHIDY A, NEMETH J, SZEPVOLGYI J. Fluid flow in tubes with helical elements [J]. Chem. Eng. Process.,2003,42(1):1-7.
    [164]CHANDLER M, ZYDNEY A. Effects of membrane pore geometry on fouling behavior during yeast cell microfiltration [J]. J. Membr. Sci.,2006,285(1-2):334-342.
    [165]YAO M, ZHANG K S, CUI L. Characterization of protein-polysaccharide ratios on membrane fouling [J]. Desalination,2010,259(1-3):11-16.
    [166]JUANG R S, CHEN H L, CHEN Y S. Membrane fouling and resistance analysis in dead-end ultrafiltration of Bacillus subtilis fermentation broths [J]. Sep. Purif. Technol.,2008,63(3): 531-538.
    [167]HWANG K J, CHOU F Y, TUNG K L. Effects of operating conditions on the performance of cross-flow microfiltration of fine particle/protein binary suspension [J]. J. Membr. Sci.,2006, 274(1-2):183-191.
    [168]M1KULASEK P, DOLECEK P, SMIDOVA D, et al. Crossflow microfiltration of mineral dispersions using ceramic membranes [J]. Desalination,2004,163(1-3):333-343.
    [169]BACCHIN P, AIMAR P, SANCHEZ V. Influence of surface interaction on transfer during colloid ultrafiltration [J]. J. Membr. Sci.,1996,115(1):49-63.
    [170]WAKEMAN R J. Visualization of cake formation in cross-flow microfiltration [J]. Chem. Eng. Res. Des.,1994,72(A4):530-540.
    [171]BENKAHLA Y K, OULDDRIS A, JAFFRIN M Y, et al. Cake growth-mechanism in cross-flow microfiltration of mineral suspensions [J]. J. Membr. Sci.,1995,98(1-2):107-117.
    [172]BACCHIN P, SI-HASSEN D, STAROV V, et al. A unifying model for concentration polarization, gel-layer formation and particle deposition in cross-flow membrane filtration of colloidal suspensions [J]. Chem. Eng. Sci.,2002,57(1):77-91.
    [173]BACCHIN P. A possible link between critical and limiting flux for colloidal systems: consideration of critical deposit formation along a membrane [J]. J. Membr. Sci.,2004,228(2): 237-241.
    [174]HARDALAC F, GULER G. Examination of static and 50 Hz electric field effects on tissues by using a hybrid genetic algorithm and neural network [J]. Expert Syst.,2008,25(4):349-366.
    [175]周杰,卢先正,舒锐志,等.BP神经网络和遗传算法用于曲轴填充性能的优化设计[J].重庆大学学报,2012,35(5):52-56.
    [176]PIRES J C M, GONCALVES B, AZEVEDO F G, et al. Optimization of artificial neural network models through genetic algorithms for surface ozone concentration forecasting [J]. Environmental science and pollution research international,2012,19(8):3228-3234.
    [177]王德明,王莉,张广明.基于遗传BP神经网络的短期风速预测模型[J].浙江大学学报(工学版),2012,46(5):837-841.
    [178]MOGHIMI S, TALEBI M, PARISAY I. Design and implementation of a hybrid genetic algorithm and artificial neural network system for predicting the sizes of unerupted canines and premolars [J]. European journal of orthodontics,2012,34(4):480-486.
    [179]童水光,王相兵,钟崴,等.基于BP-HGA的起重机刚性支腿动态优化设计[J].浙江大学学报(工学版),2013,47(1):122-130.
    [180]刘朝华,王慧娟,吴春笃,等.基于BP神经网络的脉冲放电等离子体氧化酸性橙II影响因素分析[J].化工学报,2012,63(10):3190-3195.
    [181]SATHIYA P, PANNEERSELVAM K, SOUNDARARAJAN R. Optimal design for laser beam butt welding process parameter using artificial neural networks and genetic algorithm for super austenitic stainless steel [J]. Opt. Laser Technol.,2012,44(6):1905-1914.
    [182]朱兆彤,邹哲光,许肖梅,等.基于BP神经网络的海洋声学仪器信号识别方法[J].厦门大学学报(自然科学版),2012,51(4):709-713.
    [183]CHELLAM S. Artificial neural network model for transient crossflow microfiltration of polydispersed suspensions [J]. J. Membr. Sci.,2005,258(1-2):35-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700