用户名: 密码: 验证码:
钛表面微弧氧化层的制备及评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛因具有优良的生物相容性、耐蚀性以及机械加工等综合性能在临床上被广泛用作种植体的基体材料。然而钛属于生物惰性材料,植入到生物体后与骨组织之间不能形成骨性结合。为赋予钛种植体良好的生物活性以及其它综合性能,利用微弧氧化技术对钛进行表面改性处理是一种十分有效的方法。
     本文利用微弧氧化技术在钛表面制备了多孔二氧化钛陶瓷层以及磷灰石(apatite)/二氧化钛(TiO_2)复合涂层。运用SEM、XRD、XPS及FTIR多种检测方法对膜层的形貌和相成分进行了分析;探讨了微弧氧化对陶瓷层硬度、粗糙度、耐蚀性以及膜层与基体之间结合力的影响;通过模拟体液浸泡实验研究了微弧氧化层对类骨磷灰石的诱导能力及诱导机理;最后通过体外细胞培养实验对微弧氧化层的生物学性能进行了评价。研究结果如下:
     电解液组分不同,微弧氧化后陶瓷层的表面形貌、元素组成也不同。在由醋酸钙和磷酸二氢钠配制的电解液中进行微弧氧化,当电压低于330 V时,生成的陶瓷层表面是多孔结构。随着施加电压的升高以及处理时间的延长,多孔陶瓷层的厚度、平均孔径逐渐增大,膜层的相成分由锐钛矿逐渐向金红石转变。当电压为330V时,试样表面有磷灰石出现,电压升高至390V时,得到花瓣状的apatite/TiO_2复合层。
     微弧氧化后试样的表面硬度、粗糙度及耐蚀性明显增加。在实验参数范围内,随着电压的升高,试样表面硬度及粗糙度逐渐升高。微弧氧化膜层与基体之间有着较高的结合力,随着电压的升高,结合力呈现先升高然后下降的趋势。
     复合中层的apatite以及多孔层中的锐钛矿在模拟体液中对磷灰石的生长有很好的诱导作用。在模拟体液中,复合层中的apatite层首先发生溶解,使溶液中钙、磷离子浓度增加,然后因新的钙磷层的生成而不断消耗溶液中的离子,溶液中钙、磷离子浓度逐渐降低。这一过程可由溶解-沉淀机制来解释。在磷灰石的形核与生长过程中,电荷之间的吸引力起着主要作用。微弧氧化后试样的毒性等级均为0级。小鼠成骨细胞在两种微弧氧化层表面的早期黏附性均得到提高。在种植的第7天观察细胞形态,细胞在多孔TiO_2层上大量增殖形成细胞层。复合层表面也有大量细胞附着,细胞伸出的伪足之间相连形成网状结构。而纯钛表面细胞的数量少,体积也较小。MTT测试进一步证实多孔的TiO_2层以及apatite/TiO_2复合层有利于细胞的增殖与分化,而复合层的功能尤其突出,这说明材料表面的结构及化学成分对细胞的生长有很重要的影响。
Titanium has been widely used to manufacture clinical implants owing to its good biocompatibility, corrosion resistance, and mechanical processing performance. However, the interface integration between the implant and the bone is relatively weak due to the inertia of titanium. To endow the titanium implant with good bioactivity and other comprehensive performance, micro-arc oxidation (MAO) is usually adopted to modify the surface of titanium.
     Porous TiO_2 and apatite/TiO_2 composite coatings were prepared on the titanium surface by MAO, as discussed in this thesis. Scanning electron microscope (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transformation infrared spectroscopy (FT-IR) were employed to investigate the surface morphology and phase composition of the coatings. The hardness, roughness, and corrosion resistance of the coatings as well as the bonding force between the substrate and coating were also studied. The growing mechanism of the apatite layer on different MAO coatings was studied by immersion the MAO samples in a simulated body fluid (SBF) for the biomimetic deposition. The biocompatibility and bioactivity of the MAO coatings were also investigated by in vitro cell culture. The results are listed as follows:
     The surface morphology and phase composition of the MAO coating were affected by the composition of the electrolyte during MAO process. When the MAO was conducted in an electrolyte containing calcium acetate monohydrate and sodium phosphate monobasic dehydrates, the coating was porous below the voltage of 330 V. The average pore diameter and coating thickness increased with the applied voltage and oxidation time. With the increase of applied voltage, some anatase TiO_2 transformed to rutile TiO_2. Some apatite appeared on the MAO coating at 330 V. When the voltage was increased to 390V, petal-like apatite/TiO_2 composite coating formed on the pure titanium.
     The hardness, roughness and corrosion resistance of the coatings significantly increased after the MAO treatment. The hardness and roughness of the MAO coatings increased also with the applied voltage within current experimental scale. The bonding force between the substrate and coating was high. The bonding force increased firstly and then decreased with the applied voltage.
     The apatite of the composite coating as well as the anatase TiO_2 in the porous layer exhibited good apatite-inducing ability in SBF. The apatite coating was firstly dissolved into the SBF, resulting in the increase of Ca and P concentrations in the SBF. Then the Ca and P concentrations in the SBF decreased continuously due to the formation of a new apatite layer on the MAO coating. The formation of the apatite layer in SBF was suggested to a dissolution-precipitation mechanism. The electrostatic interaction was the most important factor in inducing apatite nucleation. The level of cytotoxicity was grade 0 for all the MAO samples. At earlier stage, the number of the MC3T3-E1 cells attached on MAO coatings significantly increased. After culturing for 7days, a cell layer formed on the porous TiO_2 coating because of cell proliferation. Large amount of cells were attached on the apatite/TiO_2 composite coating. Cell pseudopods exhibited a network structure. Whereas the number and dimension of the cells attached on the titanium were small. MTT tests further showed that porous TiO_2 and apatite/TiO_2 coating were beneficial to the cell multiplication and differentiation. Additionally, the apatite/TiO_2 composite coating was more obvious than the porous TiO_2 in this aspect. This indicated that the surface structure and chemical constituents had a very important influence on cell growth.
引文
[1]余耀庭,张兴栋,生物医用材料,天津:天津大学出版社,2000. 1~12
    [2] Y.W. Gu, B.Y. Tay, C.S. Lim, et al, Biomimetic deposition of apatite coating on surface-modified NiTi alloy, Biomaterials, 2005, 26: 6916~6923
    [3]张鹏,苏佳灿,许硕贵,镍钛形状记忆合金的表面改性对其生物相容性的影响,国际生物医学工程杂志,2006,29(1): 39~41
    [4] Y.M. Zhang, Y.M. Zhao. Surface energy analysis of treated titanium and effects on cell adhesion, Rare. Metal. Mat. Eng. 2004, 33: 518~521
    [5] B. Coluzzi, A. Biscarini, R. Campanella, et al, Effect of thermal cycling through the martensitic transition on the internal friction and Toung’s modulus of a Ni50.8Ti49.2 alloy, J. Alloys. Comp. 2000, 310: 300~305
    [6] M. Long, H.J. Rack, Titanium alloys in total joint replacement-materials science perspective, Biomaterials, 1998, 19: 1621~1639
    [7] G. Rondelli, B. Vincentini, Localized corrosion behavior in simulated human body fluids of commercial NiTi orthodontic wires, Biomaterials, 1999, 20: 785~792
    [8]张玉梅,郭天文,李佐臣,钛及钛合金在口腔科应用的研究方向,生物医学工程学杂志,2000, 17(2): 206~208
    [9]郭泽鸿,周磊,钛种植体表面微弧氧化膜的生物改性研究进展,口腔颌面外科杂志,2007, 17(4): 362~365
    [10] L. Savarino, D. Granchi, G. Cia petti, et al, Ion release in patients with metal-on-metal hip bearings in total joint replacement: a comparision with metal-on-polyethylene bearings, J. Biomed. Mater. Res. 2002, 63: 467~474
    [11] Y. Okazaki, E. Nishimura, Effect of metal released from Ti alloy wear powder on cell viability. Mater. Trans. 2000, 41: 1247~1255
    [12] B. Finet, G. Weber, R.Cloots, Titanium release from dental implants: an in vivo study on sheep, Mater. Lett. 2000, 43: 159~165
    [13] B.G. Keselowsky, D.M. Collard, A.J. Garcia, Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion, J. Biomed. Mater. Res. 2003, 66A: 247~259
    [14] I.K. Oh, N. Nomura, N. Masahashi, et al, Mechanical properties of porous titanium compacts prepared by powder sintering, Scripta. Mater. 2003, 49: 1197~1202
    [15] H. Weinans, D.R. Sumner, R. lgloria, et al, Sensitivity of periprosthetic stress-shielding to load and the bone density–modulus relationship in subject-specific finite element models. J. Biomech. 2000, 33: 809~817
    [16] E. Eisenbarth, D. Velten, M. Muller, et al, Biocompatibility ofβ-stabilizing elements of titanium alloys, Biomaterials, 2004, 25: 5705~5713
    [17] H. Matsuno, A. Yokoyama, F. Watari, et al, Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium, Biomaterials, 2001, 22: 1253~1262
    [18] N. Moritz, M. Jokinen, T. Peltola, et al, Local induction of calcium phosphate formation on TiO_2 coatings on titanium via surface treatment with a CO_2 laser, J. Biomed. Mater. Res. 2003, 65A: 9~16
    [19]何莉萍,吴振军,陈宗璋等,纳米晶状磷酸钙盐/Al2O3-Ti生物复合材料的制备与结构表征,无机化学学报, 2004, 20: 273~277
    [20] M. Hamadouche, A. Meunier, D.C. Greenspan, et al, Long-term in vivo bioactivity and degradability of bulk sol–gel bioactive glasses, J. Biomed. Mater. Res. 2001, 54: 560~566
    [21] X. Nie, E.I. Meletis, J.C. Jiang, et al, Abrasive wear/corrosion properties and TEM analysis of Al2O3 coatings fabricated using plasma electrolysis, Surf. Coat. Technol. 2002, 149: 245~251
    [22] M. Uchida, H.M. Kim, T. Kokubo, et al, Structural dependence of apatite formation on titania gels in a simulated body fluid, J. Biomed. Mater. Res. 2003, 64A: 164~170
    [23] C.S. Lin, M.T. Chen, J.H. Liu, Structural evolution and adhesion of titanium oxide film containing phosphorus and calcium on titanium by anodic oxidation, J. Biomed. Mater. Res. 2008, 85A: 378~387
    [24] G.M. Vidigal, L.C. Aragones, A. Campos, et al, Histomorphometric analyses of hydroxyapatite-coated and uncoated titanium dental implants in rabbit cortical bone, Implant. Dent. 1999, 8: 295~302
    [25]崔福斋,冯庆玲,生物材料学,北京:科学出版社, 1996.125~128
    [26] C.X. Wang, M. Wang, X. Zhou, Nucleation and growth of apatite on chemically treated titanium alloy: an electrochemical impedance spectroscopy study, Biomaterials, 2003, 24: 3069~3077
    [27]包崇云,张兴栋,磷酸钙生物材料固有骨诱导性的研究现状与展望,生物医学工程学杂志,2006, 23(2): 442~445
    [28] C. Lavos-Valereto, B. Konig, C. Rossajr, et al, A study of histological responses from Ti-6Al-7Nb alloy dental implants with and without plasma-sprayed hydroxyapatite coating in dogs, J. Mater. Sci. Mater. Med. 2001, 12: 273~276
    [29]朱景川,储成林,尹钟大,羟基磷灰石/钛生物功能梯度材料种植体与骨的结合强度,稀有金属材料与工程,2003, 32(6): 432~335
    [30] D.Q. Wei , Y. Zhou, D.C. Jia, et al, Chemical treatment of TiO_2-based coatings formed by plasma electrolytic oxidation in electrolyte containing nano-HA, calcium salts and phosphates for biomedical applications, Appl. Surf. Sci. 2008, 254: 1775~1782
    [31] S.H. Oh, R.R. Finones, C. Daraio, et al, Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes, Biomaterials, 2005, 26: 4938~4943
    [32] H. Zreiqat, S.M. Valenzuela, B.B. Nissan, et al, The effect of surface chemistry modification of titanium alloy on signaling pathways in human osteoblasts, Biomaterials, 2005, 26: 7579~7586
    [33]憨勇,徐可为,微弧氧化生成含钙磷氧化钛生物薄膜结构,无机材料学报,2001,16(5): 951~956
    [34] J.H. Ni, Y.L. Shi, F.Y. Yan, et al, Preparation of hydroxyapatite-containing titania coating on titanium substrate by micro-arc oxidation, Mater. Res. Bul. 2008, 43:45~53
    [35] L.S. Ozyegin, F.N. Oktar, G. Goller, et al, Plasma-aprayed bovine hydroxyapatite coatings, Mater. Lett.2004, 58(21): 2065~2609
    [36] C.K. Wang, J.H. Chern Lin, C.P. Ju, et al, Structural characterization of pulsed laser-deposited hydroxyapatite film on titanium substrate, Biomaterials, 1997, 18: 1331~1338
    [37]陈民芳, NiTi合金表面仿生生长磷灰石及其生物相容性研究: [天津大学博士学位论文],天津;天津大学,2003
    [38] A. Rakngarm, Y. Miyashita,Y. Mutoh, Formation of hydroxyapatite layer on bioactive Ti and Ti–6Al–4V by simple chemical technique, J. Mater. Sci: Mater. Med. 2008, 19: 1953~1961
    [39] A. Bigi, E. Boanini, B. Bracci, et al, Nanocrystalline hydroxyapatite coatings on titanium: a new fast biomimetic method, Biomaterials, 2005, 26: 4085~4089
    [40]施秋萍,赵玉涛,戴起勋等,磁控溅射HA(+YSZ) /Ti6Al4V复合涂层的微观形貌和生长方式,材料导报,2006, 20(5): 264~267
    [41]陈民芳,由臣,王玉红等,溅射羟基磷灰石薄膜与钛合金基体结合强度的研究,新技术新工艺,2004, (1): 35~36
    [42] W. Xu, W.Y. Hu, M.H. Li, et al, Sol-gel derived hydroxyapatite/titania biocoatings on titanium substrate, Mater. Lett. 2006, 60: 1575~1578
    [43] S. Manara, F. Paolucci, B. Palazzo, et al, Electrochemically-assisted deposition of biomimetic hydroxyapatite–collagen coatings on titanium plate, Inorg. Chim. Acta. 2008, 361: 1634~1645
    [44] J. Wang, C.P. Huang, Q.B. Wan, et al, Characterization of fluoridated hydroxyapatite/zirconia nano-composite coating deposited by a modified electrocodeposition technique, Surf. Coat. Technol. 2010, 204: 2576~2582
    [45] M.H. Prado Da Silva, J.H.C. Lima, G.A. Soares, et al, Transformation of monetite to hydroxyapatite in bioactive coatings on titanium, Surf. Coat. Technol. 2001, 137: 270~276
    [46] M.C. Kuo,S.K. Yen. The process of electrochemical deposited hydroxyapatite coatings on biomedical titanium at room temperature, Mat. Sci. Eng. 2002,20: 153~160
    [47] H.W. Kim,Y.M. Kong,C.J. Bae,et al, Sol-gel derived fluor-hydroxyapatite biocoatings on zirconia substrate, Biomaterials,2004, 25: 2919~2926
    [48] H.B. Wen,J.G.C. Wolke,J.R. Wijn,et al, Fast precipitation of calcium phosphate layers on titanium induced by simple chemical treatments, Biomatieals,1997, 18: 1471~1478
    [49]张钊,赵玉涛,林东洋等,射频磁控溅射技术制备羟基磷灰石生物涂层及其微结构,硅酸盐学报, 2004,32(7):849~850
    [50] M.F. Chen,X.J. Yang,Y. Liu, et al, Study on the formation of an apatite layer on NiTi shape memory alloy using a chemical treatment method, Surf. Coat. Technol. 2003, 173: 229~234
    [51]肖秀峰,刘榕芳,郑炀曾,水热电沉积羟基磷灰石/Ti复合涂层的研究,无机化学学报,2004, 20(11): 1289~1294
    [52]刘榕芳,肖秀峰,许道璇,复合电沉积制备了HA/Ag生物陶瓷涂层,硅酸盐学报,2003, 31(6): 615~619
    [53]褚振华,崔振铎,魏强等, Ti合金表面沉积羟基磷灰石-牛血清蛋白生物活性涂层,功能材料,2007, 38(11): 1881~1883
    [54]余晓阳,吴霞琴,张凡,电沉积PAMAM/羟基磷灰石复合涂层的研究,应用化学,2006, 23(9): 970~973
    [55] F. Chen,W.M. Lam,C.J. Lin, Biocompatibility of electrophoretical deposition of nanostructured hydroxyapatite coating on roughen titanium surface: in vitro evaluation using mesenchymal stem cells, J. Biomed. Mater. Res. 2007, 82B: 183~191
    [56] O. Albayak,O. El-Atwani,S. Altintas, Hydroxyapatite coating on titanium substrate by electrophoretic deposition method: Effects of titanium dioxide inner layer on adhesion strength and hydroxyapatite decomposition, Surf. Coat. Technol. 2008, 202: 2482~2487
    [57]王周成,唐毅,黄龙门等,钛合金表面电泳沉积法制备YSZ/HA纳米复合涂层,功能材料,2006, 37(6): 944~947
    [58]韩会娟,张帆,张亚菲等.电泳沉积羟基磷灰石/碳纳米管复合涂层,厦门大学学报,2006, 45(5): 593~595
    [59]王月勤,陶杰,何娉婷,二氧化钛纳米管上电沉积羟基磷灰石,材料科学与工程学报, 2007, 25(2): 249~252
    [60]宁成云,王迎军,赵娜如等,HA/ZrO_2功能梯度涂层中羟基磷灰石的超微结构分析,中国材料科技与设备,2007, 4(3): 61~64
    [61]全仁夫,杨迪生,苗旭东等,二氧化锆梯度复合羟基磷灰石的生物相容性研究,中国修复重建外科杂志,2006, 20(5): 569~573
    [62]蔡建平,李波,等离子喷涂羟基磷灰石涂层的结合强度,材料保护,2000,33(9): 35~37
    [63] R. Roop Kumar, M. Wang, Functionally graded bioactive coatings of hydroxyapatite/titanium oxide composite system, Mater. Lett. 2002,55: 133~137
    [64]陈晓明,焦玉恒,许传波,电泳沉积制备羟基磷灰石/生物玻璃梯度涂层的研究,材料科学与工程, 2002, 20(4): 545~548
    [65]李亚东,郭明杉,寇自农等,医用NiTi合金表面双层生物活性薄膜的制备及表征,大连轻工业学院学报, 2006, 25(3): 197~200
    [66] J. Werner, B. Linner-Krcmar,W. Friess,et al, Mechanical properties and in vitro cell compatibility of hydroxyapatite ceramics with graded pore structure, Biomaterials, 2002, 23: 4285~4294
    [67] L. Zhu,X. Ye,G.X. Tang, Corrosion test,cell behavior test,and in vivo study of gradient TiO_2 layers produced by compound electrochemical oxidation, J. Biomed. Mater. Res, 2006, 78A: 515~522
    [68] J. Maa,C. Wanga,K.W. Pengb, Electrophoretic deposition of porous hydroxyapatite scaffold, Biomaterials,2003, 24: 3505~3510
    [69]谢鑫荟,汤亭亭,曾绍先等,生物玻璃/纳米羟基磷灰石梯度涂层的制备及检测,医用生物力学,2007, 22(2): 171~176
    [70]翁海峰,陈秋龙,蔡珣等,脉冲占空比对纯铝微弧氧化膜的影响,表面技术, 2005, 34(5): 59~62
    [71] K.H. Dittrich. Structure and properties of ANOF layers, Cryst. Res. Technol. 1984, 19: 93~99
    [72] S.V. Gnedenkov, O.A. Khrisanfova, A.G. Zavidnaya, et al, Composition and adhesion of protective coatings on aluminum, Surf. Coat. Technol. 2001, 145: 146~151
    [73] S. Verdier, M. Boinet, S. Maximovitch, et al, Formation, structure and composition of anodic films on AM60 magnesium alloy obtained by DC plasma anodizing, Corros. Sci. 2005, 47: 1429~1444
    [74]王磊,陈建治,钛表面微弧氧化膜的研究进展,中国口腔种植学杂志,2006, 11(1): 48~50
    [75]薛文滨,邓志威,来永春等,LY12铝合金微弧氧化的尺寸变化规律,中国有色金属学报,1997, 7(3): 140~143
    [76] X.L. Zhu, K.H. Kim, Y. Jeong, Anodic oxide film containing Ca and P of titanium biomaterial, Biomaterials, 2001, 22: 2199~2206
    [77]陈飞,周海,夏杨建,钛合金维护氧化陶瓷层性能,稀有金属材料与工程,2008,37(1):70~73
    [78] X.Y. Liu, P.K. Chu, C.X. Ding, Surface modification of titanium, titanium alloys, and related materials for biomedical applications, Mater. Sci. Eng. 2004, 47R: 49~121
    [79] C.F. Ma,D.M. Li,B.L. Jiang,et a1, Study on surface bio-modification of titanium implant using microarc oxidation technology, J. Fourth. Mil. Med. Univ. 2004, 25: 4~7
    [80] F. Rupp,L. Scheideler, D. Rehbein,et a1, Roughness induced dynamic changes of wettability of acid etched titanium implant modifications, Biomaterials,2004, 25: 1429~1438
    [81] D.D. Deligianni,N. Katsala,S. Ladas,et a1, Effect of surface roughness of the titanium alloy Ti6A14V on human bone marrow cell response and on protein adsorption, Biomaterial,2001, 22: 1241~1251
    [82] S.J. Ferguson,N. Broggini,M. Wieland,et a1, B iomechanical evaluation of the interfacial strength of a chemically modified sandblasted and acid-etched titanium surface, J. Biomed. Mater. Res. 2006, 78A: 291~297
    [83] Y.Q. Wang, K. Wu, M.Y. Zheng, Effects of reinforcement phases in magnesium matrix composites on microarc discharge behavior and characteristics of microarc oxidation coatings, Surf. Coat. Technol. 2006, 201: 353~360
    [84] B. Eungsun, J. Yongsoo, T. Akari, et a1, Apatite-forming ability of micro-arc plasma oxidized layer of titanium in simulated body fluids, Surf. Coat. Technol. 2007, 201: 5651~5654
    [85] J.F. Sun, Y. Han, K. Cui, Microstructure and apatite-forming ability of the MAO-treated porous titanium, Surf. Coat. Technol. 2008, 202: 4248~4256
    [86]李健学,张玉梅,憨勇等,不同时间对钛表面微弧氧化处理后与瓷结合强度的影响,第四军医大学学报,2006, 27(23): 2113~2116
    [87] J.L. Xu, F. Liu, F.P. Wang, et a1, Microstructure and corrosion resistance behavior of ceramic coatings on biomedical NiTi alloy prepared by micro-arc oxidation, Appl. Surf. Sci. 2008, 254: 6642~6647
    [88] L.H. Li, Y.M. Kong, H.W. Kim, et al, Improved biological performance of Ti implants due to surface modification by micro-arc oxidation, Biomaterials. 2004, 25: 2867~2875
    [89]马楚凡,李冬梅,李贺军等,微弧氧化方法在钛表面注入钙磷离子及对成骨细胞早期附着的影响,第一军医大学学报,2005, 25(1): 62~65
    [90] Y. Han,S.H. Hong,K.W. Xu, Synthesis of nanocrystalline titania films by microarc oxidation, Mater. Lett. 2002, 56: 744~747
    [91]吴汉华,于凤荣,李俊杰等,铝合金微弧氧化陶瓷膜形成过程中的特性研究,无机材料学报,2004, 19(3): 617~622
    [92] L.R. Krishna, K.R.C. Somaraju, G. Sundararajan, The tribological performance of ultra-hard ceramic composite coatings obtained through microarc oxidation, Sur. Coat. Technol. 2003, 163-164: 484~490
    [93] H. Ishizawa, M. Ogino, Formation and characterization of anodic titanium oxide films containing Ca and P, J. Biomed. Mater. Res,1995, 29: 65~72
    [94] H.S. Ryu, W.H. Song, S.H. Hong, Biomimetic apatite induction of P-containing titania formed by micro-arc oxidation before and after hydrothermal treatment , Sur. Coat. Technol. 2008, 202: 1853~1858
    [95]刘福,宋英,王福平等, Ti基体上形成微弧氧化膜组成和结构的研究,燕山大学学报,2009, 33(1): 4~8
    [96]张菊梅,王志虎,蒋百灵,基于表面生物学改性的钛合金微弧氧化陶瓷层研究,铸造技术,2007, 28(8): 1063~1066
    [97] W.H. Song, Y.K. Jun, Y. Han, et a1, Biomimetic apatite coatings on microarc oxidized titania, Biomaterials, 2004, 25: 3341~3349
    [98] M.S. Kim, J.J. Ryu, Y.M. Sung, One-step approach for nano-crystalline hydroxyapatite coating on titanium via micro-arc oxidation, Electrochem. Commun. 2007, 9: 1886~1891
    [99] D.Q. Wei, Y. Zhou, D.C. Jia, et a1, Biomimetic apatite deposited on microarc oxidized anatase-based ceramic coating, Ceram. Int. 2008, 34: 1139~1144
    [100] X.J. Tao, S.J. Li, C.Y. Zheng, et a1, Synthesis of a porous oxide layer on a multifunctional biomedical titanium by micro-arc oxidation, Mater. Sci. Eng. 2009, 29 C: 1923~1934
    [101] R. Rodriguez, K. Kim, J.L. Ong, In vitro osteoblast response to anodized titanium and anodized titanium followed by hydrothermal treatment, J. Biomed. Mater. Res. 2003, 65 A: 352~358
    [102] S. Park, T.G. Woo, W.Y. Jeon, et a1, Surface characteristics of titanium anodized in the four different types of electrolyte, Electrochim. Acta. 2007, 53: 863~870
    [103] G.L. de Lange, K. Donath, Interface between bone tissue and implants of solid hydroxyapatite or hydroxyapatite-coated titanium implants, Biomaterials, 1989, 10: 121~125
    [104] I.S. Lee, D.H. Kim, H.E. Kim, et a1, Biological performance of calcium phosphate films formed on commercially pure Ti by electronbeam evaporation, Biomaterials, 2002, 23: 609~615
    [105] P. Huang,Y. Zhang,K. Xu,et a1, Surface modification of titanium implant by microarc oxidation and hydrothermal treatment, J. Biomed. Mater. 2004, 70B: 187~190
    [106] D.Q. Wei, Y. Zhou, D.C. Jia, et a1, Formation of CaTiO3/TiO_2 composite coating on titanium alloy for biomedical applications, J. Biomed. Mater. 2008, 84B: 444~451
    [107]马楚凡,李冬梅,李贺军等,微弧氧化和电泳沉积复合制备羟基磷灰石/ TiO_2复合涂层及其生物学特性,硅酸盐学报,2005, 33(3): 323~329
    [108] X. Nie, A. Leyland, A. Matthews, Deposition of layered bioceramic hydroxyapatite/TiO_2 coatings on titanium alloys using a hybrid technique of micro-arc oxidation and electrophoresis, Sur. Coat. Technol. 2000, 125: 407~414
    [109] D.Y. Kim, M. Kim, H.E. Kim, et al, Formation of hydroxyapatite within porous TiO_2 layer by micro-arc oxidation coupled with electrophoretic deposition, Acta. Biomater. 2009, 5: 2196~2205
    [110] Y. Li , I.S. Lee, F.Z. Cui, et al, The biocompatibility of nanostructured calcium phosphate coated on micro-arc oxidized titanium, Biomaterials, 2008, 29: 2025~2032
    [111] P. Huang, K.W. Xu, Y. Han, Formation mechanism of biomedical apatite coatings on porous titania layer, J. Mater. Sci: Mater. Med. 2007, 18: 457~463
    [112]魏大庆,周玉,王亚明等,微弧氧化钛合金表面形成含钙磷生物梯度涂层研究,稀有金属材料与工程,2008,37(增刊1):569~572
    [113] W.H. Song, Y.K. Jun, Y. Han, et al, Biomimetic apatite coatings on micro-arc oxidized titania, Biomaterials, 2004, 25: 3341~3349
    [114] K.H. Park, S.J. Heo, J.Y. Koak, et al, Osseointegration of anodized titanium implants under different current voltages: a rabbit study, J. Oral. Rehabil. 2007, 34: 517~527
    [115] F. Liu, J.L. Xu, D.Z. Yu, et al, Wear resistance of micro-arc oxidation coatings on biomedical NiTi alloy, J. Alloys. Compd. 2009, 487: 391~394
    [116]张立钊,高勃,柳正明等,钛铌锆锡合金经微弧氧化后的理化性能的研究,牙体牙髓牙周病学杂志,2008, 18(5): 277~280
    [117] L.H. Li, Y.M. Kong, H.W. Kim, Improved biological performance of Ti implants due to surface modification by micro-arc oxidation, Biomaterials, 2004, 25: 2867~2875
    [118] K. Hamada, M. Kon, T. Hanawa, et al, Hydrothermal modification of titanium surface in calcium solutions, Biomaterials, 2002, 23: 2265~2272
    [119]张昱昕,憨勇,黄平等,微弧氧化钛膜的结合强度与生物活性,硅酸盐学报, 2004, 32(2): 122~126
    [120]刘亮,郭锋,李鹏飞等,钛生物种植体表面微弧氧化膜制备的电解液研究,表面技术,2009, 38(3): 37~40
    [121] P. Kruze, W. Krysmann, J. Schreckenbach, et al, Colored ANOF layers on aluminum, Cryst. Res. Technol. 1987, 22: 53~58
    [122] X.S. Wang, X.Q. Feng, X.W. Guo, Failure behavior of anodized coating-magnesium alloy substrate structures, Key. Eng. Mater. 2004, 261-263: 363~368
    [123]杜克勤,寇瑾,严川伟,黑色微弧氧化陶瓷膜的制备及其性能研究,材料保护,2003, 36(6): 27~29
    [124] P. Huang, F. Wang, K.W. Xu, et al, Mechanical properties of titania prepared by plasma electrolytic oxidation at different voltages, Surf. Coat. Technol. 2007, 201: 5168~5171
    [125]赵淑萍,钛合金及其表面处理,哈尔滨:哈尔滨工业大学出版社,2003. 225~245
    [126] S.V. Gnedenkov, O.A. Khrisanfova, A.G. Zavidnaya, et al, Composition and adhesion of protective coatings on aluminum, Surf. Coat. Technol. 2001, 145: 146~151
    [127] Y.L. Li, T. Ishigaki, Thermodynamic analysis of nucleation of anatase and rutile from TiO_2 Melt, Cryst. Growth. 2002 , 242: 511~516
    [128] A.L. Yerokhin, X. Nie, A. Leyland, et al, Plasma electrolysis for surface engineering, Surf. Coat. Technol, 1999, 122: 73~93
    [129]陈海涛,马跃洲,张昌青等,镁合金微弧氧化过程中局部烧蚀现象的研究,表面技术,2008, 37(1): 21~24
    [130] S. Koutsopoulos, Synthesis and characterization of hydroxyapatite crystals:a review study on the analytical methods, J. Biomed. Mater. Res. 2002, 62: 600~612
    [131] Y. Han, S.H. Hong, K.W. Xu, Structure and in vitro bioactivity of titania-based films by micro-arc oxidation, Surf. Coat. Technol. 2003, 168: 249~258
    [132] M. Lenka, A.M. Frank, Preparation of SBF with different HCO3- content and its influence on the composition of biomimetic apatites, Acta. Biomater. 2006, 2: 181~189
    [133] B.S. Ng, I. Annergren, A.M. Soutar, et al, Characterisation of a duplex TiO_2/CaP coating on Ti6Al4V for hard tissue replacement, Biomaterials, 2005, 26: 1087~1095
    [134] W. Suchanek, M. Yoshimura, Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants, J. Mater. Res. 1998, 13(1): 94~117
    [135] A.A. Volinsky , N.R. Moody, W.W. Gerberich, Interfacial toughness measurements for thin films on substrates. Acta. Materialia. 2002, 50: 441~466
    [136]谢中维,朱静,薄膜结合强度的刮剥式测量方法,材料科学与工程, 1998, 16(1): 53~56
    [137] M. Tomellini, On the work of adhesion of film-substrate solid junctions, Thin. Solid. Films. 1991, 202: 227~234
    [138] M. Wittling, A. Bendavid, P.J. Martin, et al, Influence of thickness and substrate on the hardness and deformation of TiN films,Thin. Solid. Films 1995, 270: 283~288
    [139]韦晨, Sn-Ag-Zn系无铅焊料及其连接界面组织形成与演化规律:[博士学位论文],天津;天津大学,2009
    [140]吕维玲,马颖,陈体军等,氧化时间对AZ91D镁合金微弧氧化膜微观组织和性能的影响,中国有色金属学报,2009, 19(8): 1385~1391
    [141]梁芳慧,王克光,周廉,仿生磷灰石涂层与钛基体结合强度的划痕法实验,材料科学与工程学报,2004, 22(1): 38~40
    [142] H.T. Tsou, W. Kowbel, A hybrid PACVD B4C/ CVD Si3N4 coating for oxidation protection of composites, Carbon ,1995, 33: 1289~1292
    [143] Y. Han,K. Xu, Photo excited formation of bone apatite-like coatings on microarc oxidized titanium, J. Biomed. Mater. Res. 2004, 71A: 608~614
    [144] F. Attar, T. Johannesson, Adhesion evaluation of thin ceramic coatings on tool steel using the Scratch testing technique, Surf. Coat. Technol. 1996, 78: 87~102
    [145]华敏奇,袁振海,划痕试验法对特殊薄膜系结合力的检测与评价,分析测试技术与仪器,2002, 8(4): 218~225
    [146]杨班权,陈光南,张坤等,涂层/基体材料界面结合强度测量方法的现状与展望,力学进展,2007, 37(1): 67~79
    [147]孙桂兰,王磊,纯钛表面微弧氧化膜在模拟体液中的腐蚀行为,上海口腔医学,2007, 16(3): 295~298
    [148] H. Ishizawa, M. Fujino, M. Ogino, Mechanical and histological Investigation of hydrothermally treated and untreated anodic titanium oxide films containing Ca and P, J. Biomed. Mater. Res. 1995, 29: 1459~1468
    [149] X.Y. Liu, X.B. Zhao, R.K.Y. Fu, et al, Plasma treated nanostructured TiO_2 surface supporting biomimetic growth of apatite, Biomaterials, 2005, 26: 6143~6150
    [150] Y.W. Gu, B.Y. Tay, C.S. Lim, et al, Biomimetic deposition of apatite coating on surface-modified NiTi alloy, Biomaterials, 2005, 26: 6916~6923
    [151] X.X. Wang, W. Yan, S. Hayakawa, et al, Apatite deposition on thermally and anodically oxidized titanium surfaces in a simulated body fluid, Biomaterials, 2003, 24: 4631~4637
    [152] M. Keshmiri, T. Troczynski, Apatite formation on TiO_2 anatase microspheres, J. Non-Cryst. Solids. 2003, 324: 289~294
    [153] C.X. Cui, H. Liu, Y.C. Li, et al, Fabrication and biocompatibility of nano-TiO_2/titanium alloys biomaterials, Mater. Lett. 2005, 59: 3144~3148
    [154]马臣,王颖慧,曲立杰等,电参数对钛合金微弧氧化法制备TiO_2生物陶瓷涂层的影响,佳木斯大学学报(自然科学版),2007, 25(1): 52~55
    [155]董利民,王晨,田杰谟等,类骨磷灰石的结构分析与形成机制研究,功能材料,2004, 35(增刊): 2397~2400
    [156] A.E. Porter, P. Taaka, L.W. Hobbs, et al, Bone bonding to hydroxyapatite and titanium surfaces on femoral stems retrieved from human subjects at autopsy, Biomaterials, 2004, 25: 5199~5208
    [157] P. Marques, A.P. Serro, B.J. Saramago, et al, Mineralisation of two calcium phosphate ceramics in biological model fluids, J. Mater. Chem. 2003, 13: 1484~1490
    [158] A.R. Boyd, B.J. Meenan, N.S. Leyland, et al, Surface characterisation of the evolving nature of radio frequency (RF) magnetron sputter deposited calcium phosphate thin films after exposure to physiological solution. Surf. Coat. Tech. 2006, 200: 6002~6013
    [159] R.B. Heimann, O. Grassmann, H.P. Jennissen, et al, Biomimetic processes during in vitro leaching of plasma-sprayed hydroxyapatite coatings for endoprosthetic applications. Materialwiss Werkstofftechnik, 2001, 32: 913~921
    [160] T. Kokubo, S. Ito, Z.T. Huang, et al, Ca,P-rich layer formed on high-strength bioactive glass-ceramic A-W. J. Biomed. Mater. Res. 1990, 24: 331~343
    [161] T. Kokubo, H. Kushitani, S. Kitsugi, et al, Solutions able to reproduce in vivo surface structure changes in bioactive glassceramic A-W, J. Biomed. Mater. Res. 1990, 24: 721~734
    [162] J. Fernandez, M. Gaona, J.M. Guilemany, Effect of heat treatments on HVOF hydroxyapatite coatings, J. Therm. Spray. Technol. 2007, 16: 220~228
    [163] M.T. Pham, W. Mata, H. Reuther, Ion beam sensitizing of titanium surfaces to hydroxyapatite formation, Surf. Coat. Technol. 2000, 128–129: 313~319
    [164] H.M. Kim, H. Takadama, T. Kokubo, et al, Formation of a bioactive graded surface structure on Ti–15Mo–5Zr–3Al alloy by chemical treatment, Biomaterials, 2000, 21: 353~358
    [165] S. Shinzato, T. Nakamura, T. Kokubo, et al, Bioactive bone cement: effect of fller size on mechanical properties and osteoconductivity, J. Biomed. Mater. Res. 2001, 56: 452~458
    [166] F. Liu, F.P. Wang, T. Shimizu, et al, Hydroxyapatite formation on oxide films containing Ca and P by hydrothermal treatment, Ceram. Int. 2006, 32: 527~531
    [167] B.C. Yang, M. Uchida, H.M. Kim, et al, Preparation of bioactive titanium metal via anodic oxidation treatment, Biomaterials, 2004, 25: 1003~1010
    [168] H.J. Songa, S.H. Parka, S.H. Jeongb, et al, Surface characteristics and bioactivity of oxide films formed by anodic spark oxidation on titanium in different electrolytes, J. Mater. Process. Tech. 2 0 0 9, 2 0 9: 864~870
    [169] Z.P. Yang, S.H. Si, Y.S. Fung, Bilirubin adsorption on nanocrystalline titania films, Thin. Solid. Films. 2007, 515: 3344~3351
    [170] X.Y. Liu, C.X. Ding, P.K. Chu, Mechanism of apatite formation on wollastonite coatings in simulated body fluids, Biomaterials, 2004, 25: 1755~1761.
    [171] Z.P. Yang, S.H. Si, X.M. Zeng, et al, Mechanism and kinetics of apatite formation on nanocrystalline TiO_2 coatings: A quartz crystal microbalance study, Acta. Biomaterialia, 2008, 4: 560~568
    [172] Y.T. Xie, X.Y. Liu, P.K. Chu, et al, Nucleation and growth of calcium-phosphate on Ca-implanted titanium surface, Surf. Sci. 2006, 600: 651~656
    [173] Q.Y. Zhang, J.Y. Chen, J.M. Feng, et al, Dissolution and mineralization behaviors of HA coatings, Biomaterials, 2003, 24: 4741~4748
    [174] L. Chou, B. Marek, W.R. Wagner. Effects of hydroxylapatite coating crystallinity on biosolubility, cell attachment efficiency and proliferation in vitro, Biomaterials,1999, 20: 977~985
    [175] T. Kokubo, H. Kim, M. Kawashita, Novel bioactive materials with different mechanical properties, Biomaterials, 2003, 24: 2161~2175
    [176] C.X. Resende, J. Dille, G.M. Platt, et al, Characterization of coating produced on titanium surface by a designed solution containing calcium and phosphate ions, Mater. Chem. Phys. 2008, 109: 429~435
    [177] H. Takadama, H.M. Kim. T. Kokubo, et al, XPS syudy of the process of apatite formation on bioactive Ti-6Al 4V alloy in simulated body fluid, Sci. Technol. Adv. Mat. 2001, 2: 389~396
    [178] P.A. Ramires, A. Ciuffrida, E. Milella, et al, Three-dimensional reconstruction of confocal laser microscopy images to study the behavior of osteoblastic cells grown on biomaterials, Biomaterials, 2002 , 23: 397~406
    [179] L. Montanaro, C.R. Arciola, D. Campoccia, et al, In vitro effects on MG63 osteoblast-like cells following contact with two roughness differing fluorohydroxyapatite-coated titanium alloys, Biomaterials, 2002, 23: 3651~3659
    [180]李凯,周伟群,李军等,牙科用Ti-6Al-7Nb合金的体外细胞毒性研究,第四军医大学学报,2007, 28(10): 913~915
    [181]张丹,张扬,卢利等,新型抗菌不锈钢微螺钉种植体的细胞毒性分析,中国组织工程研究与临床康复, 2010, 14(16): 2916~2920
    [182] F.G. Giancotti,E. Ruoslahti, Integrin signaling, Science,1999, 285: 1028~1032
    [183] S.D. Redick, D.L. Settles, G. Briscoe, et al, Defining fibronectin's cell adhesion synergy site by site-directed mutagenesis, J. Cell. Biol. 2000, 149: 521~527
    [184] M.E. Hasenbein, T.T. Andersen, R. Bizios, Micropatterned surfaces modified with select peptides promote exclusive interactions with osteoblasts, Biomaterials , 2002, 23: 3937~3942
    [185] J. Takebe,S. Itoh,K. Ishibashi, Anodic oxidation and hydrothermal treatment of titanium results in a surface that causes in.creased attachment and altered cytoskeletal morphol。gy of rat bone malTow stromal cells in vitro, J. Biomed. Mater. Res. 2000, 51: 398~407
    [186] N.J. Hallab,K.J. Bundy, Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion, Tissue. Eng. 2001, 7: 55~71
    [187] S. Kato, S. Kidoaki, T. Matsuda, et al, Substrate-dependent cellular behavior of Swiss 3T3 fibroblasts and activation of Rho family during adhesion and spreading processes, J. Biomed. Mater. Res. 2004, 68A: 314~324
    [188] F.A. Akin, H. Zreiqat, S. Jordan, et al, Preparation and analysis of macroporous TiO_2 films on Ti sur faces for bone- tissue implants, J. Biomed. Mater. Res. 2001, 57: 588~596
    [189] F.L. Deng, W.Z. Zhang, P.F. Zhang , et al, Improvement in the morphology of micro-arc oxidised titanium surfaces: A new process to increase osteoblast response, Mat. Sci. Eng. 2010, 30C: 141~147
    [190] S.N. Nayab, F.H. Jones, I. Olsen. Effects of calcium ion implantation on human bone cell interaction with titanium, Biomaterials, 2005, 26: 4717~4727
    [191]包崇云,张兴栋,磷酸钙生物材料固有骨诱导性的研究现状与展望,生物医学工程学杂志,2006, 23(2): 442~445
    [192] L.E. Jones, P.A. Thrower, Influence of boron on carbon fiber microstructure, physical properties and oxidation behavior , Carbon, 1991, 29: 251~269
    [193] B.C. Ward, T.J. Webster, Increased functions of osteoblasts on nanophase metals materials, Mat. Sci. Eng. 2007, 27C: 575~578
    [194] Y. T. Sul, The significance of the surface properties of oxidized titanium to the bone response: special emphasis on potential biochemical bonding of oxidized titanium implant, Biomaterials, 2003, 24: 3893~3907
    [195] T. Hanawa,M. Kon,H. Doi,et a1, Amount of hydroxyl radical on calcium-ion-implanted titanium and point of zero change of constituent oxide of the surface-modified layer, J. Mater. Sci: Mater. Med.1998, 9: 89~92
    [196] J.D. Hood, D.A. Cheresh, Role of integrins in cell invasion and migration, Nat. Rev. Cancer.2002, 2: 91~100

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700