用户名: 密码: 验证码:
电化学超级电容器负极材料Li_4Ti_5O_(12)的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,伴随着电动汽车市场的蓬勃发展,由超级电容器作为辅助能源的二次电池以及燃料电池体系被认为是最有应用前景的一类车用储能体系。目前有许多研究工作者都致力于改善超级电容器体系的能量密度以及功率密度,并希望在降低体系成本的同时,采用一些环境友好的电极材料。不对称电化学超级电容器体系是较受关注的一种新型储能器件,该体系由活性炭电极以及电池材料电极组成,兼具一定的功率密度和能量密度。其中最有代表性的是2001年被提出的Li_4Ti_5O_(12)/活性炭不对称电容器体系,该体系由于其较高的功率密度,较高的能量密度以及出色的循环性能,受到研究者的关注。
     在该体系中,由于采用的Li_4Ti_5O_(12)材料嵌入电位较低,且容量较大,因此该不对称体系的能量密度是一般双电层电容器的数倍。但同时,该体系的功率密度也受到Li_4Ti_5O_(12)嵌入电极的制约。改善Li_4Ti_5O_(12)材料倍率特性的方法主要有如下两点:1.制备Li_4Ti_5O_(12)纳米材料,以缩短锂离子扩散的路径,从而达到提高材料倍率特性的目的;2.提高Li_4Ti_5O_(12)材料的电导率,减小电极在充放电过程中的极化。因此,本文的研究内容主要集中在改进材料的制备方法以制备纳米颗粒;通过一定的改性修饰方法提高材料的电导率;同时将此类高导电性的Li_4Ti_5O_(12)纳米材料运用到组装不对称电化学电容器中。
     1.CVD炭包覆方法提高Li_4Ti_5O_(12)材料电导率
     在这部分工作中,我们将常用的化学气相沉积技术应用于Li_4Ti_5O_(12)材料的改性。以甲苯蒸气作为炭源,N_2作为载气,在本体Li_4Ti_5O_(12)材料表面包覆一层具有一定石墨化程度的导电炭,使得整个材料颗粒表面获得电子的活性点位大大增加,从而在降低复合电极中导电炭使用量的同时,电极同样可以满足大电流条件下工作的要求。通过考测包覆温度对复合材料导电性的影响,我们发现在800℃下包覆处理2 hr得到的Li_4Ti_5O_(12)/C复合材料,其电导率可以上升至2.05 S/cm,大大优于本体材料的电导率。通过TEM表征发现,该包覆炭材料的厚度在5 nm左右,且表面有较多缺陷,并不妨碍锂离子在其间的迁移,且炭层与本体Li_4Ti_5O_(12)之间紧密结合、结构稳定,不易从本体剥离,使得该特性与材料本身的长循环寿命得以匹配。通过对材料在充放电过程中的阻抗分析可以发现,该导电炭层不但可以降低整个电极的内阻,并且降低了电极在充放电过程中的传荷阻抗。将该材料和传统Li_4Ti_5O_(12)材料分别组装不对称电容器进行的倍率测试表明,在使用同样导电剂用量(5%)的实验条件下,该材料的倍率特性更加出色,在24 C倍率下仍能保有49%的初始容量,而此时对比样仅能保有29%的初始容量。
     2.采用熔融盐方法制备Li_4Ti_5O_(12)纳米颗粒。
     本工作创新性地将熔融盐引入到合成工艺之中,借助于低温熔融的LiCl为熔盐,在反应过程中提供一个液相反应环境,使得TiO_2原料和反应锂盐得以充分接触,促进了反应的进行,缩短反应所需时间。而且在整个反应过程中LiCl熔盐为反应惰性,并不参与化学嵌锂反应,因此可以确保最终产物为化学计量比的Li_4Ti_5O_(12)。经过一系列比对实验,我们发现,随着LiCl熔盐比例(LiCl/TiO_2)的升高,最终产物的粒度随之下降,当LiCl比例为16:1时,最终产物的粒度可以控制在100 nm左右。我们在最优化合成条件(LiCl/TiO_2=16/1,煅烧温度750℃,处理时间1 hr)下得到的Li_4Ti_5O_(12)材料,其颗粒在100 nm左右,容量约为159 mAh/g。将此材料与活性炭配对组装成不对称电容器进行测试,其倍率性能远远优于应用传统方法合成的大颗粒Li_4Ti_5O_(12)所组装的电容器体系,其在130 C大电流倍率下放电,仍保有50%左右的初始容量,而此以大颗粒Li_4Ti_5O_(12)为负极的电容器,在50 C时的容量维持率已经低于50%。
     3.炭包覆纳米Li_4Ti_5O_(12)材料。
     我们率先提出此改良的固相合成方法。具体过程如下:1.通过炭包覆方法预处理TiO_2原料,使其表面均匀包覆一层导电炭;2.将该材料混合以化学计量比的锂盐,在惰性气氛下高温固相煅烧制备得到样品。该方法的优点有如下几点:1.由于炭层在惰性气氛下的稳定性,将反应原料颗粒互相隔开,避免材料由于高温处理而烧结导致颗粒增大。最终得到的产物,其粒度在几十纳米左右;2.由于炭层的高导电性,最终得到的Li_4Zi_5O_(12)材料也具备较高的电子导电性;3.由于该方法的可操作性与简便性,具备一定的量产前景。我们将该材料与传统材料分别组装实验电池,以金属锂为对电极,测试材料的大电流特性,发现该材料在25 C(3.75 A/g)放电时,其容量维持率仍可达70.6%,而此时传统的Li_4Ti_5O_(12)已经无法正常工作。该方法为我们提供了一种全新的合成制备途径,并可以延伸应用于其他一些锂离子嵌入化合物的制备合成过程之中。
     4.基于改良固相合成方法制备特殊形貌Li_4Ti_5O_(12)
     我们在此运用改良的固相合成方法,采用不同的TiO_2前驱体,制备得到了各种不同形貌的Li_4Ti_5O_(12)纳米材料,譬如,我们运用聚苯乙烯(PS)小球为模板,合成得到TiO_2空心球,并制备得到了Li_4Ti_5O_(12)纳米空心球;运用TiO_2微米球为前驱体,制备得到了Li_4Ti_5O_(12)微米球,完整的保持了前驱体的形貌特征。以Li_4Ti_5O_(12)纳米棒为例,我们运用水热合成方法制备得到TiO_2棒前驱体,通过气相包覆方法预处理,而后混合计量比的Li_2CO_3,经过800℃煅烧9 hr得到产物。最终产物半径为50-80 nm,都能基本保持前驱体的形貌,且整个材料表面均匀包覆炭层。以制备得到的Li_4Ti_5O_(12)纳米棒作为电极材料,以金属锂作为负极进行电化学倍率测试,该材料表现出优良的倍率特性,在20 C倍率下放电的容量维持率仍可达到79%。
     5.使用纳米Li_4Ti_5O_(12)为负极的不对称电化学电容器的组装与测试
     在这部分工作中,我们将自制的炭包覆纳米Li_4Ti_5O_(12)作为负极,与商用活性炭配对组装成不对称电化学电容器。我们同时使用商品Li_4Ti_5O_(12)材料与活性炭组装成电容器,作为比较。组装得到的AAA电容器体系,其能量密度可以达到6 Wh/kg,两倍于目前的活性碳/活性炭双电层电容器(EDLC)。将使用不同Li_4Ti_5O_(12)为负极的不对称电容器进行倍率测试,发现在高倍率测试条件下,采用纳米炭包覆Li_4Ti_5O_(12)的电容器,其倍率特性更为出色,在40 C时的容量维持率仍有62%,而采用商品化材料为电极的电容器,其容量维持率仅有48%。
     6.FeOOH/活性炭不对称电容器体系的研究
     在本部分工作中,我们采用铁盐水解的方法,制备了beta-FeOOH化合物,该化合物在工作区间1.5-3.3 V(vs.Li~+/Li)表现出良好的循环特性,并且其容量可以达到200 mAh/g,比较适合作为电化学不对称电容器的负极。将FeOOH和商用活性炭配对组装的不对称电容器,其工作区间在0-3 V,比容量为30 mAh/g,其实际能量密度可以达到炭/炭双电层电容器的2-3倍。对该体系进行倍率测试,发现其具有较好的倍率特性,在10 C电流下工作,仍有80%的容量维持率,经过800次循环,基本无衰减。
Supercapacitors coupled with batteries and fuel cells are considered promising mid-term and long-term solutions for low- and zero-emission transport vehicles by providing the power peaks for start-stop,acceleration and recovering the breaking energy.Nowadays,many researchers on the electrochemical capacitors aim to increase power and energy density as well as lower fabrication costs while using environmental friendly materials.The most useful approach is to develop hybrid systems that typically consist of an electrochemical double-layer capacitor(EDLC) electrode and a battery electrode.In the year 2001,an AC/Li_4Ti_5O_(12) hybrid supercapacitor was reported.In the hybrid system,both increase of the working voltage and high energy density of the negative result in a significant increase of the overall energy density of the capacitors.But the power density depends on the rate capability of the intercalated compound Li_4Ti_5O_(12).In order to obtain a high rate capability,two typical approaches have been developed to overcome this problem. One is to develop the nano-sized Li_4Ti_5O_(12),and the other way is to reduce the electrode polarization by improving its electronic conductivity.My study mainly focused on the preparation of the nano sized Li_4Ti_5O_(12) with high electronic conductivity.The electrochemical performance of the nano sized Li_4Ti_5O_(12) and the hybrid supercapacitors consisting of Li_4Ti_5O_(12) and AC were also studied in detailed.
     1.Carbon coated Li_4Ti_5O_(12) by chemical vapour decomposition(CVD) method:the graphitized-carbon was coated on the surface of Li_4Ti_5O_(12) through a CVD process. The electronic conductivity increased as coating temperature increased,but it results in poor electrochemical profile over 800℃.The optimal condition for Li_4Ti_5O_(12) coating should be performed at 800℃.The graphitized carbon layer of Li_4Ti_5O_(12)/C obtained at optimal condition is about 5 nm thickness.It shows a much higher electronic conductivity of 2.05 S/cm than the raw one's(<10~(-13) S cm~(-1)).In the rate capability test,the supercapacitor containing a carbon-coated Li_4Ti_5O_(12) negative and activated carbon positive electrode keeps 50%of initial capacity at the rate of 24C (0.6 A/g) compared with 29%of the raw one's.AC impedance tests reveal that the coated carbon layer can decrease the interracial charge-transfer resistance at some extent.The results demonstrated that the thermal vapor decomposition is a promising approach to improve the electronic conductivity of the Li_4Ti_5O_(12).
     2.Nano-sized Li_4Ti_5O_(12) prepared by molten salt method:a nano-sized lithium intercalated compound Li_4Ti_5O_(12) was prepared by using LiCl as a high temperature flux.Li_4Ti_5O_(12) powders were easily obtained with homogeneity,regular morphology, and narrow particle-size distribution using molten LiCl as a high-temperature solvent. The flux produces a liquid/solid reaction interface,thus provides a large effective reaction area,and accelerates the Li_4Ti_5O_(12) growth at a relatively short time.The particles size decreases and the distribution becomes narrow with the increasing flux content.Under the optimal synthetic condition(750℃for 1 h,N=16),the average particle size is of 100nm and the sample has a discharge capacity of 159 mAh/g.The hybrid capacitor fabricated with this nano-sized sample and activated carbon show much better rate capability,even at 100 C discharge rate,the hybrid capacitor also keeps 60%of capacity compared with 3C discharge rate.
     3.Carbon coated Li_4Ti_5O_(12) nano particles by carbon pre-coating process:In this synthesis process,the TiO_2 precursor is firstly coated with a carbon layer by a CVD method.After mixed with proper ratio of lithium salt,the carbon coated TiO_2 was then annealed at 800℃for 9 hrs.With the presence of carbon layer,the final product Li_4Ti_5O_(12) is effectively prevented from agglomerating even under a high temperature solid state reaction.The carbon coated Li_4Ti_5O_(12) nano particles has a partile size about 20-50 nm and has a capacity about 150 mAh/g at a current rate of 0.1 C(0.015 A/g).The rate performance of the carbon-coated nano-sized Li_4Ti_5O_(12) particles is outstanding than the Li_4Ti_5O_(12) samples with bigger particles.When the rate is 25C (3.75 A/g),the capacity can still retain about 110 mAh/g(70.6%).The particle-size has a direct influence on the electrochemical rate performance of the cell.Smaller particles promote shorter pathways for solid-state diffusion of Li ions and result in better rate capability.And also the carbon layer can reduce electrode polarization by improving the electronic conductivity of Li_4Ti_5O_(12).
     4.Li_4Ti_5O_(12) materials with specialized morphologies obtained by the carbon pre-coating process:The carbon-coated nanostructure Li_4Ti_5O_(12) products with various morphologies were achieved by a carbon pre-coating method from different TiO_2 precursors,for example Li_4Ti_5O_(12) nano-rod,hollow sphere,nanoparticle,and microsphere.The pre-coated carbon layer can prevent the TiO_2 precursor particles from aggregation when reacted with lithium salt to form nanostructure Li_4Ti_5O_(12),and keep the morphology of precursor.For instance,the Li_4Ti_5O_(12) nano-rod has the diameter about 50-80 nm with a carbon layer wrapped around its surface.As a result of the specialized morphology and electronic conductive caobon layer,the Li_4Ti_5O_(12) nano-rod can retain about 79%capacity even at the rate of 20 C.Moreover,the coated carbon layer can enhance the electronic conductivity of Li_4Ti_5O_(12).As a result,the nanostructure Li_4Ti_5O_(12) obtained by the technology described in the present work, shows high rate capability and high stability for lithium-ion intercalation,which is fundamental for materials of high power electrode.
     5.Assembly of Li_4Ti_5O_(12)/AC nonaqueous hybrid supercapacitors:By using the carbon coated Li_4Ti_5O_(12) nano particles prepared by a carbon pre-coating process as the negative electrode and AC as the positive material,the AAA type supercapacitor was fabricated.The Li_4Ti_5O_(12)/AC hybrid supercapacitor has an energy density about 6 Wh/kg which is about 2 times higher than that of the commercialized EDLC.And also,the relationship between Li_4Ti_5O_(12) characters and supercapacitor rate performance was investigated.A commercialized Li_4Ti_5O_(12)(200 nm) and carbon coated Li_4Ti_5O_(12) nano particles have been both used to fabricate the Li_4Ti_5O_(12)/AC hybrid supercapacitor prototype for comparison.The capacitor using carbon coated Li_4Ti_5O_(12) nano particles as negative showed much better rate performance.Even under the rate of 40 C,it can retain about 62%capacity comparing with that of commercialized material 48%.
     6.FeOOH used as negative material in hybrid supercapacitor:A nano-structural iron oxyhydroxide(FeOOH) was obtained via a hydrolyzing route under mild and facile synthesis condition.FeOOH delivered a capacity of 170 mAh/g in the voltage range from 1.6 to 3.3 V.The nanostructural FeOOH was used as a negative electrode for an asymmetric hybrid electrochemical supercapacitor combined with an activated carbon negative electrode in 1.0 M LiPF_6 ethylene carbonate/dimethyl carbonate(1:2 in volume) solution.The FeOOH/AC cell shows a capacity of 30 mAh/g base on the overall active materials,corresponding to the energy density of 67.5 Wh/kg,two time of DELC.I This system also shows a good performance of cycle life and rate test.It remains approximately 100%capacity after 1000 cycles.Even at 10C discharge rate, the capacitor also holds 80%of capacity at 1C discharge rate.
引文
[1]辛克伟,周宗祥,卢国良,国外电动汽车发展及前景预测,电力需求侧管理,2008,1,75.
    [2]周篁,马胜红,许虹华,中国光明工程项目背景与计划,中国能源,2001,7,3-9.
    [3]B.J.Andrew,Ultracapacitors:why,how,and where is the technology,J.Power Sources,2000,91(1),37.
    [4]B.E.Conway,V.Birss,J.Wojtowicz,The role and utilization of pseudocapacitance for energy storage by supercapacitors,J.Power Sources,1997,66(1-2),1.
    [5]W.G.Pell,B.E.Conway,W.A.Adams,J.Oliveira,Electrochemical efficiency in multiple discharge/recharge cycling of supercapacitors in hybrid EV applications,J.Power Sources,1999,80(1-2),134.
    [6]J.O'.M.Bockris,A.K.N.Reddy,Modern Electrochemistry.New York,Plenum Press,1970.
    [7]B.E.Conway,Electrochemical Supercapacitors.New York,Kluwer,Academic/Plenum Publishers,1999.
    [8]B.E.Conway,Transition from supercapacitor to battery behavior in electrochemical energy-storage,J.Electrochem.Soc.,1991,138(6),1539.
    [9]J.P.Zheng,T.R.Jow,A new charge storage mechanism for electrochemical capacitors,J.Electrochem.Soc.,1995,142(1),L6.
    [10]R.A.Huggins,Supercapacitors and electrochemical pulse sources,Solid State Ionics,2000,134(1-2),179.
    [11]南俊民,杨勇,林祖赓,电化学电容器及其研究进展,电源技术,1996,20(4),152.
    [12]E.Faggioli,P.Rena,V.Danel,et al.Supercapacitors for the energy management of electric vehicles,J.Power Sources,1999,84(2),261.
    [13]A.Chu,P.Braatz,Comparison of commercial supercapacitors and high-power lithium-ion batteries for power-assist applications in hybrid electric vehicles I.Initial characterization,J.Power Sources,2002,112(1),236.
    [14]A.K.Shukla,A.S.Aricr,V.Antonucci,An appraisal of electric automobile power sources,Renewable and Sustainable Energy Reviews,2001,5(2),137.
    [15]R.Kotz,M.Carlen,Principles and applications of electrochemical capacitors,Electrochim.Acta,2000,45(15-16),2483.
    [16]B.E.Conway,W.G.Pell,Power limitations of supercapacitor and capacitance distribution operation associated with resistance in porous electrode devices,J.Power Sources,2002,105(2),169.
    [17] W. G. Pell, B.E. Conway, Analysis of power limitations at porous supercapacitor electrodes under cyclic voltammetry modulation and dc charge, J.Power Sources, 2001, 96(1), 57.
    [18] C.J. Farahmandi, D. Gideon, Proceedings of the 6th International Seminar on Double-layer capacitors and Similar Energy Storage Devices. Deerfield Beach, FL, December 1996, Florida Educational Seminars Inc.
    [19] J.R. Mill, Proceedings of the 5th International Seminar on Double-layer capacitors and Similar Energy Storage Devices. Deerfield Beach, FL, December 1995, Florida Educational Seminars Inc.
    [20] L.T.Lam, R.H. Newnham, H. Ozgun, et al. Advanced design of valve-regulated lead-acid battery for hybrid electric vehicles, J. Power Sources, 2000, 88(1),92.
    [21] K. V. Schaller, C. Gruber, Fuel Cells Bulletin, 2000, 3(27), 9.
    [22] G. Gutmann, Hybrid electric vehicles and electrochemical storage systems - a technology push-pull couple, J. Power Sources, 1999, 84(2), 275.
    [23]A. Rudge, I. Raistrick, S. Gottesfeld et al, A study of the electrochemical properties of conducting polymers for application in electrochemical capacitors, Electrochim. Acta, 1994, 39(2), 273.
    [24] S. Venkat, Mathematical Modeling of Electrochemical Capacitors, J. Electrochem. Soc, 1999, 146(5), 1650.
    [25] J. Gamby, P.L. Taberna, P. Simon et al., Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors, J. Power Sources, 2001, 101(1),109.
    [26] J.P. Zheng, Hydrous ruthenium oxide as electrode material for electrochemical capacitors, J. Electrochem.Soc, 1995, 142(8), 2699.
    [27] J.P. Zheng, The Limitations of Energy Density of Battery/Double-Layer Capacitor Asymmetric Cells, J.Electrochem. Soc., 1995, 143(3), 1068.
    [28] K. Gurunathan, A. V. Murugan, R. Marimuthu , U.P. Mulik, D.P. Amalnerkar, Electrochemically synthesised conducting polymeric materials for applications towards technology in electronics, optoelectronics and energy storage devices, Materials Chemistry and Physics, 1999, 61(3),173.
    [29] C. Arbizzani, M. Mastragostino, L. Meneghello, Polymer-based redox supercapacitors: A comparative study, Electrochim. Acta, 1996,41 (1 ),21.
    
    [30] 唐致远,徐国祥,电子导电聚合物在电化学电容器中的应用,化工进展,2002,21(9),652.
    [31]C.Portet,P.L.Taberna,P.Simon et al.,Modification of Al current collector surface by sol-gel deposit for carbon-carbon supercapacitor applications,Electrochim.Acta,2004,49(6),905.
    [32]R.Saliger,C.Fischer,C.Herta et al.,High surface area carbon aerogels for supercapacitors,J.Non-Crystalline Solids,1998,225(1),81.
    [33]K.Babel,K.Jurewicz,Electrical capacitance of fibrous carbon composites in supercapacitors,Fuel Processing Technology,2002,77-78,181.
    [34]田艳红,付旭涛,吴伯荣,超级电容器用多孔碳材料的研究进展,电源技术,2002,26(6),466.
    [35]马仁志,魏秉庆,徐才录等,应用于超级电容器的碳纳米管电极的几个特点,清华大学学报(自然科学版),2000,40(8):7.
    [36]L.Zhang,H.B.Liu,M.Wang et al.,Carbon aerogels for electric double-layer capacitors,Rare Materials,2006,25,51.
    [37]C.S.Du,N.Pan,High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition,Nanotechnochnology,2006,17(21),5314.
    [38]Y.D.Zhu,H.Q.Hu,W.C.Li,X.Y.Zhang,Cresol-formaldehyde based carbon aerogel as electrode material for electrochemical capacitor,J.Power Sources,2006,162(1),738.
    [39]A.K.C.Gallegos,M.E.Rincon,Carbon nanofiber and PEDOT-PSS bilayer systems as electrodes for symmetric and asymmetric electrochemical capacitor cells,J.Power Sources,2006,162(1),743.
    [40]C.S.Du,N.Pan,Supercapacitors using carbon nanotubes films by electrophoretic deposition,J.Power Sources,2006,160(2),1487.
    [41]R.A.H.Niessen,J.de Jonge,P.Notten,The Electrochemistry of carbon nanotubes I.Aqueous electrolyte,J.Electrochem.Soc.,2006,153(8),A1484.
    [42]A.G.Pandolfo,A.F.Hollenkamp,Carbon properties and their role in supercapacitors,J.Power Sources,2006,157(1),11.
    [43]A.Celzard,F.Collas,J.F.Mareche et al.,Porous electrodes-based double-layer supercapacitors:pore structure versus series resistance,J.Power Sources,2002,108,(1-2),153.
    [44]L.Bonnefoi,P.Simon,J.F.Fauvarque et al.,Electrode compositions for carbon power supercapacitors,J.Power Sources,1999,80(1-2):149.
    [45]K.Jurewicz,K.Babel,Alkowski et al.,Ammoxidation of active carbons for
    improvement of supercapacitor characteristics, Electrochim. Acta,2003 48(11),1491.
    
    [46] H. Probstle, C. Schmitt, J. Fricke, Button cell supercapacitors with monolithic carbon aerogels, J. Power Sources,2002,105(2), 189.
    [47] R. Dash, J. Chmiola, G. Yushin, et al, Titanium carbide derived nanoporous carbon for energy-related applications, Carbon, 2006, 44 (12), 2489.
    [48] S.R.S. Prabaharan, R.Vimala, Z. Zainal, Nanostructured mesoporous carbon as electrodes for supercapacitors, J. Power Sources,2006,161(1),730.
    [49] Chmiola J, Yushin G, Dash R et al, Effect of pore size and surface area of carbide derived carbons on specific capacitance, J. Power sources, 2006, 158(1), 765.
    [50] F.C. Wu, R.L. Tseng, C.C. Hu, et al, The capacitive characteristics of activated carbons - comparisons of the activation methods on the pore structure and effects of the pore structure and electrolyte on the capacitive performance, J. Power Source,2006,159(2), 1532.
    [51] D. Hulicova, M. Kodama, H. Hatori, Electrochemical performance of nitrogen-enriched carbons in aqueous and non-aqueous supercapacitors, Chemistry of Materials, 2006, 18 (9), 2318.
    
    [52] CG. Liu, H.T. Fang, F. Li et al, Single-walled carbon nanotubes modified by electrochemical treatment for application in electrochemical capacitors, J. Power source, 2006, 160 (1), 758.
    [53] K. Jurewicz, K, Babel, R. Pietrzak et al, Capacitance properties of multi-walled carbon nanotubes modified by activation and ammoxidation, Carbon, 2006, 44 (12): 2368.
    [54] H. Shi, Activated carbons and double layer capacitance, Electrochim. Acta, 1996, 41(40), 1633.
    [55] D. Qu, H. Shi, Studies of activated carbons used in double-layer capacitors, J.Power Sources, 1998, 74(1),99.
    [56] J. Chmiola, G. Yushin, Y. Gogotsi, et al, Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer, Science, 2006, 313, 1760.
    [57] D. Qu, Studies of the activated carbons used in double-layer supercapacitors, J. Power Sources, 2002,109, 403.
    [58] S.M. Lipka, Electrochemical capacitors utilizing low surface area carbon fiber, IEEE Aerospace and Electronic Systems Magazine, 1997, 12(7),27.
    [59]W.C.Chen,T.C.Wen,H.Teng,Polyaniline-deposited porous carbon electrode for supercapacitor,Electrochim.Acta,2003,48(6),641.
    [60]王晓峰,王大志,梁吉等,氧化钌/活性炭超电容器复合电极的电化学行为,物理化学学报,2002,18(8),750.
    [61]刘献明,张校刚,王永刚等,功能材料,2003,5(34),550.
    [62]A.E.Fischer,K.A.Pettigrew,D.R.Rolison et al.,Incorporation of homogeneous,nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition:Implications for electrochemical capacitors,Nano Letters,2007,7,281.
    [63]V.Subramanian,H.W.Zhu,B.Q.Wei,Synthesis and electrochemical characterizations of amorphous manganese oxide and single walled carbon nanotube composites as supercapacitor electrode materials,Electrochem.Commun.,2006,8(5),827.
    [64]Q.H.Huang,X.Y.Wang,J.Li,et al.,Nickel hydroxide/activated carbon composite electrodes for electrochemical capacitors,J.Power Sources,2007,164(1),425.
    [65]X.F.Wang,D.B.Ruan,Z.You,Pseudo-capacitive behavior of cobalt hydroxide/carbon nanotubes composite prepared by cathodic deposition,Chinese Journal of Chemical Physics,2006,19(6),499.
    [66]J.Li,X.Y.Wang,Q.H.Huang,et al.,A new type of MnO_2 center dot xH(2)O/CRF composite electrode for supercapacitors,J.Power Sources,2006,160(2),1501.
    [67]J.K.Lee,H.M.Pathan,K.D.Jung,et aL,Electrochemical capacitance of nanocomposite films formed by loading carbon nanotubes with ruthenium oxide,J.Power Sources,2006,159(2),1527.
    [68]I.H.Kim,J.H.Kim,B.W.Cho,et al.,Pseudocapacitive properties of electrochemically prepared vanadium oxide on carbon nanotube film substrate,J.Electrochem.Soc.,2006,153,A1451.
    [69]B.Fang,Y.Z.Wei,M.Kumagai,Modified carbon materials for high-rate EDLCs application,J.Power Source,2006,155(2),487.
    [70]J.H.Lim,D.J.Choi,H.K.Kim et al.,Thin film supercapacitors using a sputtered RuO2 electrode,J.Electrochem.Soc.,2001,148(3),A275.
    [71]L.Tongchang,W.G.Pell,B.E.Conway,Self-discharge and potential recovery phenomena at thermally and electrochemically prepared RuO_2 supercapacitor electrodes,Electrochimica Acta,1997,42(23-24),3541.
    [72]C.C.Hu,K.H.Chang,Cyclic voltammetric deposition of hydrous ruthenium oxide for electrochemical supercapacitors:effects of the chloride precursor transformation,J.Power Sources,2002,112(2),401.
    [73]Q.L.Fang,D.A.Evans,S.L.Roberson,et al.,Ruthenium oxide film electrodes prepared at low temperatures for electrochemical capacitors,J.Electrochem.Soc,2001,148(8),A833.
    [74]J.P.Zheng,T.R.Jow,Electrochemical capacitors using hydrous ruthenium oxide and hydrogen inserted ruthenium oxide,J.Electrochem.Soc.,1998,145(1),49.
    [75]F.Cao,J.Prakash,Performance investigations of Pb_2Ru_2O_(6.5) oxide based pseudocapacitors,J.Power Sources,2001,92(1-2),40.
    [76]Y.U.Jeong,A.Manthiram,Amorphous tungsten oxide/ruthenium oxide composites for electrochemical capacitors,J.Electrochem.Soc.,2001,148(3),A189.
    [77]K.Yokoshima,W.Sugimoto,Y.Murakami,Y.Takasu,Investigation on the redox behavior of rutile-type Ti_(1-x)V_xO_2,Electrochemistry,2005,73(12),1026.
    [78]W.Sugimoto,T.Shibutani,Y.Murakami,Y.Takasu,Charge storage capabilities of rutile-type RuO_2-VO_2 solid solution for electrochemical supercapacitors,Electrochemical and Solid-State Letters,2002,5(7),A170.
    [79]W.Sugimoto,Y.Ohnuma,Y.Murakami,Y.Takasu,Molybdenum oxide/carbon composite electrodes as electrochemical supercapacitors,Electrochemical and Solid-State Letters,2001,4(9),A145.
    [80]H.Y.Lee,J.B.Goodenough,Supercapacitor behavior with KC1 electrolyte,J.Solid State Chemistry,1999,144(1),220.
    [81]H.Y.Lee,J.B.Goodenough,Ideal supercapacitor behavior of amorphous V_2O_5center dot nH(2)O in potassium chloride(KC1) aqueous solution,J.Solid State Chemistry,1999,148(1),81.
    [82]闪星,张密林,纳米氧化镍在超大容量电容器中的应用,功能材料与器件学报,2002,8(1),35.
    [83]王晓峰,孔祥华,刘庆国等,氧化镍超电容器的研究,电子元件与材料,2000,19(5),26.
    [84]王晓峰,孔祥华,新型氧化镍超电容器电极材料的研究,无机材料学报,2001,16(5),815.
    [85]K.C.Liu,M.A.Anderson,Porous nickel oxide/nickel films for electrochemical capacitors,J.Electrochem.Soc.,1996,143(1),124.
    [86]闪星,董国君,景晓燕等,新型超大容量电容器电极材料—纳米水合MnO_2的研究,无机化学学报,2001,17(5),669.
    [87]S.C.Pang,M.A.Anderson,T.W.Chapman,Novel electrode materials for thin-film ultracapacitors:Comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide,J.Electrochem.Soc.,2000,147,444.
    [88]S.C.Pang,M.A.Anderson,Novel electrode materials for ultracapacitors:Structural and electrochemical properties of sol-gel-derived manganese dioxide thin films,Mat.Res.Symp.Proc,2000,575,415.
    [89]刘献明,张校刚,CoAl双氢氧化物作超级电容器的电极材料,电源技术,2003,27(3),315.
    [90]刘献明,张校刚,包淑娟等,掺钴MnO_2电极的电化学电容行为研究,功能材料与器件学报,2003,9(3),267.
    [91]D.Choi,G.E.Blomgren,P.N.Kumta,Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors,Adv.Mater.,2006,18,1178.
    [92]T.Kudo,Y.Ikeda,T.Watanabe et al.,Amorphous V_2O_5/carbon composites as electrochemical supercapacitor electrodes,Solid State Ionics,2002,152-153,833.
    [93]张丹丹,姚宗干,大容量高储能密度电化学电容器的研究进展,科学动态,2000,19(1),34.
    [94]P.K.Rajendra,N.Munichandraiah,Fabrication and evaluation of 450 F electrochemical redox supercapacitors using inexpensive and high-performance,polyaniline coated,stainless-steel electrodes,J.Power Sources,2002,112,443.
    [95]P.K.Rajendra,N.Munichandraiah,Potentiodynamically deposited polyaniline on stainless steel-Inexpensive,high-performance electrodes for electrochemical supercapacitors,J.Electrochem.Soc.,2002,149(11),A1393.
    [96]F.Florence,G.Pascal,V.Dominique,B.Daniel,Electrochemical Characterization of Polyaniline in Nonaqueous Electrolyte and Its Evaluation as Electrode Material for Electrochemical Supercapacitors,J.Electrochem.Soc.,2002,148,A1.
    [97]C.C.Hu,C.H.Chu,Electrochemical and textural characterization of iridium-doped polyaniline films for electrochemical capacitors,Materials Chemistry and Physics,2000,65,329.
    [98] M.D. Ingram , H. Staesche , K.S. Ryder, 'Ladder-doped' polypyrrole: a possible electrode material for inclusion in electrochemical supercapacitors?, J. Power Sources, 2004,129(1), 107.
    [99] J.P. Ferraris, M. M. Eissa, I. D. Brotherston, et al, Performance evaluation of poly 3-(phenylthiophene) derivatives as active materials for electrochemical capacitor applications, Chem.Mater, 1998,10,3528.
    [100] J.P. Ferraris, M.M. Eissa, I.D. Brotherston, et al. Preparation and electrochemical evaluation of poly (3-phenylthiophene) derivatives: potential materials for electrochemical capacitors, J. Electroanal. Chem., 1998, 459(1), 57.
    [101] J. O. Iroh , K. Levine, Capacitance of the polypyrrole/polyimide composite by electrochemical impedance spectroscopy, J. Power Sources, 2003, 117(1-2), 267.
    [102] W. C. Chen, T. C. Wen, H. Teng, Polyaniline-deposited porous carbon electrode for supercapacitor, Electrochimica Acta, 2003,48(6),641.
    [103] T. Liu, T.V. Sreekumar , S. Kumar et al, SWNT/PAN composite film-based supercapacitors, Carbon, 2003, 41(12),2440.
    [104] K. Jurewicz, S. Delpeux, V. Bertagna et al, Supercapacitors from nanotubes/polypyrrole composites, Chemical Physics Letters, 2001,347,36.
    [105] V. Gupta, N. Miura, Polyaniline/single-wall carbon nanotube (PANI/SWCNT) composites for high performance supercapacitors, Electrochim. Acta, 2006, 52 (4),1721.
    
    [106] P. Sivaraman, S.K. Rath, V.R. Hande, et al., All-solid-supercapacitor based on polyaniline and sulfonated polymers, Synthetic Materials, 2006, 156 (16-17),1057.
    
    [107] Y.G. Wang, H.Q. Li, Y.Y. Xia, Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance, Advanced Materials, 2006, 18 (19), 2619.
    [108] T.C. Girija, M.V. Sangaranarayanan, Polyaniline-based nickel electrodes for electrochemical supercapacitors - Influence of Triton X-100, Power Source, 2006,159(2), 1519.
    [109] V. Gupta, N. Miura, Influence of the microstructure on the supercapacitive behavior of polyaniline/single-wall carbon nanotube composites, Power Sources, 2006, 157(1),616.
    [110]T.C.Girija, M.V. Sangaranarayanan, Analysis of polyaniline-based nickel electrodes for electrochemical supercapacitors, J. Power Sources, 2006, 156 (2), 705.
    [111] E. Frackowiak, V. Khomenko, K. Jurewicz, et al., Supercapacitors based on conducting polymers/nanotubes composites, J. Power Sources, 2006,153 (2), 413.
    [112] J. Jang, J. Bae, M. Choi, et al., Fabrication and characterization of polyaniline coated carbon nanofiber for supercapacitor, Carbon, 2005,43 (13), 2730.
    [113] H.T. Ham, Y.S. Choi, N. Jeong, et al, Singlewall carbon nanotubes covered with polypyrrole nanoparticles by the miniemulsion polymerization, Polymer, 2005, 46 (17), 6308.
    [114] M.G. Deng, B.C. Yang, Y.D. Hu, et al, Study of supercapacitor based on carbon nanotube-polyaniline nanocomposite, Acta Chimica Sinica, 2005, 63 (12), 1127.
    [115] C.F. Zhou, S. Kumar, CD. Doyle, et al, Functionalized single wall carbon nanotubes treated with pyrrole for electrochemical supercapacitor membranes, Chemistry of Materials, 2005, 17 (8), 1997.
    [116] V. Khomenko, E. Frackowiak, F. Beguin, Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations, Electrochim. Acta, 2005, 50 (12), 2499.
    [117] G. Sikha, R.E. White, B.N. Popov, A mathematical model for a lithium-ion battery/electrochemical capacitor hybrid system, J. Electrochem. Soc., 2005, 152, A1682.
    [118] Y.G. Wang, L. Cheng, Y.Y. Xia, Electrochemical profile of nano-particle CoAl double hydroxide/active carbon supercapacitor using KOH electrolyte solution, J. Power. Source, 2006, 153, 191.
    [119] V. Khomenko, E. Raymundo-Pinero, F. Beguin, Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2 V in aqueous medium, J. Power Source, 2006, 153, 183.
    [120] L. Cheng, H.Q. Li, Y.Y. Xia, A hybrid nonaqueous electrochemical supercapacitor using nano-sized iron oxyhydroxide and activated carbon, J. Solid State Electrochemistry, 2006, 10, 405.
    [121] S. Nohara, A.A. Toshihide, H. Wada, N. Furukawa, H. Inoue, N. Sugoh, H. Iwasaki, C. Iwakura, Hybrid capacitor with activated carbon electrode, Ni(OH)_((2)) electrode and polymer hydrogel electrolyte, J. Power Sources, 2006,157,605.
    [122] S.M. Lipka, D.E. Reisner, J. Dai, and R. Cepulis, in proceedings of the 11~(th) International Seminar on Double Layer Capacitors, Florida Educational Seminars Inc. (2001).
    [123] G.G. Amatucci, F. Badway, A.D. Pasquier, and T. Zheng, An asymmetric hybrid nonaqueous energy storage cell, J. Electrochem. Soc, 2001,148, A930.
    [124] H.Y. Wang, M. Yoshio, Graphite, a suitable positive electrode material for high-energy electrochemical capacitors, Electrochemistry Communications, 2006,8,1481.
    
    [125] M. Yoshio, H. Nakamura, H.Y. Wang, Novel megalo-capacitance capacitor based on graphitic carbon cathode, Electrochemical and Solid State Letters, 2006, 9,A561.
    [126] Y.G. Wang, Y.Y. Xia, Hybrid aqueous energy storage cells using activated carbon and lithium-intercalated compounds I. The C/LiMn_2O_4 system, J. Electrochem. Soc, 2006,153, A450.
    [127] Y.G. Wang, J.Y Luo, C.X. Wang, Y.Y. Xia, Hybrid aqueous energy storage cells using activated carbon and lithium-ion intercalated compounds II. Comparison of LiMn_2O_4, LiCo_(1/3)Ni_(1/3)Mn_(1/3)O_2, and LiCoO_2 positive electrodes, J. Electrochem. Soc, 2006,153, A1425.
    [128] Y.G. Wang, J.Y. Lou, W. Wu, C.X. Wang, Y.Y. Xia, Hybrid aqueous energy storage cells using activated carbon and lithium-ion intercalated compounds - III. Capacity fading mechanism of LiCo_(1/3)Ni_(1/3)Mn_(1/3)O)_2 at different pH electrolyte solutions, J. Electrochem. Soc, 2007,154, A228.
    [129] Y.G. Wang, Z.D. Wang, Y.Y. Xia, An asymmetric supercapacitor using RuO_2/TiO_2 nanotube composite and activated carbon electrodes, Electrochim. Acta, 2005, 50, 5641.
    [130] S.Schamey, W. Weppner, P. Sclunid-Beurmann, Evidence of two-phase formation upon lithium insertion into the.Li_(1.33)Ti_(1.67)O_4, J. El ectrochem. Soc, 1999,146,857.
    [131] K. Kanamura, T. Umegaki, H. Naito et al., Structural and electrochemical characteristics of Li_(4/3)Ti_(5/3)O_4 as an anode material for rechargeable lithium batteries. J. Applied Electrochemistry, 2001, 31, 73.
    [132] T. Ohzuku, A. Ueda, N. Yamamoto, Zero-strain insertion material of Li_(1.33)Ti_(1.67)O_4 for rechargeable lithium cells, J. Electrochem. Soc, 1995, 142, 1431.
    [133] G. X. Wang, D. H. Bradhurst, S. X. Dou,et al., Spinel Li_(4/3)Ti_(5/3)O_4 as an anode material for lithium ion batteries, J. Power Sources, 1999, 83,156.
    [134] F. Rood, P. E. Stallworth, F. Alamgir ,et al., Lithium-7 nuclear magnetic resonance and Ti K-edge X -ray absorption spectroscopic investigation of electrochemical lithium insertion in Li_(4/3)Ti_(5/3)O_4, J. Power Sources, 2003,119-121,631.
    [135] A. Sinhal, G. G. Skandan, Amatucci, et al., Nanostructured electrodes for next generation rechargeable electrochemical devices, J. Power Sources, 2004, 129, 44.
    [136] L. Kavan, J. Prochazka, T. M. Spitler, Li insertion into Li_4Ti_5O_(12) (spinel), J. Electrochem. Soc, 2003, 150, A1000.
    [1]马礼敦,高等结构分析,复旦大学出版社:上海,2001
    [2]严风霞,王筱敏,现代光学仪器分析选论,华东师范大学出版社:上海,1992,p137
    [3]黄惠忠,纳米材料分析,化学工业出版社:北京,2003
    [4]陈国珍,黄贤智,刘文远,分光光度法(上册),原子能出版社:北京,1980
    [5]周伟舫,电化学测量,上海科学技术出版社,1983
    [6]吴浩青,李永舫,电极过程动力学,高等教育出版社:北京,1998
    [7]查全性等,电极过程动力学导论,科学出版社:北京,1984
    [81田昭武,电化学研究方法,科学出版社:北京,1984
    [9]藤岛昭,相泽益男,井上撤著,陈震,姚建年译,电化学测定方法,北京大学出版社:北京,1995,p204.
    [1]T.Ohzuku,Y.Iwakoshi,and K.Sawai,Formation of lithium-graphite intercalation compounds in nonauueous electrolytes and their application as a negative electrode for a litium ion(shuttlecock) cell,J.Electrochem.Soc.,1993,140,2490.
    [2]T.Ohzuku,A.Ueda,N.Yamamoto,Zero-strain insertion material of Li[Li_(1/3)Ti_(5/3)]O_4 for rechargeable lithium cells,J.Electrochem.Soc.,1995,142,1431.
    [3]K.Ariyoshi,S.Yamamoto,T.Ohzuku,Three-volt lithium-ion battery with Li[Nil/2Mn3/2]O-4 and the zero-strain insertion material of Li[Li1/3Ti5/3]O-4,J.Power Sources,2003,119-121,959.
    [4]K.Zaghib,M.Armand,M.Gauthier,Electrochemistry of anodes in solid-state Li-ion polymer batteries,J.Electrochem.Soc.,1998,145,3135.
    [5]A.N.Jansen,A.J.Kahaian,K.D.Kepler,P.A.Nelson,K.Amine,D.W.Dees,D.R.Vissers,M.M.Thackeray,Development of a high-power lithium-ion battery,J.Power Sources,1999,81-82,902.
    [6]A.Guerfi,S.Sevigny,M.Lagace,P.Hovington,K.Kinoshita,K.Zaghib,Nano-particle Li_4Ti_5O_(12) spinel as electrode for electrochemical generators,J.Power Sources,2003,119-121,88.
    [7]K.Nakahara,R.Nakajima,T.Matsushima,H.Majima,Preparation of particulate Li4TiSO12 having excellent characteristics as an electrode active material for power storage cells,J.Power Sources,2003,117,131.
    [8]P.Kubiak,A.Garcia,M.Womes,L.Aldon,J.O.Fourcade,P.E.Lippens,J.C.Jumas,Phase transition in the spinel Li4TiSO12 induced by lithium insertion-Influence of the substitutions Ti/V,Ti/Mn,Ti/Fe,J.Power Sources,2003,119-121,626.
    [9]Q.Wang,S.M.Zakeeruddin,I.Exnar,and M.Gratzel,3-methoxypropionitrile-based novel electrolytes for high-power Li-ion batteries with nanocrystalline Li_4Ti_5O12 anode,J.Electrochem.Soc.,2005,151,A 1598.
    [10]C.H.Chen,J.T.Vaughey,A.N.Jansen,D.W.Dees,A.J.Kahaian,T.Goacher and M.M.Thackeray,Studies of Mg-substituted Li_(4-x)Mg_xTi_5O_(12) spinel electrodes (0<=x<=1) for lithium batteries,J.Electrochem.Soc.,148,A102(2001).
    [11]唐致远,阳晓霞,陈玉红,贺艳兵,钛酸锂电极材料的研究进展,电源技术,2007,31,333.
    [12]日田高玲,赵海雷,仇卫华等.镁掺杂对铿钦复合氧化物电化学性能的影响.2004年中国材料研讨会论文,中国,北京,2004年11月,B3
    [13]C.H.Chen,J.T.Vaughey,A.N.Jansen.Studies of Mg-substituted Li_(4+x)MgTi_5O_(12)Spinel electrodes(0=x=1)for lithium batteries,J.Electrochemi.Soc.,2001,148,A102-A104.
    [14]Huang S.H.,Wen Z.Y.,Gu Z.H.,Preparation and cycling performance of Al~(3+)and F co-substituted compounds Li_4Al_xTi_(5-x)F_yO_(12-y),Electmchimica Acta,2005,50,4057-4065.
    [15]S.Huang,Z.Wen,J.Zhang,et al.,Improving the electrochemical performance of Li_4Ti_5O_(12)/Ag composite by an electroless deposition method,Electrochim.Acta,2006,10,44.
    [16]S.Huang,Z.Wen,X..Zhu,Research on Li_4Ti_5O_(12)/Cu_xO composite anode materials for lithium-ion batteries,J.Electrochem.,Sot.,2005,152,A1301-A1305.
    [17]KARIM Z,MICHEL G,FERNAND B,et al.,Li_4Ti_5O_(12),Li(4-a)Za-Ti5O_(12) or Li_4Z_bTi_(5-b)O_(12) particles,processes for obtaining same and use as electrochemical generators[P].USP:2004/0202934 A1,2004-10-14.
    [18]H.Nakamura,H.Komatsu and M.Yoshio,Suppression of electrochemical decomposition of propylene carbonate at a graphite anode in lithium-ion cells,J.Power Sources,1996,62,219.
    [19]M.Yoshio,H.Wang and K.Fukuda,Spherical carbon-coated natural graphite as a lithium-ion battery-anode material,Angew.Chem.,Int.Ed.,2003,115,4335.
    [20]M.M.Doeff,Y.Q.Hu,F.McLarnon and R.Kostecki,Effect of surface carbon structure on the electrochemical performance of LiFePO4,Electrochem.and Solid State Lett.,2003,6,A207.
    [21]R.Dominko,M.Bele,M.Gaberscek,M.Remskar,D.Hanzel,S.Pejovnik and J.Jamnik,Impact of the carbon coating thickness on the electrochemical performance of LiFePO_4/C composites,J.Electrochem.Soc.,2005,152,A607.
    [22]G.X.Wang,L.Yang,S.L.Bewlay,Y.Chen,H.K.Liu and J.H.Ahn, Electrochemical properties of carbon coated LiFePO_4 cathode materials, J. Power Sources, 2005,146, 512.
    [23] S. Mrozowski, Semiconductivity and diamagnetism of polycrystalline graphite and condensed ring systems, Phys. Rev., 1952, 85, 609.
    [24] M. M. Doeff, Y. Q. Hu, F. McLarnon, and R. Kosteckib, Effect of surface carbon structure on the electrochemical performance of LiFePO_4, Electrochem. Solid-State Lett., 2003, 6, A207.
    [25] J. Wolfenstine, U. Lee,and J.L. Allen, Electrical conductivity and rate-capability of Li_4Ti_5O_(12) as a function of heat-treatment atmosphere, J. of Power Sources, 2006,154,287.
    [26] Q. Wang, S. M. Zakeeruddin, I. Exnar, and M. Gratzel, 3-methoxypropionitrile-based novel electrolytes for high-power Li-ion batteries with nanocrystalline Li_4fTi_5O_(12) anode, J. Electrochem. Soc., 2005, 151, A1598.
    [27] Anna-Karin Hjelm, Go'ran Lindbergh, Electrochimica Acta, 2002, 47, 1747.
    [28] J. Suzuki, M. Yoshida, C. Nakahara, K. Sekine, M. Kikuchi, T. Takamura, Experimental and theoretical analysis of LiMn_2O_4 cathodes for use in rechargeable lithium batteries by electrochemical impedance spectroscopy (EIS), Electrochem. Solid State Lett., 2001, 4, Al.
    [29] Z. Xiong, S. Shi, C. Ouyang, M. Lei, L. Hu, Y. Ji, Z. Wang and L. Chen, Ab initio investigation of the surface properties of Cu(111) and Li diffusion in Cu thin film, Physics Lett. A, 2006, 337, 247.
    [1]D.Peramunage;K.M.Abraham,Preparation of micron-sized Li4Zi5O_(12) and its electrochemistry in polyacrylonitrile electrolyte-based lithium cells,J.Electrochern.Soc.,1998,145,2609.
    [2]A.Guerfi,E Charest,K.Kinoshita et al.,Nano electronically conductive titanium-spinel as lithium ion storage negative electrode,J.Power Sources,2004,126,163.
    [3]K.Zaghib,M.Simoneau,M.Armand,et al.,Electrochemical study of Li_4Ti_5O_(12) as negative electrode for Li-ion polymer rechargeable batteries,J.Power Sources,1999,81,300.
    [4]D.Fattakhova,P.Krtil,Electrochemical activity of hydrothermally synthesized Li-Ti-O cubic oxides toward Li insertion,J.Electrochem.Soc.,2002,149,A 1224.
    [5]G.G.Amatucci,F.Badway,A.D.Pasquier and T.Zheng,An asymmetric hybrid nonaqueous energy storage cell,J.Electrochem.Soc.,2001,148,A930.
    [6]T.Ohzuku,Y.Iwakoshi and K.Sawai,Formation of lithium-graphite intercalation compounds in nonaqueous electrode for a litium ion(shuttlecock) cell,J.Electrochem.Soc.,1993,140,2490.
    [7]T.Ohzuku,A.Ueda and N.Yamamoto,Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells,J.Electrochem.Soc.,1995,142,1431.
    [8] K. Zaghib, M. Armand and M. Gauthier, Electrochemistry of anodes in solid-state Li-ion polymer batteries, J. Electrochem. Soc, 1998, 145, 3135.
    [9] A.N. Jansen, A.J. Kahaian, K.D. Kepler, P.A. Nelson, K. Amine, D.W. Dees, D.R. Vissers and M.M. Thackeray, Development of a high-power lithium-ion battery, J. Power Sources, 1999, 81-82, 902.
    [10] A. Guerfi, S. Se'vigny, M. Lagace', P. Hovington, K. Kinoshita and K. Zaghib, Nano-particle Li_4Ti_5O_(12) spinel as electrode for electrochemical generators, J. Power Sources, 2003,119-121, 88.
    [11] K. Ariyoshi, S. Yamamoto and T. Ohzuku, Three-volt lithium-ion battery with Li[Ni_(1/2)Mn_(3/2)]O_4 and the zero-strain insertion material of Li[Li_(1/3)Ti_(5/3)]O_(-4), J. Power Sources, 2003, 119-121, 959.
    [12] Kiyoshi Nakahara, Ryosuke Nakajima, Tomoko Matsushima, Hiroshi Majima, Preparation of particulate Li_4Ti_5O_(12) having excellent characteristics as an electrode active material for power storage cells, J. Power Sources, 2003, 117, 131.
    [13] P. Kubiak, A. Garcia, M. Womes, L. Aldon, J. O. Fourcade, P. E. Lippens and J. C. Jumas, Phase transition in the spinel Li_4Ti_5O_(12) induced by lithium insertion -Influence of the substitutions Ti/V, Ti/Mn, Ti/Fe, J. Power Sources, 2003, 119-121, 626.
    [14] L. Kavan, J. Prochazka, T. M. Spitler, M. Kalbac, M. Zukalova, T. Drezen and M. Gratzel, Li insertion into Li_4Ti_5O_(12) p (Spinel) - Charge capability vs. particle size in thin-film electrodes, J. Electrochem. Soc, 2003, 150, A1000.
    [16] W. Liu, G. C. Farrington, F. Chaput, B. Dunn, Synthesis and electrochemical studies of spinel phase LiMn_2O_4 cathode materials prepared by the Pechini process, J. Electrochem. Soc, 1996,143, 879.
    [17] J. Lee, Y. W. Tsai, R. Santhanam, B. J. Hwang, M. H. Yang, D. G. Liu, Local structure transformation of nano-sized Al-doped LiMn_2O_4 sintered at different temperatures, J. Power Sources 2003,119-121, 721.
    [18] H. Gadjov, M. Gorova, V. Kotzeva, G. Avdeev. S. Uzunova, Kovacheva, LiMn_2O_4 prepared by different methods at identical thermal treatment conditions: structural, morphological and electrochemical characteristics, J. Power Sources 2004,134, 110.
    [19] J. Lee, Y. W. Tsai, R. Santhanam, B. J. Hwang, M. H. Yang and D.G. Liu, Local structure transformation of nano-sized Al-doped LiMn_2O_4 sintered at different temperatures, J. Power Sources, 119-121,721 (2003).
    [20] J. T. Son, H. G.Kim and Y. J. Park, New preparation method and electrochemical property of LiMn_2O_4 electrode, Electrochimica Acta, 50,453 (2004).
    [21] H. Gadjov, M. Gorova, V. Kotzeva, G.Avdeev, S. Uzunova and D. Kovacheva, LiMn_2O_4 prepared by different methods at identical thermal treatment conditions: structural, morphological and electrochemical characteristics, J. Power Sources, 134,110(2004).
    [22] T. Doi, Y. Iriyama, T. Abe and Z. Ogumi, Electrochemical insertion and extraction of lithium ion at uniform nanosized Li_(4/3)Ti_(5/3)O_4 particles prepared by a spray pyrolysis method Chem. Mater., 2005, 17, 1580.
    [23] W. Tang, Hirofumi Kanoh, and K. Ooi, Preparation of lithium cobalt oxide by LiCl-Flux method for lithium rechargeable batteries, Electrochemical and Solid-State Letters, 1998, 145-146, 1.
    [24] X. Yang, W. Tang, H. Kanoha and K. Ooi, Synthesis of lithium manganese oxide in different lithium-containing fluxes, J. Mater. Chem., 1999, 9, 2683 .
    [25] C. Han, Y. Hong, C. M. Park and K. Kim, Synthesis and electrochemical properties of lithium cobalt oxides prepared by molten-salt synthesis using the eutectic mixture of LiCl-Li_2CO_3, J. Power Sources, 2001, 92, 95.
    [26] H. Liang, X. Qiu and S. Zhang, Z. He, W. Zhu and L. Chen, Analysis of high rate performance of nanoparticled lithium cobalt oxides prepared in molten KNO_3 for rechargeable lithium-ion batteries, Electrochem. Comm., 2004, 6, 505.
    [1]L.Cheng,H.J.Liu,J.J.Zhang,H.M.Xiong,Y.Y.Xia,Nanosized Li4Ti5O_(12)prepared by molten salt method as an electrode material for hybrid electrochemical supercapacitors,J.Electrochem.Soc.,2006,153(8),A1472-1477.
    [2]L.Cheng,X.L.Li,H.J.Liu,H.M.Xiong,P.W.Zhang,Y.Y.Xia,Carbon Coated Li4Ti5O_(12) as a High Rate Electrode Material for Electrochemical Supercapacitors.J.Electrochem.Soc.,2007,154,A228.
    [1]M.S.Whittingham,Lithium batteries and cathode materials,Chem.Rev.,2004,104,4271.
    [2]B.Scrosati,Battery technology-challenge of potable power,Nature,1995,373, 557.
    [3] L. H. Yu, H. X. Yang, X. P. Ai, Y. L. Cao, Structural and electrochemical characterization of nanocrystalline Li[Li_(0.12)NI_(0.32)Mn_(0.56)]O_(-2) synthesized by a polymer-pyrolysis route, J. Phys. Chem. B, 2005,109, 1148.
    [4] Y. Wang, K. Takahashi, H. M. Shang, G. Z. Cao, Synthesis and electrochemical properties of vanadium pentoxide nanotube arrays, J. Phys. Chem. B, 2005, 109, 3085.
    [5] F. Jiao, K. M. Shaju, P. G. Bruce, Synthesis of nanowire and mesoporous low-temperature LiCoO_2 by a post-templating reaction, Angew. Chem. Int. Ed. ,2005, 44, 6550.
    [6] A. S. Arico, P. G. Bruce, B. Scrosati, J. M. Tarascon, V. Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices, Nature Mater., 2005, 4, 366.
    [7] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Tarascon, Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries, Nature, 2000, 407, 496.
    [8] C. J. Curtis, J. X. Wang, D. L. Schulz, Preparation and characterization of LiMn_2O_4 spinel nanoparticles as cathode materials in secondary Li batteries, J. Elctrochem. Soc., 2004,151, A590.
    [9] K. N. Nam, D. W. Kim, P. J. Yoo, C. Y. Chiang, N. Meethong, P. Hammond, Y. M. Chiang, A. M. Belcher, Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes, Science, 2006, 312, 885.
    [10] A. R. Armstrong, G. Armstrong, J. Canales, P. G. Bruce, TiO_2-B nanowires, Angew. Chem. Int. Ed, 2004, 43, 2286.
    [11] A. R. Armstrong, G. Armstrong, J. Canales, R. Garcia, P. G. Bruce, TiO_2(B) nanowires as an improved anode material for lithium-ion batteries containing LiFePO_4 or LiNi_(0.5)Mn_(1.5)O_4 cathodes and a polymer electrolyte, Adv. Mater., 2006, 16, 1133.
    [12] Y. S. Hu, L. Kienle, Y.G. Guo, J. Maier, High lithium electroactivity of nanometer-sized rutile TiO_2, Adv. Mater., 2006, 18, 1421.
    [13] Y. G. Guo, Y S. Hu, W. Sigle, J. Maier, Superior electrode performance of nanostructured mesoporous TiO_2 (anatase) through efficient hierarchical mixed conducting networks, Adv. Mater. 2007, 19, 2087.
    [14] N. C. Li, C. J. Patrissi, G. L. Che, C. R. Martin, Rate capabilities of nanostructured LiMn_2O_4 electrodes in aqueous electrolyte, J. Elctrochem. Soc. 2000,147,2044.
    [15] X. X. Li, F. Y. Cheng, B. Guo, J. Chen, Template-synthesized LiCoO_2, LiMn_2O_4, and LiNi_(0.8)Co_(0.2)O_2 nanotubes as the cathode materials of lithium ion batteries, J. Phys. Chem.B 2005,109,14017.
    [16] Y. Wang, K. Takahashi, K. Lee, G. Z. Cao, Nanostructured vanadium oxide electrodes for enhanced lithium-ion intercalation, Adv.Func. Mater. 2005,17, 862.
    [17] A. M. Cao, J. S. Hu, H. P. Liang, L. J. Wan, Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries, Angew. Chem. Int. Ed., 2005, 44, 4391.
    [18] S. Han, B. Jang, T. Kim, S. M. Oh, T. Hyeon, Simple synthesis of hollow tin dioxide microspheres and their application to lithium-ion battery anodes, Adv. Funct. Mater., 2005, 75, 1845.
    [19] J. Y. Luo, L. Cheng, Y. Y. Xia, LiMn_2O_4 hollow nanosphere electrode material with excellent cycling reversibility and rate capability, Electrochem. Commun., 2007, 9, 1404.
    [20] H. S. Zhou, D. L. Lin, I. Honma, Design and synthesis of self-ordered mesoporous nanocomposite through controlled in-situ crystallization, Nature. Mater., 2004, 3, 65.
    [21] H. S. Zhou, D. L.Lin, M. Hibino, I. Honma, A self-ordered, crystalline-glass, mesoporous nanocomposite for use as a lithium-based storage device with both high power and high energy densities, Angew. Chem., Int. Ed, 2005, 44, 797.
    [22] H. S. Zhou, S. M. Zhu, M. Hibino, I. Honma, M. Ichihara, Lithium storage in ordered mesoporous carbon (CMK-3) with high reversible specific energy capacity and good cycling performance, Adv. Mater., 2003,15, 2107.
    [23] E. Kim, D. Son, T. C. Kim, J. Cho, B. Park, K. S. Ryu, S. H. Chang, A mesoporous/crystalline composite material containing tin phosphate for use as the anode in lithium-ion batteries, Angew. Chem., Int. Ed., 2004, 43, 5987.
    [24] P. Liu, S. H. Lee, C. E. Tracy, Y. F. Yan, J. A. Turner, Preparation and lithium insertion properties of mesoporous vanadium oxide, Adv. Mater., 2002,14, 27.
    [25] F. Jiao, K. M. Shaju, P. G. Bruce, Synthesis of nanowire and mesoporous low-temperature LiCoO2 by a post-templating reaction, Angew. Chem. Int. Ed., 2005, 44, 6550.
    [26] I. Moriguchi, R. Hidaka, H. Yamada, T. Kudo, H. Murakami and N. Nakashima, A mesoporous nanocomposite of TiO_2 and carbon nanotubes as a high-rate Li-intercalation electrode material, Adv. Mater. 2006,18, 69.
    [27] T. Ohzuku, Y. Iwakoshi, and K. Sawai, Formation of lithium-graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for a liuthium ion (shulttlecock) cell, J. Electrochem. Soc. 1993, 140,2490,1993.
    [28] T. Ohzuku, A. Ueda, N. Yamamoto, Zero-strain insertion material of Li[Li_(1/3)Ti_(5/3)]O_4 for rechargeable lithium cells, J. Electrochem. Soc, 1995, 142, 1431.
    [29] K. Ariyoshi, S. Yamamoto, T. Ohzuku, Three-volt lithium-ion battery with Li[Ni_(1/2)Mn_(3/2)]O_(-4) and the zero-strain insertion material of Li[Li_(1/3)Ti_(5/3)]O_(-4), J. Power Sources ,2003,119-121, 959.
    [30] K. Zaghib, M. Armand, M. Gauthier, Electrochemistry of anodes in solid-state Li-ion polymer batteries, J. Electrochem. Soc, 1998,145, 3135.
    [31] A. N. Jansen, A. J. Kahaian, K. D. Kepler, P. A. Nelson, K. Amine, D. W. Dees, D. R. Vissers, M. M. Thackeray, Development of a high-power lithium-ion battery, J. Power Sources, 1999, 81-82, 902.
    [32] A. Guerfi, S. Sevigny, M. Lagace, P. Hovington, K. Kinoshita, K. Zaghib, Nano-particle Li_4Ti_5O_(12) spinel as electrode for electrochemical generators, J. Power Sources, 2003,119-121, 84.
    [33] K. Nakahara, R. Nakajima, T. Matsushima, H. Majima, Preparation of particulate Li_4Ti_5O_(12) having excellent characteristics as an electrode active material for power storage cells, J. Power Sources, 2003,117, 131.
    [34] P. Kubiak, A. Garcia, M. Womes, L. Aldon, J. O. Fourcade, P. E. Lippens, J. C. Jumas, Phase transition in the spinel Li_4Ti_5O_(12) induced by lithium insertion - Influence of the substitutions Ti/V, Ti/Mn, Ti/Fe, J. Power Sources, 2003, 119-121, 626.
    [35] E. M. Sorensen, S. J. Barry, H.-K. Jung, J. R. Rondielli, J. T. Vaughey, K. R. Poeppelmeier, Three-dimensionally ordered macroporous Li_4Ti_5O_(12): Effect of wall structure on electrochemical properties, Chem. Mater., 2006, 18, 482.
    [36] J. Li, Z. Tang, Z. Zhang, Controllable formation and electrochemical properties of one-dimensional nanostructured spinel Li_4Ti_5O_(12), Electrochem. Commun., 2005, 7, 894.
    [37] J. Kim, J. Cho, Spinel Li_4Ti_5O_(12) nanowires for high-rate Li-ion intercalation electrode, Electrochem. Solid-State Lett., 2007,10, A81.
    [38] L. Cheng, H. J. Liu, J. J. Zhang, H. M. Xiong, Y. Y. Xia, Nanosized Li_4Ti_5O_(12) prepared by molten salt method as an electrode material for hybrid electrochemical supercapacitors, J. Electrochem. Soc, 2006,153, A1472.
    [39] M. Winter, J. O. Besenhard, M. E. Spahr, P. Novak, Insertion electrode materials for rechargeable lithium batteries, Adv. Mater. 1998,10,725.
    [40] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Titania nanotubes prepared by chemical processing, Adv. Mater., 1999,11, 1307.
    [41] Q. Chen, W. Z. Zhou, G. H. Du, L.M. Peng, Trititanate nanotubes made via a single alkali treatment, Adv. Mater., 2002,17, 1208.
    
    [42] H. Li, X. Wu, L. Q. Chen, X. J. Huang, Solid State Ionics, 2003,149, 185.
    [43] H. Li, L. H. Shi, W. Lu, X. J. Huang, L. Q. Chen, Studies on capacity loss and capacity fading of nanosized SnSb alloy anode for Li-ion batteries, J. Electrochem. Soc, 2001,148, A915.
    [44] S. S. Zhang, M. S. Ding, K. Xu, J. Allen, Understanding solid electrolyte interface film formation on graphite electrodes, Electrochem. Solid-State Lett., 2001,4, A206.
    [45] H. Li, L. H. Shi, Q. Wang, L. Q. Chen, J. X. Huang, Nano-alloy anode for lithium ion batteries, Solid State Ionics, 2002,148, 247.
    [46] T. Doi, Y. Iriyama, T. Abe, Z. Ogumi, Electrochemical insertion and extraction of lithium ion at uniform nanosized Li_(4/3)Ti_(5/3)O?_4 particles prepared by a spray pyrolysis method, Chem. Mater, 2005,17, 1580.
    [47] J. W. Goodwin, R. H. Ottewill, R. Pelton, Studies on the preparation and characterization of monodisperse polystyrene lattices:5 preparation of cationic lattices, Colloid Polym. Sci., 1979, 257, 61.
    [48] I. Arnout, Preparation and characterization of titania-coated polystyrene spheres and hollow titania shells, Langmuir, 2001,17, 3579.
    [49] B. Chi, L. Zhao, T. Jin, One step template-free route for synthesis mesoporous N-doped titania spheres, J. Phys. Chem. C, 2007, 111, 6189.
    [1]“‘从轻型电动车到微型电动汽车的技术路线'的可行性研究”,http://www.de-ou.com/Page/PageShow.aspx?ID=486&PageType=Info.
    [2]G.G.Amatucci,F.Badway,A.D.Pasquier and T.Zheng,An asymmetric hybrid nonaqueous energy storage cell,J.Electrochem.Soc.,2001,148,A930.
    [3]A.D.Pasquier,I.Plitz,J.Gural,S.Menocal,G.Amatucci,Characteristics and performance of 500 F asymmetric hybrid advanced supercapacitor prototypes,J.Power Sources,2003,113,62-71.
    [4]Q.Wang,S.M.Zakeeruddin,I.Exnar,and M.Gratzel,3-methoxypropionitrile-based novel electrolytes for high-power Li-ion batteries with nanocrystalline Li_4Ti_5O_(12) anode,J.Electrochem.Soc.,2005,151,A1598.
    [5]郭炳坤,徐徽,王先友,肖立新,锂离子电池,中南大学出版社:长沙,2002.
    [1]R.Kanno,T.Shirane,Y.Kawamoto,Y.Takeda,M.Takano,M.Ohashi,Y.Yamaguchi,Synthesis,structure,and electrochemical properties of a new lithium iron oxide,LiFeO2,with a corrugated layer structure,J.Electrochem.Soc.,1996,143,2435.
    [2]R.Kanno,T.Shirane,Y.Inaba,Y.Kawamoto,Synthesis and electrochemical properties of lithium iron oxides with layer-related structures,J.Power Sources,1997,68,145.
    [3]G.Campet,S.Wen,S.Han,M.Shastry,J.Poetier,C.Guizard,L.Cot,Y.Xu,J. Salardenne, Reversible electrochemical insertion of lithium in fine-grained polycrystalline thin-films of mixed-valency metal-oxides-application to Li_xFe_2O_3 thin film electrodes prepared by the sol-gel process, Mater. Sci. Eng. B 1993, B18, 201.
    [4] Z. Takehara, H. Sakaebe, K. Kanamura, Application of FeOOH derivatives for a secondary lithium battery, J. Power Sources, 1993,44, 627.
    [5] K. S. Hwang, T. H. Yoon, C. W. Lee, Discharge-charge characteristics and performance of Li/FeOOH(an) battery with PAN-based polymer electrolyte, J Power Sources, 1998, 75, 13.
    [6] Atsushi Funabiki, Hideo Yasuda, Masanori Yamachi, Low-crystalline beta-FeOOH and vanadium ferrite for positive active materials of lithium secondary cells, J Power Sources, 2003,119,290.
    [7] K. Amine, H. Yasuda, M. Yamachi, Beta-FeOOH, a new positive electrode material for lithium secondary batteries, J Power Sources, 1999, 81, 221.
    [8] A. Schneuwly, A. Zuttel, Ch. Emmenegger,V. Harri, R. Gallay, Proc. Power Conv. PCIM, 1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700